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Abstract

In a stochastic process, noise often modifies the picture offered by the mean field dynamics.

In particular, when there is an absorbing state, the noise erases a stable fixed point of the mean

field equation from the stationary distribution, and turns it into a transient peak. We make a

quantitative analysis of this effect for a simple genetic regulatory network with positive feedback,

where the proteins become extinct in the presence of stochastic noise, contrary to the prediction

of the deterministic rate equation that the protein number converges to a non-zero value. We

show that the transient peak appears near the stable fixed point of the rate equation, and the

extinction time diverges exponentially as the stochastic noise approaches zero. We also show how

the baseline production from the inactive gene ameliorates the effect of the stochastic noise, and

interpret the opposite effects of the noise and the baseline production in terms of the position shift

of the unstable fixed point. The order of magnitude estimates using biological parameters suggest

that for a real gene regulatory network, the stochastic noise is sufficiently small so that not only

is the extinction time much larger than biologically relevant time-scales, but also the effect of the

baseline production dominates over that of the stochastic noise, leading to the protection from the

catastrophic rare event of protein extinction.
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I. INTRODUCTION

The probability of a rare event in stochastic reaction processes has been a subject of

much interest and extensive studies [1–27]. Such an event can drastically modify the picture

provided by the mean field dynamics, if that event brings the process to an absorbing

state. A representative example is the extinction of a population or a disease [1–24]. Under

the assumption of an isolated population, the state of the vanishing population or disease

is an absorbing state. In this case, even when the mean-field dynamics predicts that the

whole or infected population reaches a non-vanishing stationary value, called the stable fixed

point, a finite probability flux into the absorbing state leads to an eventual extinction of

the population or disease. The stable fixed point is converted into a transient state by the

stochastic noise in this case, implying the mean-field description is valid during a finite time,

and eventually breaks down. Obviously, the extinction event can be prevented by removing

the absorbing state. This can be done by introducing the influx of population or disease, so

that the state of the vanishing population or disease is not an absorbing state any more. The

rate of such an influx determines the relative dominance of the the mean-field stable fixed

point versus the state of vanishing population or disease on the stationary distribution [24].

A gene regulatory network with positive feedback [28], shares the same qualitative features

as the models of population dynamics or epidemics discussed above, in that the protein

activates its own production by binding to the DNA: when there is no protein production

from the inactive gene, the state of the vanishing number of proteins becomes an absorbing

state. A small amount of the protein production from the inactive gene, called the baseline

production, plays the role of population (disease) influx in the case of population dynamics

(epidemics), in that it removes the absorbing state. Therefore, it is clear that a similar

quantitative analysis can be conducted on the gene regulatory network as in the case of the

population dynamics or epidemics. Although the role of stochastic noise in gene regulation

has been a focus of much interest recently [29–68], it is difficult to find a quantitative analysis

of how the stochastic noise turns a stable fixed point into a transient state, and how the

baseline production rescues the proteins from being extinct, in a gene regulatory network.

In this work, we will consider the simplest form of genetic regulatory network with positive

feedback and obtain the time-dependent distribution as a numerical solution of the chemical

master equation. We also obtain an analytic solution under the assumption of appropriate

2



time-scale separations. We indeed see that the stable fixed point of the deterministic mean-

field dynamics turns into a transient peak of the probability distribution, and gets erased

from the stationary distribution in the absence of the baseline production. We then compute

the time-scale for the leakage of the probability to the absorbing state, and find that the

leakage time increases as the stochastic noise decreases, making the deterministic equation

valid for longer time duration. We then analyze how the baseline production from the

inactive gene ameliorates the effect of the stochastic noise by removing the absorbing state.

We show that the opposite effects of the stochastic noise and the baseline production can

be explained in terms of the position shift of the unstable fixed point.

The order of magnitude estimates using biological parameters suggest that for a real gene

regulatory network, the stochastic noise is sufficiently small so that not only is the leakage

time much larger than biologically relevant time-scales, but also the effect of the baseline

production dominates over that of the stochastic noise, leading to the protection from the

catastrophic rare event of protein extinction.

II. THE MODEL

The model we consider is the simplest genetic regulatory network with positive feedback

loop. We consider a protein X that binds to the DNA to activate its own production:

D +X
k0−⇀↽−
k1

D∗

D∗ a−→ D∗ +X

D
aǫ−→ D +X

X
b−→ ∅

D∗ bρ−→ D (1)

where D∗ and D denote the DNA with protein bound and unbound, respectively. Although

X is produced from D∗ or D via transcription and translation, we assume that they can

be approximated as a one-step process. We assume that the degradation rate of the bound

protein is not greater than that of the free protein, so that 0 ≤ ρ ≤ 1. Although most of the

results presented are for ρ = 0, the value of ρ does not affect the qualitative feature of the

results. The nonnegative number ǫ parametrizes the rate of transcription from the inactive
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gene, called the baseline production 1 [33, 42, 45, 69–71]. Because we are considering the

case of a positive feedback, the value of ǫ is restricted to be 0 ≤ ǫ < 1.

III. THE DETERMINISTIC RATE EQUATION

We assume that the time-scale of equilibration between D and D∗ is much shorter than

other relevant time scales, so that they can be assumed to be equilibrated instantly. We

also assume that the number of X molecules is large enough so that its fluctuation can be

neglected. Then the probability that the DNA is bound to a protein molecule is given by

p(D∗) =
k0x

k0x+ k̃1
=

x

x+ r̃

p(D) = 1− p(D∗) =
r̃

x+ r̃
(2)

at any instant of time, where r̃ ≡ k̃1/k0 with k0 and k̃1 being the binding and unbinding

rates between the protein X and the DNA, and x is the concentration of the protein X 2.

The rates for the production and the degradation of X are proportional to p(D∗) + ǫp(D)

and x, respectively, leading to the deterministic rate equation

ẋ =
ã(x+ r̃ǫ)

x+ r̃
− bx, (3)

describing the mean-field dynamics of x where its fluctuation is neglected. The effect of the

degradation of the bound protein is negligible in this limit, as shown in Appendix E, and

therefore ρ does not appear in Eq.(3).

Although physically x ≥ 0, we first obtain the fixed points of Eq.(3) and examine their

stability without such restriction for the convenience of analysis. Fixed points of Eq.(3) are

obtained by setting ẋ to zero, which is equivalent to solving the equation

x2 + (r̃ − ã/b)x− rãǫ/b = 0. (4)

The roots of Eq.(4) are

x± =
1

2

[

ã

b
− r̃ ±

√

(
ã

b
− r̃)2 +

4ãr̃ǫ

b

]

, (5)

1 This is also called the transcriptional leakage, but we will refrain from using this terminology because we

will be using the word leakage in quite the opposite sense.
2 The concentration is defined as x ≡ m/m̄, where m is the number of proteins and m̄ is a large number

chosen to be of the order of average number of proteins [31]. The rates r̃, k̃1, and ã of the rate equation,

and the corresponding quantities r, k, and a in the master equation, are related by r̃ = r/m̄, k̃1 = k1/m̄,

and ã = a/m̄. See appendix E for details. 4



whose stability can be analyzed by expanding Eq.(3) up to linear order in δx ≡ x− x±:

˙δx = H(x±)δx ≡
[

−bx+
ã(x+ r̃ǫ)

x+ r̃

]′

x±

δx =

(

−b+
ãr̃(1− ǫ)

(x± + r̃)2

)

δx. (6)

Because x+ + r̃ ≥ x− + r̃ and (x+ + r̃)(x− + r̃) = ãr̃(1− ǫ)/b, we get

(x+ + r̃)2 ≥ ãr̃(1− ǫ)/b ≥ (x− + r̃)2, (7)

from which we get ãr̃(1− ǫ)/(x+ + r̃)2 ≤ b and ãr̃(1− ǫ)/(x− + r̃)2 ≥ b where the relations

are satisfied as equalities only when ǫ = 0 and ã/b = r̃ so that x+ = x−. Therefore,

H(x+) < 0 and H(x−) > 0 if ã/b 6= r̃ or ǫ > 0, whereas H(x± = 0) = 0 for ǫ = ã/b− r̃ = 0.

Consequently, we see that x+ and x− are stable and unstable fixed points respectively, for

the former case. For the latter case, the stability of x± = 0 is analyzed by expanding Eq.(3)

up to second order in δx, where we find that

˙δx = H ′(0)δx2 = −2ãr̃(1− ǫ)

r̃3
δx2 < 0. (8)

Therefore, x = 0 is a half-stable fixed point because ˙δx/δx < 0 for δx > 0 and ˙δx/δx > 0

for δx < 0.

Now we restrict ourselves to the physical region of x ≥ 0. When ǫ > 0, x+ > 0 and

x− < 0, and therefore only x+ lies in the physical region. Therefore x+ > 0 is not only the

unique stable fixed point, but it is also the unique fixed point. For the case of ǫ = 0, we

have x+ > 0 and x− = 0 if ã/b > r̃, and x+ = 0 and x− < 0 if ã/b < r̃. Therefore, x+ > 0

and x− = 0 are the stable and unstable fixed points if ã/b > r̃, whereas x− = 0 is the unique

stable fixed point that is also the unique fixed point if ã/b < r̃. Finally, the unique fixed

point at x = 0 for ǫ = 0 and ã/b = r̃ is also a stable fixed point because now we allow only

δx with positive sign.

The results are summarized as follows:

i) ǫ > 0

x+ = 1
2

[

ã
b
− r̃ +

√

( ã
b
− r̃)2 + 4ãr̃ǫ

b

]

> 0 is the unique fixed point that is stable.

ii) ǫ = 0 and ã/b > r̃

There are two fixed points. x+ = ã/b − r̃ > 0 is the stable fixed point and x− = 0 is the

unstable fixed point.

iii) ǫ = 0 and ã/b ≤ r̃

x+ = 0 is the unique fixed point that is stable.
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Note that the case for ǫ > 0 can be understood in terms of position shift of a fixed

point, starting from ǫ = 0 cases. Starting from the case (ii), turning on non-zero ǫ shifts the

position of the unstable fixed point x− = 0 to an unphysical value of x− < 0, leaving only

the non-zero stable fixed point x+ in the physical region, leading to the case (i). If we start

from the case (iii), the position of the unique stable fixed point x+ = 0 is shifted to x+ > 0

by turning on non-zero ǫ, again leading to the case (i). The position shift of the fixed point

at x = 0 by the baseline production and the stochastic noise will be discussed again later

(Section VII), where we will show that their effects are opposite to each other.

The case of ǫ = 0 and ã/b > r̃ is of much interest, because the features of the stationary

distribution obtained from the stochastic equation is quite the opposite to the picture offered

by the deterministic rate equation. Because x+ is the unique stable fixed point of the

deterministic rate equation, x → x+ in the limit of t → ∞, even if the initial value of x was

close to x = 0. This seems to suggest that in the context of the stochastic dynamics, the

stationary distribution should have a peak near x+. However, as will be shown next, the

stationary distribution is concentrated at x = 0 which was predicted to be an unstable fixed

point, and has vanishing probability at the stable fixed point. We will see that introducing

a nonzero value of ǫ ameliorates this effect, but as long as its value is sufficiently small, the

probability distribution is still dominated by x = 0.

IV. CHEMICAL MASTER EQUATION

There are two sources of stochastic noise: The fluctuation of the protein numbers, and the

fluctuation between the bound and unbound states of the DNA 3. To fully incorporate the

effects of these fluctuations, we should consider the probability P (m,n, t) that the number

of free and bound protein molecules are m(= 0, 1, · · · ) and n(= 0, 1) at time t. The chemical

master equation describing the time-evolution of P (m,n, t) is

Ṗ (m, 0) = −k0P (m, 0)m+ k1P (m− 1, 1) + ǫaP (m− 1, 0)− ǫaP (m, 0)

+bP (m+ 1, 0)(m+ 1)− bP (m, 0)m+ ρbP (m, 1)

Ṗ (m, 1) = k0P (m+ 1, 0)(m+ 1)− k1P (m, 1) + aP (m− 1, 1)− aP (m, 1)

+bP (m+ 1, 1)(m+ 1)− bP (m, 1)m− ρbP (m, 1). (9)

3 The latter can also be considered as the fluctuation in the molecule numbers, the number of un-

bound(bound) DNA molecule fluctuating between 0 and 1.
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where it is to be understood that P (m,n, t) ≡ 0 whenever m < 0. Let us call the states

with n = 0 and n = 1 as the free and the bound mode, the set of states with free and

protein-bound DNA, respectively. The Markov chain corresponding to Eq.(9) is shown in

Figure 1, where we immediately see that (m,n) = (0, 0) is an absorbing state for ǫ = 0,

because once the system enters this state due to stochastic fluctuation, there is no way that

it can escape to another state, because no protein molecule can be produced from a free

DNA. In other words,

P st(m,n) = δm,0δn,0 (10)

is not only a stationary solution of Eq.(9) with ǫ = 0, but also P (m,n, t) converges to

P st(m,n) regardless of the initial condition [72]. This is in stark contrast to the picture

given by the deterministic rate equation Eq.(3), where the system is predicted to move away

from m = 0 and converges to a state with non-vanishing number of the protein molecules.

The situation is different from that of a mutual repressor model where the number of peaks of

the stationary distribution differs from that of the stable fixed point only when the stochastic

noise is sufficiently large [66]. In the current model, the results of the deterministic and the

stochastic equations contradict each other for all parameter values, as long as ǫ = 0.

The vanishing probability for states other than (m,n) = (0, 0) at t → ∞ comes from

the fact that (m,n) = (0, 0) is an absorbing state of the system and does not depend on

the details of the model (Appendix A). Similar situation has also been encountered in mod-

els of population dynamics, epidemics, and low-dimensional percolation, whose stochastic

master equations share similar structures as the current model of gene regulatory network,

Eq.(11) [1–23, 25–27]. There, it has been found that the stable fixed point becomes a

transient peak of a quasi-steady distribution instead of the true stationary one. The same

statement can be made for the current model by analyzing the time-dependent behavior of

the probability distribution, as shown next.

A. Numerical computation of time-dependent solutions for ǫ = 0

Because it is difficult to obtain a general time-dependent solution of Eq.(9) in an analytic

form, the equation was solved numerically using the finite-buffer discrete chemical master

equation method [73, 74], where the state space is truncated to a finite subspace. The

state space was truncated so that m ≤ 30, which is a reasonable approximation because
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P (30, n, t) < 10−6 at all times, for the initial conditions and the parameters used in the

computation. The master equation was integrated using EXPOKIT package [75]. For ease

of comparison with the results from the next sections, the marginal probability distribution

pm(t) ≡ P (m, 0, t) + P (m − 1, 1, t) was obtained, which is the probability that the total

number of proteins, both bound and unbound, is m at time t. The marginal distributions

pm(t) at t = 0.5b−1, 1.0b−1, 2.0b−1, and 10.0b−1 are shown in Figure 2 (a) and (b), where the

parameters used are a = 10b, k0 = k1 = 100b, ρ = 0, and ǫ = 0. The initial conditions are

P (m, 0, 0) = 0.2δm,4 and P (m, 1, 0) = 0.8δm,3 for Figure 2(a) and P (m, 0, 0) = 0.0625δm,15

and P (m, 1, 0) = 0.9375δm,14 for Figure 2(b). The distribution becomes independent of the

initial condition around t = 10b−1, and the peak of the distribution for m > 0 is indeed

found at the stable fixed point of the deterministic rate equation, m∗ = a/b − r = 9. The

peak at the stable fixed point is maintained at later times, but its height decreases due to

the leakage of the probability to the state m = 0, as can be seen in pm(t) for t = 100.0b−1,

t = 1000.0b−1, t = 2000.0b−1, and t = 3000.0b−1, shown in Figures 2 (c) for the same

parameters. The stable fixed point of the deterministic rate equation has been changed to

a transient peak due to the stochastic noise, as expected.

B. Analytic form of the stationary distribution

The stationary distribution of the master equation Eq.(9) can be obtained analytically,

under the assumption that the rates for the binding and unbinding of the protein molecule

to DNA is instantaneous. We first replace the parameters ki by K ≡ k0 and r ≡ k1/k0.

Then, in the limit of K → ∞, we derive the master equation for the marginal probability

pm(t) (Appendix B):

ṗm =
b(m+ 1)(r +m+ ρ)

m+ 1 + r
pm+1 −

bm(r +m− 1 + ρ)

m+ r
pm − a(m+ rǫ)

m+ r
pm

+
a(m− 1 + ǫr)

m− 1 + r
pm−1, (11)

where p−1(t) ≡ 0. The corresponding Markov chain is shown in Figure 3.

First, we compute the stationary distribution. In general, obtaining an analytic form of

the stationary solution is difficult, and one often resorts to additional approximations such

as WKB formalism [1–23, 27]. However, the stationary solution of Eq.(11) can be computed

exactly, by noting that a stationary distribution of a Markov chain without a cycle must
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obey a stronger condition called the detailed balance [76–78], which is

bm(m+ r − 1 + ρ)

m+ r
pstm =

a(m− 1) + ǫar

m+ r − 1
pstm−1, (12)

for the Markov chain described by Eq.(11). Eq.(12) can be solved to obtain the solution:

pstm(ǫ) = C
(a

b

)m−1 (m+ r)Γ(m+ rǫ)

m!Γ(m+ r + ρ)
. (13)

where C is the normalization constant. When ǫ = 0, Γ(m + rǫ) term in the numerator

diverges for m = 0, and therefore C = 0 and consequently pstm(ǫ = 0) = 0 for m > 0,

recovering the obvious result:

pstm(ǫ = 0) = δm,0. (14)

C. Analytic form of a time-dependent solution for ǫ = 0

Now consider a time-dependent solution of Eq.(11) for ǫ = 0. Denoting the transition

rate from the state with protein number m to that with n as km→n, we see that km→m+1 =

am/(m + r) and km→m−1 = bm(r + m − 1 + ρ)/(m + r). Therefore, km→m−1/km→m+1 =

b(m + r + ρ − 1)/a, and although there is a non-zero probability for transitions in both

directions for m > 0, the most probable direction for transition is the positive direction for

0 < m < a/b + 1 − r − ρ, and negative direction for m > a/b + 1 − r − ρ, consistent with

the picture provided by the deterministic rate equation: The particle number converges to

a non-zero stable fixed point. While there is a non-zero probability that the system makes

a series of transitions in negative direction to m = 0 and gets trapped there, the probability

for such a rare event can be neglected at early times. Therefore, we assume additional time-

scale separation, that p0(t) is essentially constant during the time-scale where the states

with m > 0 equilibrate among themselves. We have already seen that this assumption is

reasonable, by numerically solving the original master equation Eq.(9), but it can also be

checked from the analytical solution itself a posteriori, as will be discussed below.

During the time-scale where the leakage to m = 0 state is negligible, the dynamics of the

states with m > 0 is described the approximate equation

ṗm(t) =
b(m+ 1)(r +m+ ρ)

m+ 1 + r
pm+1(t)−

bm(r +m− 1 + ρ)

m+ r
pm(t)(1− δm,1)

− am

m+ r
pm(t) +

a(m− 1)

m− 1 + r
pm−1(t), (15)

9



which is obtained from Eq.(11) with ǫ = 0 by blocking the transition from the state m = 1

to m = 0. Then the quasi-steady distribution for m > 0 can be defined as the stationary

solution of the modified master equation (15). The detailed balance condition for Eq.(15)

is again given by Eq.(12) with ǫ = 0, except that now the value of m is restricted to be

positive, leading to the quasi-steady distribution

pqsm = C̃
(a

b

)m−1 m+ r

mΓ(m+ r + ρ)
. (16)

The quasi-steady distribution pqsm has exactly the same form as the stationary distribution

pstm in Eq.(13) for ǫ = 0, but because m is restricted to be positive values, C̃ is not zero

any more. Once we take the leakage to m = 0 state into account, the overall normalization

constant C̃ becomes a slowly decreasing function of time. From the normalization condition
∑∞

m=1 p
qs
m = 1− p0(t), we have

pqsm(t) = (1− p0(t))

[

∞
∑

s=1

(a

b

)s−1 s+ r

sΓ(s+ r + ρ)

]−1
(a

b

)m−1 m+ r

mΓ(m+ r + ρ)
(17)

for m > 0.

The local maximum m∗ of the quasi-steady distribution is obtained from the condition

pqsm
pqsm−1

=
a(m− 1)(m+ r)

bm(m + r − 1)(m+ r + ρ− 1)
= 1, (18)

where it is to be understood that the actual value of m∗ should be taken as the integer value

close to the real value of m satisfying Eq.(18). In the regime where m∗ ≫ 1, Eq.(18) reduces

to
a

b(m∗ + r)
≃ 1, (19)

from which we get

m∗ ≃ a

b
− r ≫ 1. (20)

The deterministic rate equation is written in terms of the concentration x ≡ m/m̄, where m̄

is a large number of size O(m∗), and by defining ã ≡ a/m̄ and r̃ ≡ r/m̄, Eq.(20) is rewritten

as

x∗ ≃ ã

b
− r̃ (for a/b− r ≫ 1). (21)

Because m∗ ≃ a/b− r is the most probable number of protein molecules at early times, it is

of the order of average molecules. In this case, the magnitude of the fluctuation is expected
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to be of order O(
√
m∗), and consequently the relative error is of order O((m∗)−1/2) [79, 80].

Therefore, (m∗)−1/2 ≃ (a/b − r)−1/2 can be considered as the parameter characterizing the

size of the stochastic noise due to the protein number fluctuation, and Eq.(21) tells us that

the peak of the quasi-steady distribution is concentrated at the stable fixed point of the

deterministic rate equation if the stochastic noise is small.

We note that for m∗ = a/b− r ≫ 1, typical values of the transition rates km→n between

m > 0 and n > 0 are much larger than k1→0. For m > 0, we have km→m+1 = am/(m +

r) ∼ am∗/(m∗ + r) = a − br ≫ b = k1→0 by the assumption a/b − r ≫ 1. Similarly,

km→m−1 = bm(m + r + ρ)/(m + r) ∼ bm∗ = b(a/b − r) = a − br ≫ b = k1→0. Therefore,

states aroundm ∼ 1 act as a probabilistic barrier if a/b−r ≫ 1, and the approximation used

in deriving Eq.(17) is justified. In fact, the analytic form of the quasi-steady distribution

in Eq.(16) nicely captures the shape of the actual probability distribution even for a = 10b,

as shown Figures 2(a) and 2(b). In the figures, the quasi-steady solution Eq.(16) is shown

as filled circles, where the overall normalization was adjusted to obtain the best fit with

the numerical solution t = 10.0b−1. We find excellent agreement regardless of the initial

condition.

We can also obtain the analytic form of p0(t) that determines the overall normalization

1− p0(t) of the quasi-steady distribution for m > 0. From Eq.(11), we have

ṗ0(t) =
b(r + ρ)

r + 1
p1(t). (22)

for ǫ = 0. Since we are using the quasi-steady state approximation for pm(t) with m > 0,

we may substitute pqs1 (t) given in Eq.(17) into p1(t) of Eq.(22) to get

ṗ0(t) =
b(r + ρ)

r + 1
pqs1 (t) =

b

Γ(r + ρ)

[

∞
∑

s=1

(a

b

)s−1 (s+ r)

sΓ(s+ r + ρ)

]−1

(1− p0(t)), (23)

the solution of which is

p0(t) = 1− exp(−t/τq) (24)

where

τ−1
q ≡ b

Γ(r + ρ)

[

∞
∑

s=1

(a

b

)s−1 (s+ r)

sΓ(s+ r + ρ)

]−1

. (25)

Eqs.(17), (24) and (25) completely specify the analytic form of the time-dependent distri-

bution.
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V. THE TIME-SCALE SEPARATION AND THE RATE OF LEAKAGE

In general, when we construct a matrixK whose (i,j)-th element is given by the transition

rate ki→j of a Markov process, then zero is an eigenvalue ofK, and all the remaining non-zero

eigenvalues are negative [72]. Let us denote the negative eigenvalues as 0 > λ1 > λ2 > · · · ,
and call λ1 the lowest eigenvalue. These eigenvalues parametrize the multi-exponential

convergence of the probability distribution pm(t) to the stationary one pstm:

pm(t) = pstm +
∑

k

v(k)m exp(−|λk|t), (26)

where v
(k)
m is the m-the component of the eigenvector corresponding to the eigenvalue λk,

whose normalization is determined by the initial condition. In general, the multi-exponential

behavior in Eq.(26) can be approximated as a single exponential:

pm(t) ≃ pstm + v(1)m exp(−|λ1|t), (27)

if t ≫ |λ1|, in which case |pstm − pm(t)| ≪ 1. However, if we have a time-scale separation

so that |λ1| ≪ |λk| for k ≥ 2, then the single-exponential Eq.(26) is a good approximation

even for t ∼ |λ1|−1, where the deviation pstm − pm(t) is sizeable.

We have already argued in the previous section that the time-scales are more separated

for larger values of a/b − r, where the short time-scale is the equilibration time of m > 0

states, and the long time-scale is the one for the leakage to the m = 0 state. To confirm this

and to examine various properties of the leakage time, we performed numerical computation,

using the method explained previously. The graphs of pst0 − p0(t) = 1 − p0(t) for a/b = 5,

r = 1, K/b = ∞, ρ = 0, and ǫ = 0, are shown in Figure 4 with dashed lines for several

initial conditions, where the vertical axis is in log scale. We indeed see that they form

parallel straight lines for bt & 10 , where 1 − p0(t) . 0.8, confirming the single exponential

form in Eq.(27). The graphs of 1 − p0(t) for a/b = 10, r = 1, ρ = 0, and ǫ = 0, are also

plotted in Figure 5 for several values of K/b, where the single-exponential form is found for

1− p0(t) . 0.9 when K/b ≥ 1, again indicating the time-scale separation. These results do

not depend on initial probability distribution unless it is concentrated near m = 0, which is

again due to the time-scale separation (Appendix C).

We also see that the increase of K/b slows down the leakage to m = 0, which is also

confirmed in the graph of the dimensionless mean leakage time bτ as a function of K/b in

12



Figure 6, shown for both ρ = 0 and ρ = 0.2, with other parameters being the same as those

in Figure 5. The faster leakage for a smaller value of K/b is due to the free mode that

flows straight down to m = 0 state without wasting time by making frequent transitions

to the bound mode where the mean direction of flow is in the positive m direction (Fig.1).

This is even more evident from the separate snapshots of the time-dependent probability

distributions for the bound and free modes in Figure 7, where the behaviors for K/b = 1

and K/b = 100 are compared. We note in Figure 6 that increase of ρ leads to the decrease

of τ as is should, but the fact that it is an increasing function of K/b remains unchanged.

This feature was observed up to ρ = 1 (Data not shown). Note that the fluctuation between

the bound and the unbound mode is also a stochastic noise. From the results above, we see

that the effect of this fluctuation is qualitatively similar to that of the free protein number

fluctuation, in that it enhances the leakage to the absorbing state. The behavior of p0(t)

becomes highly dependent on initial conditions for K/b ≪ 1, as in the case of a small value

of a/b− r, due to the decoupling of the free and the bound mode: If the initial distribution

is concentrated at the free mode, it is most probable that the proteins quickly get extinct

before there is a chance for a protein to bind to the DNA, whereas if the initial distribution

is concentrated on the bound state, it is most probable that protein number stays non-zero

for some time before becoming extinct much later. The graphs of 1 − p0(t) are shown in

Figure 8 for ρ = 0, ǫ = 0, a/b = 100, r = 0.4, and K/b = 0.005, for the initial conditions

P (m,n, 0) = δm,50δn,1 (gray line), and P (m,n, 0) = δm,50δn,0 (black line), respectively 4. We

see that not only p0(t) depends on the initial condition, but also 1 − p0(t) is not even a

single exponential for the second initial condition, indicating that the time-scale separation

does not hold any more. These features can be most easily understood by considering the

extreme case of K/b = 0 where analytic solution is available (Appendix D). It is obvious

that a nonzero value ofK/b acts only as a perturbation if it is sufficiently small, and therefore

the qualitative features of K/b = 0 case are maintained.

Note that the form of p0(t) obtained under the quasi-steady approximation, Eq.(24),

already has a single exponential form. This is because it is the solution of Eq.(23) that is

an approximation obtained under the assumption that the m > 0 modes are equilibrated

instantly. The assumption of instantaneous equilibration underestimates the leakage time,

4 The states were truncated at m = 1000. The probability at m = 1000 remained below 2 × 10−64 at all

times.
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because actually it takes a finite time for a state with m > 1 to reach m = 1. However,

it can be shown that |λ1| → τ−1
q in the limit where k1→0/k(m>0)→(n>0) → 0 (Appendix C).

Therefore, the approximation is better for larger value of a/b − r. The graph of 1 − p0(t)

obtained from the quasi-steady approximation, Eq.(24), is also shown in Figures 4 and 5,

where we indeed see that the leakage is faster than that of the exact solution at K/b = ∞,

but captures the exact behavior much better at a/b− r = 9 where the time-scales are more

separated, compared to a/b− r = 4.

In summary, for a/b− r = 4 and K/b = ∞, the time-scales are sufficiently well separated

in order for p0(t) to follow a single exponential form for p0(t) & 0.2, but not separated enough

for |λ1| to be approximated by τ−1
q . For a/b−r = 9 and K/b = ∞, the time-scales are much

better separated so that not only p0(t) follows a single exponential form for p0(t) & 0.1, but

also |λ1| ≃ τ−1
q . For a/b− r = 100 and K/b = 0.005, p0(t) does not follow single exponential

form in general, because the time-scales are not well separated.

Note that even for sufficiently large K/b, the probability distribution is dominated by the

stable fixed point at x = x+ only for t ≪ τ ≡ |λ1|−1. That is, the average behavior of the

system follows the deterministic rate equation only at early times. For t ≫ τ , the probability

distribution approaches the stationary one, and we have pm(t) ≃ δm,0. However, also note

that larger the value of m∗ = a/b− r, the smaller the stochastic noise, and hence better the

deterministic approximation. In fact, the analytic form of τq for K/b = ∞ in Eq.(25) shows

that it is an exponentially increasing function of a/b − r, as shown in Figure 9 for several

values of r, and τ → ∞ in the limit of a/b − r → ∞. That is, if the stochastic noise is

very small, it takes a very long time for the probability distribution to make transition from

the transient quasi-steady state to the true stationary one, and indeed the dynamics is well

described by the deterministic rate equation for a long time duration. Because a large value

of r leads to the dominance of the free mode, it is obvious that the increase of r speeds up

the leakage, as shown in figure.

VI. EFFECT OF THE BASELINE PRODUCTION

When ǫ > 0, the numerator in Eq.(13) does not diverge for m = 0, and this expression

is well defined for m ≥ 0 with a nonzero value of C. Therefore, pm(t) for m > 0 does not

vanish in the limit of t → ∞, in contrast to the case of ǫ = 0. This is because m = 0 is

14



not an absorbing state any more. Similar situation is encountered in population dynamics,

where influx of immigration plays the role of baseline production in the current model [24].

However, the discussion for ǫ = 0 is still relevant when ǫ is sufficiently small, because the

initial behavior of the time-dependent probability distribution is similar to that for ǫ = 0:

The stable fixed point of the deterministic equation is the dominant state only at early times,

and the occupation probability of the stable fixed point of the deterministic rate equation

will be much smaller than p0(t) in the limit of t → ∞, most of it concentrated at m = 0.

By comparing Eqs.(13) and (16), we find that the functional form of pqsm(t) for m ≥ 1 is

approximately equal to that of pstm(ǫ), up to the overall normalization constant, as long as

ǫ is sufficiently small. Therefore, the stationary distribution for ǫ > 0 is approximately the

same as the analytic form of the time-dependent distribution in Eq.(17) for ǫ = 0 at some

time-point t. That is, we can find a pair of t and ǫ satisfying pqsm(t) ≃ pstm(ǫ). For example, for

a/b = 10 and r = 1, we find that p(t = 2000b−1) for K/b = 100 and ǫ = 0 shows a reasonably

good agreement with pst(ǫ = 0.000035) for both K/b = 100 and K/b = ∞ (Figure 2 (c)).

The graph of pst0 (ǫ) is shown in Figure 10 for several values of K, where we see that it is

a monotonically decreasing function of ǫ as to be expected. The effect of K/b on pst0 (ǫ) is

similar to its effect on p0(t): a large value of K/b hinders the flow of the probability to

m = 0 5.

In summary, the baseline production ameliorates the effect of the stochastic noise in that

pstm > 0 for m > 0, but for sufficiently small ǫ, the qualitative behavior of the probability

distribution is similar to that for ǫ = 0: at early times, the probability distribution converges

to a quasi-steady distribution dominated by the stable fixed point, but the stable fixed point

is almost erased in the limit of t → ∞, although not completely destroyed. When ǫ is large

enough so that the peak of pstm(ǫ) around the stable fixed point is comparable to pst0 (ǫ) , we

have a bistability driven by the stochastic noise in the limit of t → ∞ [33]. For both of these

cases, the deterministic rate equation describes the average behavior of the system only at

early times. When ǫ is too large, then the effect of the baseline production dominates that

of the stochastic noise in that pst0 (ǫ) is now smaller than the peak of pstm(ǫ) at the stable fixed

point. Then the deterministic rate equation description is valid throughout all the time

scales, as long as the average behavior is concerned. Therefore, the effect of the baseline

5 The stationary distributions were obtained by using successive over-relaxation(SOR) algorithm [81] that

ensures fast convergence.
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production is to oppose that of the stochastic noise. The stochastic noise and the baseline

production have also been shown to exhibit opposite effects on the response to the the change

of the production and/or the decay rates , the former and the latter favoring the binary and

the graded responses, respectively [42].

The threshold value ǫθ, defined as the value of ǫ where the area under the two peaks

are equal, is plotted in Figure 11 as the function of a/b − r, for several values of r, for

ρ = 0, and K/b = ∞. We see that ǫθ is an exponentially decreasing function of a/b − r.

The fact that ǫθ is a decreasing function of a/b− r is to be expected: Because the effect of

the stochastic noise and the baseline production oppose each other, larger (smaller) amount

of baseline production is required to overcome the effect of the stochastic noise for larger

(smaller) stochastic noise, corresponding to a smaller (larger) value of a/b − r. Also, for a

larger value of r, the leakage effect is enhanced, and therefore more baseline production is

required to resist such a leakage. As we will discuss in the next section, we can interpret

the opposite effects of the stochastic noise and the baseline production in terms of the shift

of the position of the unstable fixed point.

VII. SHIFT OF THE FIXED POINTS BY STOCHASTIC NOISE

We have seen in the context of the deterministic setting that the position of a fixed point

gets shifted by the baseline production, and such a shift can remove the fixed point from the

physical region. In the stochastic formalism, a fixed point turns into an extremum of the

stationary distribution, and its position gets shifted not only by the baseline production, but

also by the stochastic noise [82, 83]. To study this effect, and to see when the picture offered

by the fixed points breaks down, we first go to the continuum limit where the chemical

master equation for the stationary distribution turns into the Fokker-Planck equation of the

form [31] (Appendix E)

− ∂x
(

A(x)πst(x)
)

+
1

2
∂2
x

(

B(x)πst(x)
)

= 0. (28)

where

A(x) =
ã(x+ r̃ǫ)

x+ r̃
− bx+

bx(1 − ρ)

m̄(x+ r̃)

B(x) =
1

m̄

(

ã(x+ r̃ǫ)

x+ r̃
+ bx

)

. (29)
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with r̃ = r/m̄ and ã = a/m̄. We note that a fixed point x∗ of the deterministic rate equation

satisfies the equation A(x∗) = 0 with m̄−1 = 0. The general solution of Eq.(28) is 6

πst(x) =
C

B(x)
exp

(
∫ x

dz
2A(z)

B(z)

)

. (30)

Now let us consider the extremum of πst(x) when B(x) is very small. Taking derivative of

πst(x) with respect to x and setting it to zero, we get

dπst(x)

dx
=

C

B(x)
exp

(
∫ x

dz
2A(z)

B(z)

)[

2A(x)

B(x)
− B′(x)

B(x)

]

= 0, (31)

from which we get the equation for the extremum xm:

A(xm)− B′(xm)/2 = 0. (32)

That is, we see that to the zeroth order of m̄−1, xm coincides with a fixed point x∗ of the

deterministic rate equation, and the small stochastic noise acts as a perturbation that shifts

the position of the xm with respect to x∗. To see whether xm is a local maximum or minimum

of πst(x), we compute the second derivative of πst(x) at xm:

d2πst(x)

dx2 x=xm

=
C

B(x)
exp

(
∫ x

dz
2A(z)

B(z)

)[

2A(x)

B(x)
− B′(x)

B(x)

]2

x=xm

+
C

B(x)
exp

(
∫ x

dz
2A(z)

B(z)

)[

2A′(x)

B(x)
− 2A(x)B′(x)

B(x)2
− B′′(x)

B(x)
+

B′(x)2

B(x)2

]

x=xm

=
C

B(x)
exp

(
∫ x

dz
2A(z)

B(z)

)[

2A′(x)

B(x)
− B′′(x)

B(x)

]

x=xm

(33)

where Eq.(32) was used to derive the last line. From Eq.(33), we see that the sign of πst′′(xm)

is determined by A′(xm)−B′′(xm)/2, which is A′(x∗)|m̄−1=0 to the zeroth order in m̄−1. The

result tells us that a stable (unstable) fixed point of the deterministic rate equation becomes

a local maximum (minimum) of the steady-state probability distribution. There are two

factors that modify the picture offered by the fixed point analysis. First, as shown earlier,

the position shift of a fixed point may remove it from the physical region. Second, the

probability distribution may possess an additional local maximum at the boundary of the

physical region, x = 0. This kind of local maximum is not related to a fixed point of the rate

equation, because it is not obtained by taking the derivative to zero, and this new maximum

6 There is another independent solution of the form CB(x)−1 exp
(

∫ x
dz 2A(z)

B(z)

)

∫ x
dy exp

(

−
∫ y

du 2A(u)
B(u)

)

,

which is discarded by requiring that πst(x) is normalizable.
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may even dominate the behavior of the system. For the extreme case of ǫ = 0, we find

that B(x)−1 ∼ 1/x× constant as x → 0, and therefore the overall multiplicative constant in

Eq.(30) should vanish, leading to πst(x) = δ(x) as expected.

Now we analyze how perturbations of order m̄−1 and ǫ shift the positions of the extrema

when A(x) and B(x) are given as in Eq.(29). We have

A(xm)−
B′(xm)

2

=
ã(xm + r̃ǫ)

xm + r̃
− bxm +

bxm(1− ρ)

m̄(xm + r̃)
− 1

2m̄

[

ã(x+ r̃ǫ)

x+ r̃
+ bx

]′

xm

=
ã(xm + r̃ǫ)

xm + r̃
− bxm +

bxm(1− ρ)

m̄(xm + r̃)
− 1

2m̄

(

ã

xm + r̃
− ã(xm + r̃ǫ)

(xm + r̃)2
+ b

)

= 0. (34)

By multiplying Eq.(34) by xm + r̃, we obtain

− bxm(xm + r̃) + ã(xm + r̃ǫ)− 1

2m̄

(

ãr̃(1− ǫ)

xm + r̃
+ b(r̃ + (2ρ− 1)xm)

)

= 0 (35)

Now, to find out the shift of xm to the leading order in m̄−1 and ǫ, we make expansion

xm = x∗ + δx, where x∗ is a fixed-point of the deterministic rate equation with ǫ = 0:

A(x∗)|m̄−1=ǫ=0 = −bx∗ +
ãx∗

x∗ + r̃
= 0 (36)

Eq.(35) is now expanded to the first order in m̄−1 and ǫ, to obtain

(−2bx∗ − br̃ + ã)δx = −ar̃ǫ+
1

2m̄

(

ãr̃

x∗ + r̃
+ b(r̃ + (2ρ− 1)x∗)

)

+O(m̄−2, ǫ2, m̄−1ǫ), (37)

from which we obtain that

δx = (−2bx∗ − br̃ + ã)−1

[

−ãr̃ǫ+
1

2m̄

(

ãr̃

x∗ + r̃
+ b(r̃ + (2ρ− 1)x∗)

)]

. (38)

When x∗ = 0, we get

δx = (ã− br̃)−1

[

−ãr̃ǫ+
1

2m̄
(ã+ br̃)

]

. (39)

If ã > br̃ so that x∗ = 0 is a local minimum (unstable fixed point), then δx > 0 if m̄−1(ã +

br̃) > 2ãr̃ǫ and δx < 0 otherwise. The stable fixed point also tends to get shifted in the

opposite directions by the stochastic noise and the baseline production( Appendix F).

In summary, the opposite effects of the stochastic noise and the baseline production on

the stationary distribution can be interpreted in terms of the position shift of the unstable

fixed point: The former and the latter tends to shift the position of the unstable fixed point
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into the positive and the negative directions, respectively. The erasure of stable fixed point

by stochastic noise, as well as the noise-driven bistability, can be understood in terms of

the position shift of the unstable fixed point at x = 0 (Figure 12). When the effect of the

stochastic noise is larger than that of the baseline production, the position of the unstable

fixed point x = 0 shifts to the region of positive x, and x = 0 becomes the local maximum

of the probability distribution without vanishing derivative, which may even dominate the

behavior of the stationary state if the shift is sufficiently large.

VIII. NUMERICAL ESTIMATES USING BIOLOGICAL PARAMETERS

Most of the parameters used below are for the Lac system of the bacteria Escherichia Coli.

Although Lac system is not a positive feedback loop, these parameters are used just for the

order of magnitude estimate7. The maximal production rate of the E. Coli is a ∼ 100 min−1

(BNID 100738)8, using the data for the protein LacY and LacZ [85, 86]. Even for most

unstable protein in E. coli, the degradation rate is b ∼ 1 min−1 [87–91] (BNID 109921),

giving the estimate of

a/b & 100. (40)

To estimate r, we use the values of binding constant k0V = 0.0027(s nM)−1 ∼ 0.003(s nM)−1 =

0.003 s−1 × (10−9 mol)−1 × 10−3 m3 [92] and unbinding constant k1 = 0.0023(s)−1 ∼
0.002(s)−1 [93] of E. coli lac repressor (LacL) [94] (BNID 106521), as well as the volume of

E. Coli, V ∼ 1µm3 = 10−18 m3 [95, 96] (BNID 114924, 114925), to get

k0/b ∼
0.003(s mol)−1 × 106 m3

6× 1023 molecules mol−1 × 10−18m3
× 60 s = 0.3 molecule−1,

k1/b ∼ 0.002 s−1 × 60 s = 0.12,

r = k1/k0 ∼ 0.4. (41)

For simplicity we assume ρ = 0 throughout the estimates. The numerical computation for

the parameters given above cannot be conducted long enough to compute τ , due to the

accumulation of numerical errors. However, the probability distribution remains peaked

around m ∼ 100 and shows no sign of leakage to m = 0, up to 106 min (Fig. 13, red line),

7 The authors thank an anonymous referee for providing the parameters.
8 The ID number of BioNumber Database [84].
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regardless of the initial condition. This indicates that τ ≫ 106 min. Considering the fact

that the cell generation time of E. Coli is Tcycle ∼ 100 min [97] (BNID 105065), we see that

τ ≫ Tcyc. (42)

These results suggest that the leakage to zero-protein state will be unobservable in real

biological system even if there is no baseline production.

In reality, ǫ > 0 except for artificially engineered systems [98–100]. For Lac promotor, we

have ǫ = 10−3 [101] (BNID 102075). With other parameters given as above, this amount of

baseline production is sufficient to dominate over the effect of the stochastic noise, as shown

in the stationary distribution that is peaked around m ∼ 100, with no trace of peak near

m = 0 (Fig. 13). The effect of the baseline production is more important than that of the

large value of τ , because it helps the system to start the positive feedback loop even if there

is no protein in the beginning. Even if use the initial condition P (m,n, 0) = δm,0δn,0, the

amount of the baseline production above is sufficient to let the system quickly escape from

the state (m,n) = (0, 0). Only 30% of the probability remains at m = 0 at t = 50 min,

as shown in Figure 13. Therefore, from these results, we expect that for wild-type genetic

regulatory networks, the baseline production will restore the non-zero stable fixed point as

the dominant peak of the stationary distribution.

IX. DISCUSSION

It is a well-known fact that stochastic noise modifies the picture provided by the de-

terministic rate equation. A representative example is the conversion of the stable fixed

point into a transient peak of the probability distribution and its complete removal from

the stationary distribution. Although this phenomenon has been extensively studied in the

context of population dynamics and epidemics, it has been seldom discussed for the models

of gene-regulatory networks.

In this work, we performed quantitative analysis of transient dynamics of the simplest

auto regulatory genetic circuit with positive feedback, both numerically and analytically. We

found that as long as the magnitude of the baseline production is sufficiently small compared

to that of the stochastic noise, the unique stable fixed point turns into a dominant peak of the

transient, quasi-steady distribution, instead of the true stationary state. In the extreme case
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of vanishing baseline production, the trace of the stable fixed point is completely erased from

the stationary distribution due to an absorbing state. However, for very small stochastic

noise, the probability distribution is dominated by the stable fixed point for a very long time

duration. In fact, we find that the leakage time is an exponentially increasing function of the

inverse square of the relative fluctuation, a/b− r (Fig.9). This clarifies the true meaning of

the statement that the chemical master equation is well approximated by the deterministic

rate equation when the stochastic noise is small. For a given time, the deterministic rate

equation becomes a better approximation of the system as the noise is reduced. Also, the

time duration for which deterministic description is valid becomes longer as the noise is

reduced. The contradiction between the stochastic and the deterministic equation appeared

only because we took the t → ∞ limit first. Considering that the biological processes occur

within a finite time duration, the transient behavior may more be biologically relevant than

the true stationary distribution of the chemical master equation. The importance of the

transient behavior has also been emphasized for the stochastic decision process in λ-phage

system [102]9.

In reality, there is always a small amount of baseline production from an inactive gene,

except for artificially engineered systems [98–100]. Because the baseline production removes

the absorbing state, its effect is opposite to that of the stochastic noise. The magnitude

of the baseline production relative to that of the stochastic noise determines the relative

dominance of the non-zero stable fixed point relative to the peak at the zero-protein state,

in the stationary distribution. In fact, we find that the baseline production rate required

for overcoming the stochastic effect is an exponentially decreasing function of the inverse

square of the relative fluctuation, a/b− r (Fig.11). We also showed that the opposite effects

of the stochastic noise and that of the baseline production can be interpreted in terms of

the position shift of the unstable fixed point.

The order of magnitude estimates using biological parameters suggest that for a real gene

regulatory network, the stochastic noise is sufficiently small so that not only is the leakage

time much larger than biologically relevant time-scales, but also the effect of the baseline

production completely dominates over that of the stochastic noise. Therefore, the wild-type

9 The main difference from the current result is that for the λ-phage decision circuit, the transient and

the stationary behaviors of the deterministic and stochastic equations coincide, whereas for the simple

auto-regulatory model considered here, the stationary behavior of the deterministic equation corresponds

to the transient one of the stochastic equation.
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gene-regulatory networks seem to be protected from the catastrophic rare event of protein

extinction, by both of these effects.
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Appendix A: Demonstration of vanishing stationary probability of non-zero protein

numbers in other models of gene regulatory network

The delta function form of the stationary distribution, Eq.(10), is due to the fact that

the zero-protein state is an absorbing state of the system. Therefore, the stationary state

is either Kronecker delta function or Dirac delta function concentrated at the zero-protein

state, as long as there is no baseline production from the inactive gene, and the result does

not depend on a specific form of the noise. We will consider several models in the literature

below.

Let us consider the model defined by the continuous master equation [33, 42]

∂p(x)

∂t
=

∂

∂x
[γ2xp(x)] +

k1
b

∫ x

0

dx′ exp(−(x− x′)/b)

(

1 + ǫcx′H

1 + cx′H

)

p(x′)− p(x) (A1)

where x is the concentration of the protein. Here, because the decay and the produc-

tion terms are given by the first-order derivative and the integral terms, respectively, this

model has less degradation noise and more production noise compared to the Fokker-Planck

description, where both the decay and the production are described by the second-order

derivatives. The stationary solution is given by 10

pst(x) = Axα−1e−x/β(1 + cxH)α(ǫ−1)/H (A2)

The positive regulation corresponds to H < 0, and in this case 1 + cxH → cxH as x → 0.

Therefore, p(x) → Axαǫ−1 as x → 0, and
∫∞

0
dxp(x) diverges if ǫ = 0 and A > 0. In fact,

the normalization
∫

dxp(x) = 1 requires that A ≃ αǫ → 0 as ǫ → 0. Therefore, p(x) = 0 for

10 The solutions given in ref.[33] and ref.[42] are slightly different, but we adopt the convention of the latter

which is more natural. The difference disappears for ǫ → 0.
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x > 0, and consequently p(x) = δ+(x) for ǫ = 0, where the distribution δ+(x) is defined by

the property that δ+(x) = 0 for x > 0 and
∫∞

0
dxδ+(x) = 1.

Next we consider a discrete model where the proteins form dimer in the bulk and then

bind to either DNA or RNA for positive regulation [38]. For the transcriptional regulation

with fast mRNA dynamics, we have the stationary solution of the form

pstn =
rpst0
n

n−1
∏

i=1

(

r
f(i)

i
+

µp − 1

µp

)

(A3)

for n > 0, where

f(n) ≡
∑

j≥0

1 + ρkj

1 + kj

(λn2(n))
j

j!
exp(−λn2(n)) (A4)

with

n2(n) =
n

2
+ a2 − a

√
n+ a2. (A5)

The zero baseline production corresponds to the limit of r → 0 and ρ → ∞ with finite value

of rρ which is proportional to the transcription rate from the active DNA . Because r f(i)
i

in the parenthesis of Eq.(A3) remains finite in this limit, pstn for n > 0 all vanish due to

the extra r in the front of the right-hand side of Eq.(A3), leading to pstn = δn,0 due to the

normlization.

In the continuum limit, Eq.(A3) is approximated as

pst(x) = Acx
−1e−x/µ̃p exp(r

∫ x

c

duf̃(u)/u). (A6)

where

f̃(x) ≡
∑

j≥0

1 + ρkj

1 + kj

(λx2(x))
j

j!
exp(−λx2(x)) (A7)

with

x2(x) =
x

2
+ λa2 −

√
λa

√
x+ λa2 (A8)

Because the zero baseline production corresponds to r → 0 with rρ finite, we have

rf(x) =
∑

j≥0

rρkj

1 + kj

(λx2(x))
j

j!
exp(−λx2(x)), (A9)

and since x2(x) → x/2 as x → 0, we have rf(x) ∝ x for small x in the case of zero baseline

production, and consequently r
∫ x

c
duf(u)/u is non-zero and finite. Therefore, from Eq.(A6)

we see that pst(x) ∝ x−1 as x → 0, and again we see that the integral of pst(x) diverges

unless Ac = 0. Therefore, we again see that p(x) = δ+(x). When there is a non-zero baseline
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production, rf(x) → r as x → 0, and r
∫ x

c
duf(u)/u = r ln(x/c). Therefore pst(x) ∝ xr−1 as

x → 0 so the integral of pst(x) remains finite.

The discrete and continuous solutions for the transcriptional regulation under the fast

protein dynamics, as well those under translational regulations, have similar forms as the

ones presented above, so they can be shown to reduce to Dirac delta and Kronecker delta

functions respectively in the absence of the baseline production, following the same logic as

above.

Appendix B: Derivation of the reduced master equation (11) in the limit of fast

equilibration of DNA.

We redefine the parameters and the variables in Eq(9):

K ≡ k0, r ≡ k1/k0

pm ≡ P (m, 0) + P (m− 1, 1)

ξm ≡ mP (m, 0)− rP (m− 1, 1)

m+ r
, (B1)

where the time index is suppressed for notational simplicity. P (m,n) are then expressed in

terms of pm and ξm as

P (m, 0) =
r

m+ r
pm + ξm

P (m− 1, 1) =
m

m+ r
pm − ξm (B2)

By substituting Eq.(B2) into Eq.(9), we obtain

ṗm = Ṗ (m, 0) + Ṗ (m− 1, 1)

= ǫaP (m− 1, 0)− ǫaP (m, 0) + aP (m− 2, 1)− aP (m− 1, 1)

+bP (m+ 1, 0)(m+ 1)− bP (m, 0)m+ bP (m, 1)m− bP (m− 1, 1)(m− 1)

+ρbP (m, 1)− ρbP (m− 1, 1),

= a(
m− 1

m+ r − 1
pm−1 − ξm−1 −

m

m+ r
pm + ξm) + ǫa(

r

m+ r − 1
pm−1 + ξm−1 −

r

m+ r
pm − ξm)

+b(m+ 1)(
r

m+ r + 1
pm+1 + ξm+1)− bm(

r

m+ r
pm + ξm)

+b(m+ ρ)(
m+ 1

m+ r + 1
pm+1 − ξm+1)− b(m− 1 + ρ)(

m

m+ r
pm − ξm)

=
(m− 1 + ǫr)a

m− 1 + r
pm−1 −

(m+ ǫr)a

m+ r
pm +

b(m+ 1)(r +m+ ρ)

m+ 1 + r
pm+1 −

mb(r +m− 1 + ρ)

m+ r
pm

−a(1− ǫ)ξm−1 + (a(1− ǫ)− b)ξm + bξm+1 (B3)
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and

ξ̇m =
mṖ (m, 0)− rṖ (m− 1, 1)

m+ r

=
m

m+ r

(

− k0P (m, 0)m+ k1P (m− 1, 1) + ǫaP (m− 1, 0)− ǫaP (m, 0) + bP (m+ 1, 0)(m+ 1)

−bP (m, 0)m+ ρbP (m, 1)
)

− r

m+ r

(

k0P (m, 0)m− k1P (m− 1, 1) + aP (m− 2, 1)

−aP (m− 1, 1) + bP (m, 1)m− bP (m− 1, 1)(m− 1 + ρ)
)

= (−k0m− ǫam

m+ r
− bm2

m+ r
)P (m, 0) + (k1 +

ar

m+ r
+

b(m− 1 + ρ)r

m+ r
)P (m− 1, 1)

+
ǫam

m+ r
P (m− 1, 0) +

bm(m+ 1)

m+ r
P (m+ 1, 0)− ar

m+ r
P (m− 2, 1) +

bm(ρ− r)

m+ r
P (m, 1)

= (−k0m− ǫam

m+ r
− bm2

m+ r
)(

r

m+ r
pm + ξm) + (k1 +

ar

m+ r
+

b(m− 1 + ρ)r

m+ r
)(

m

m+ r
pm − ξm)

+
ǫam

m+ r
(

r

m+ r − 1
pm−1 + ξm−1) +

bm(m+ 1)

m+ r
(

r

m+ r + 1
pm+1 + ξm+1)

− ar

m+ r
(

m− 1

m+ r − 1
pm−1 − ξm−1) +

bm(ρ − r)

m+ r
(

m+ 1

m+ r + 1
pm+1 − ξm+1)

= −K(m+ r)ξm −
(

a(r + ǫm)

m+ r
+

b(m2 + (m− 1 + ρ)r)

m+ r

)

ξm +

(

ar + ǫam

m+ r

)

ξm−1

+
bm(m+ r + 1− ρ)

m+ r
ξm+1 +

m(ar(1− ǫ) + (ρ− 1)b)

(m+ r)2
pm − ar(m− 1− ǫm)

(m+ r)(m+ r − 1)
pm−1

+
bmρ(m+ 1)

(m+ r)(m+ r − 1)
pm+1. (B4)

From Eq.(B4), we get

ξm = − ξ̇m
K(m+ r)

− a(r + ǫm) + b(m2 + (m− 1 + ρ)r)

K(m+ r)2
ξm +

(

ar + ǫam

K(m+ r)2

)

ξm−1

+
bm(m+ r + 1− ρ)

K(m+ r)2
ξm+1 +

m(ar(1− ǫ) + (ρ− 1)b)

K(m+ r)3
pm − ar(m− 1− ǫm)

K(m+ r)2(m+ r − 1)
pm−1

+
bmρ(m+ 1)

K(m+ r)2(m+ r − 1)
pm+1, (B5)

and we see that ξ is of order O(1/K). Therefore, Eq.(B3) becomes

ṗm =
b(m+ 1)(r +m+ ρ)

m+ 1 + r
pm+1 −

bm(r +m− 1 + ρ)

m+ r
pm − a(m+ rǫ)

m+ r
pm +

a(m− 1 + ǫr)

m− 1 + r
pm−1

+O(1/K), (B6)

which is Eq.(11) in the limit of K → ∞. More rigorously, the coupled equations Eqs.(B3)

and (B4) reduce to one equation in the limit of K → ∞, due to Tikhonov’s theorem on

dynamical system [103, 104], where ξ is obtained from Eq.(B5) after setting K−1 to zero,

and then substituted into Eq.(B3) to obtain Eq.(11).
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Appendix C: The leading order contributions to |λ1| and v
(k≥2)
0 when λ1/λk≥2 ≫ 1

Let us consider the transition rate matrix K for Eq.(9) or Eq.(11) with ǫ = 0, whose

(i, j)-th element is ki→j, so that the probability distribution is represented as a row vector,

and the time derivative is obtained by multiplication of the transition matrix from the right.

For the current model, the transition matrix takes the form

K =















0 0 · · · 0

α

A0...
0















(C1)

where the first state is taken to be the absorbing state, whose index is taken to be zero, and

A is the submatrix formed by the transition rates between the other states, whose indices

are m = 1, 2, · · · . For Eq.(11), α ≡ k1→0 = b(r + ρ)/(1 + r).

We see that 〈v(0)| = (1, 0, 0 · · · ) is the left eigenvector of K with the eigenvalue 0, the

stationary state. Because
∑

j ki→j = 0, we have K|I〉 = 0 where |I〉 ≡ (1, 1, · · ·1)T . This

also tells us that for any left eigenvector 〈v| = (v0, v1, · · · ) for a non-zero eigenvalue λ, we

have

λ〈v|I〉 = 〈v|K|I〉 = 0, (C2)

leading to
∑

i

vi = 0. (C3)

Also, because of the special form of K given in Eq.(C1), expressing the left eigenvector as

〈v| = v0 ⊕ 〈ṽ| where 〈ṽ| = (v1, v2 · · · ), we have

〈v|K = αv1 ⊕ 〈ṽ|A = λv0 ⊕ λ〈ṽ|, (C4)

which shows that λ is also an eigenvalue of A with the corresponding left eigenvector 〈ṽ|,
and

λ = α
v1
v0

= − αv1
∑

m≥1 vm
. (C5)

When we set α to zero, the corresponding modified transfer matrix K0 describes the

Markov model in Eq.(15), where A is replaced by A0, defined as

A0 = A+ αP, (C6)
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where P is a projection matrix with the definition Pij ≡ δi1δj1. The submatrix A0 possesses

the left eigenvector 〈pqs| with the zero eigenvalue, satisfying

〈pqs|A0 = 0, (C7)

which we called the quasi-steady distribution in the main text. The eigenvalues and eigen-

vectors of K can be obtained from those K0 of by the perturbations of size O(α/A) where

A is the typical size of A0ij that determines the sizes of the nonnegative eigenvalues of A0.

In particular, the left eigenvector 〈ṽ(1)| of A for the eigenvalue λ1 is obtained from 〈pqs| as

〈ṽ(1)| = 〈pqs|+O(αA−1). (C8)

From Eqs.(C5) and (C8), we have

− λ1 =
αv

(1)
1

∑

m≥1 v
(1)
m

=
αpqs1

∑

m pqsm
+O(αA−1), (C9)

where we see that the first term in the final expression is nothing but τ−1
q given in Eq.(25).

The corresponding eigenvector in the full state space is

〈v(1)| = (−
∑

m≥1

pqsm)⊕ 〈pqs|+O(αA−1), (C10)

where Eq.(C3) was invoked.

The eigenvectors for λk≥2 are obtained from those for the negative eigenvalues of A0.

Because A0 is a transition rate matrix in the subspace of m ≥ 1 states, a left eigenvector

〈ṽ| = (v1, · · · ) of A0 for an eigenvalue λ < 0 satisfies the equation
∑

i≥1 vi = 0. Therefore,

we see that for an eigenvector 〈v(k)| = (v
(k)
0 , v

(k)
1 , · · · )T for the eigenvalue λk with k ≥ 2, we

have
∑

m≥1

v(k)m ∼ O(αA−1). (C11)

Consequently,

λk = − αv
(k)
1

∑

m≥1 v
(k)
m

∼ O(A), (C12)

and

v
(k)
0 = −

∑

i≥1

v(k)m ∼ O(αA−1). (C13)

for k ≥ 2. From Eq.(C13), we see that v
(k)
0 for k ≥ 2 can be neglected if α/A is small

enough. In this case, if we start from the initial condition with p0(0) = 0, we have p0(0) =
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1 +
∑

k≥1 v
(k)
0 ≃ 1 + v

(1)
0 = 0, leading to v

(1)
0 ≃ −1, and consequently the leading order

contribution to the stationary state is of the form p0(t) ≃ 1 − exp(−t/τq) with no further

dependence on the initial condition.

Appendix D: The asymptotic form of p0(t) for K/b = 0 and ǫ = 0

The bound and free modes are completely decoupled for K/b = 0, and their probabilities

are conserved separately. Restricting to the free mode, the eigenvalues for the approach to

the stationary distribution can be obtained in an analytic form when ǫ = 0. The transition

rate matrix for the free mode is of the form

K =

















0 0 0 0 · · ·
b −b 0 0 · · ·
0 2b −2b 0 · · ·
0 0

. . .
. . .

. . .

















.

From the form of the matrix, it is easy see that the eigenvalues are 0, −b, −2b, −3b, · · · .
Similarly, from the matrix for the bound mode, where b in the expression above is replaced

by ρb, we see that the corresponding eigenvalues are 0, −ρb, −2ρb, −3ρb, · · · . For both the

free and the bound modes, we see that sizes of the eigenvalues are not well separated. In

other words, the time-scale separation does not hold, and 1− p0(t) exhibits initial condition

dependent multi-exponential behavior,

1− p0(t) =
∑

k

Ake
−kbt +

∑

k

Bke
−kρbt, (D1)

where the constants Aks and Bks are determined by the initial condition. Even if we assume

p0(0) = 0, these constants are not fully determined. For the special case of ρ = 0, we have

the form

1− p0(t) =
∑

k

Ake
−kbt +B, (D2)

and 1 − p0(t) ≃ A1e
−bt + B for bt ≫ 1. Note that 1 − p0(t) is approximated by a single-

exponential form only for bt ≫ 1 where 1− p0(t) ≪ 1, because the time-scales are not well

separated.
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Appendix E: Derivation of Fokker-Planck equation from the master equation.

The chemical master equation for single species can be written as [68, 79, 80]

∂tP (n, t) = m̄

R
∑

j=1

(Fj(n− Sj)− Fj(n)), (E1)

where j = 1, · · ·R labels reactions in the system. In Eq. (E1), Fj(n) and Sj are the

transition rate and the increase of the particle number, respectively, for the j-th reaction,

and m̄ is the size parameter, a large number whose size is comparable to the average protein

number. For the reduced master equation Eq.(11), we have two reactions, the creation and

the degradation, with S1 = 1 and S2 = −1, and

F1(m) =
a(m+ rǫ)

m̄(m+ r)

F2(m) =
bm(m+ r + ρ− 1)

m̄(m+ r)
. (E2)

When the average number of protein molecules is large, one can approximate the discrete

variable x ≡ m/m̄ as a continuous variable. Considering Fj as functions of x, fj(x) ≡ Fj(n),

with π(x, t) ≡ m̄pm(t), we get the Kramer-Moyal expansion [79]

∂tπ(x, t) = m̄

R
∑

j=1

(

fj(x− Sj

m̄
)π(x− Sj

m̄
, t)− fj(x)π(x, t)

)

=
R
∑

j=1

∞
∑

k=1

m̄1−k(−Sj)
k∂k

x(fj(x)π(x, t))

=

∞
∑

k=1

(−1)km̄1−k∂k
x(ak(x)π(x, t)). (E3)

where ak(x) ≡
∑

j S
k
j fj(x). Assuming that m̄ is large enough so that the expansion can be

kept only up to the second order, we obtain the Fokker-Planck equation [31, 79]

π̇(x, t) = −∂x(A(x)π(x, t)) +
1

2
∂2
x(B(x)π(x, t)). (E4)

where A(x) ≡ a1(x) and B(x) ≡ m̄−1a2(x). For Eq.(E2), we get

f1(x) =
ã(x+ r̃ǫ)

x+ r̃

f2(x) =
bx(x+ r̃ + m̄−1(ρ− 1))

x+ r̃

= bx+
bx(ρ− 1)

m̄(x+ r̃)
(E5)
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with the rescaled rates r̃ = r/m̄ and ã = a/m̄. Therefore, we have

A(x) =
ã(x+ r̃ǫ)

x+ r̃
− bx+

bx(1 − ρ)

m̄(x+ r̃)

B(x) =
1

m̄

(

ã(x+ r̃ǫ)

x+ r̃
+ bx

)

+O(m̄−2). (E6)

Note that, in the limit of m̄ → ∞, Eq.(E4) reduces to

∂tπ(x, t) = −∂x

[(

−bx+
ã(x+ ǫr̃)

x+ r̃

)

π(x, t)

]

. (E7)

Because there is no diffusion term in Eq.(E7), uncertainty originates purely from the initial

condition. Therefore, the dynamics described by Eq.(E7) is deterministic, and is equivalent

to the rate equation

ẋ =
ã(x+ ǫr̃)

x+ r̃
− bx. (E8)

Note that m̄ is chosen to be of size comparable to the average number of proteins, implying

that it is reasonable to take m̄ to be O(m∗) where m∗ is the position of the nonzero peak

of the quasi-steady distribution. Because m∗ ≃ a/b − r when a/b − r ≫ 1, we may simply

define m̄ ≡ a/b − r. With this definition of m̄, we have ã = ab/(a − rb), r̃ = rb/(a − rb),

and the stable fixed point of the rate equation is x1 = 1.

The parameter ρ does not appear in the Eq.(E8) because the average number of the

protein molecules is much larger than unity and therefore most of the protein molecules are in

the free form. Consequently, the degradation of the bound protein molecule gives negligible

contribution to the overall degradation of proteins in the limit where the deterministic rate

equation is valid. Similarly, by fixing r̃ = k1/(k0m̄) to a finite value, the unbinding rate k1

in the chemical master equation is taken to be much larger than the binding rate k0 when

m̄ ≫ 1. Therefore, the inactivation of the DNA due to the degradation of the bound protein

is negligible compared to that due to the unbinding.

Appendix F: The shift of the stable fixed point in the stationary distribution and

the stochastic slow down

It has been noted that when the production rate is a function of protein numbers that

is concave downward, than the production rate slows down due to stochastic noise, which

in turn decreases the average value of the protein number of the steady state relative to
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the value obtained by the deterministic rate equation [80]. We sketch the derivation for the

shift of the steady state average number of the proteins below. Although the multi-species

master equation was considered in ref. [80], we restrict ourselves to the single species case

for notional simplicity. The shift of the average value was obtained by expanding Eq.(E1)

around the solution x̄ that satisfies the deterministic rate equation,

dx̄

dt
=

∑

j

Sjfj(x̄), (F1)

and considering the probability density Π(ǫ, t) = m̄1/2P (n, t) [79, 80] 11. After substituting

x = x̄+ m̄−1/2ǫ. (F2)

into Eq.(E1), the expansion to order m̄−1/2 results in the equation [80]

∂tΠ(ǫ, t) = −
∑

j

Sjf
′
j(x̄)∂ǫ(ǫΠ(ǫ, t)) +

1

2

∑

j

S2
j fj(x̄)∂

2
ǫΠ(ǫ, t)

+m̄−1/2(−
∑

j

Sjf
′′
j (x̄)∂ǫ(ǫ

2Π(ǫ, t)) +
∑

j

S2
j f

′
j(x̄)∂

2
ǫ (ǫΠ(ǫ, t)), (F3)

By multiplying the both sides of Eq.(F3) by ǫ and integrating over ǫ, one obtains [80]

〈ǫ̇〉 =
∑

j

Sjf
′
j(x̄)〈ǫ〉+ m̄−1/2 1

2

∑

j

Sjf
′′
j (x̄)〈ǫ2〉+O(m̄−1). (F4)

where the brackets denote the average value, and the term of O(m̄1/2) was removed by using

the equation Eq.(F1). Therefore, for stationary state where 〈ǫ̇〉 = 0, we get the leading order

shift

〈x〉 = x̄− m̄−1

∑

j Sjf
′′
j (x̄)〈ǫ2〉

2
∑

j Sjf ′
j(x̄)

. (F5)

When x̄ is the stable fixed point, then
∑

f ′
j(x̄) < 0, and the shift is negative if f ′′

n(x̄), as

in the case of Michelis-Menten type production rate and linear degradation rate [80], which

is also the case for our model. That is, the average value of the particle number of the

stationary distribution is less than the stable fixed point, to the leading order in stochastic

noise.

We note one subtle point. In ref.[80], m̄ dependence of fj(n) was not considered. In

our model, f2(n) in fact contains a term of O(m̄−1) unless ρ = 1. Therefore, Eq.(F1) is not

11 The factor of m̄1/2 is absent in Eq.(9) of Ref.[80], but it is required for relating the probability mass

function of a discrete variable to the probability density of a continuous variable. This factor cancels out

in the left and the right-hand of the master equation, so the master equation remains unchanged.
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exactly the same as the deterministic rate equation we considered previously, where the m̄−1

dependent term was dropped. Therefore, we now have to consider the stable fixed point x̄

of Eq.(F1) that can be written as

ẋ =
ã(x+ ǫr̃)

x+ r̃
− bx+

bx(1 − ρ)

m̄(x+ r̃)
(F6)

for our model, and examine the additional position shifted due to the stochastic noise. Let

us also consider ǫ = 0 and examine the effect of the shift both due to the stochastic noise

and the baseline production. For ǫ = 0 , Eq.(F6) is then written as

ẋ =
āx

x+ r̃
− bx (F7)

with ā ≡ ã + b(1 − ρ)m̄−1, so it takes the same form as the deterministic rate equation

considered previously, with redefinitions of the parameters. Therefore, the non-zero fixed

point of Eq.(F7) is x̄ = ā/b− r̃.

We already considered the shift of the unstable fixed point in the main text, in the context

of the Fokker-Planck equation. The equation Eq.(35) was expanded around a fixed point

of Eq.(3) to obtain Eq.(37) that describes the shift of an extremum. If we instead expand

Eq.(35) around the fixed point of Eq.(F7), we obtain

(−2bx̄− br̃ + ā)δx = −ar̃ǫ+
1

2m̄

(

ãr̃

x̄+ r̃
+ b(x̄+ r̃)

)

+O(m̄−2, ǫ2, m̄−1ǫ). (F8)

and therefore

δx = (−2bx̄− br̃ + ā)−1

(

−ar̃ǫ+
1

2m̄

(

ãr̃

x̄+ r̃
+ b(x̄+ r̃)

))

= (br̃ − ā)−1

(

−ar̃ǫ+
1

2m̄

(

ãbr̃

ā
+ ā

))

. (F9)

Therefore, again, we see that the effect of the stochastic noise and the baseline production is

opposite. The former tends to shift the maximum to negative direction whereas the baseline

production tends to shift it in positive direction. When the stochastic noise is small and

the non-zero peak is dominant, its position is approximately the average particle number.

When the peak at the zero gives sizeable contribution to the probability distribution, then

the average particle number is less than the position of the non-zero peak. Therefore, the

negative shift of the peak relative to the stable fixed point of the Eq.(F6) is consistent with

the result of ref.[80], which states that the average number of particles are less than the

stable fixed point of Eq.(F6).
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0 1 2 3 4 5

FIG. 1. An example of the rates and the states of the Markov model corresponding to Eq.(9). The

lengths of the arrows are the magnitudes of the transition rates between the states. The numbers

in the circle are the numbers of free protein molecules. The horizontal arrays of states at the top

and the bottom are the bound and the free modes, the sets of states with protein-bound and free

DNA, respectively. The short gray diagonal arrows exist for ρ > 0. The dotted arrows indicate the

baseline production, which is absent for ǫ = 0.
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ε=3.5x 10-5 (analytic)
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(c)

FIG. 2. The marginal probability distribution pm(t) plotted as the function of m, (a, b) at early

times , and (c) at late times, for a/b = 10, k1 = k0 = 100b, ρ = 0, and ǫ = 0. In (a) and (b), pm(t) at

bt = 0.5, 1.0, 2.0, and 10.0, are drawn. The filled circles are the analytic quasi-steady distribution in

Eq.(16), where the normalization was determined to give the best fit. The initial distributions are

given as P (m, 0, 0) = 0.2δm,4 and P (m, 1, 0) = 0.8δm,3 in Figure (a), and P (m, 0, 0) = 0.0625δm,15

and P (m, 1, 0) = 0.9375δm,14 in Figure (b). In Figure (c), pm(t) at bt = 100.0, 1000.0, 2000.0,

and 3000.0, are drawn. Stationary distributions for ǫ = 0.000035, obtained from the numerical

computation and the analytic formula, are also plotted as crosses and circles and, respectively.

The other parameters are the same as above, except that K/b = ∞ for the analytic solution.
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0 1 2 3 4 5 6

FIG. 3. An example of the rates and the states of the Markov model corresponding to Eq.(11) for

ǫ = 0. The lengths of the arrows are the magnitudes of the transition rates between the states. The

numbers in the circles indicate the numbers of total protein molecules, both bound and unbound.

In this example, the probability flows to the state m = 5 on average, but there is also a leakage to

m = 0, whose effect becomes important at late times.

 0.01
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 1

 0  20  40  60  80  100  120  140  160

1-
P

0(
t)

bt

quasi-steady

FIG. 4. The graphs of 1− p0(t) for a/b = 5, r = 1, K/b = ∞, ρ = 0, and ǫ = 0, where the vertical

axis is in log scale. The dashed lines are the results from the numerical computation, with several

different initial distribution. The solid line is the result from the analytic expressions in Eqs.(24)

and (25).
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FIG. 5. The graphs of 1 − p0(t) for a/b = 10, r = 1, ρ = 0, and ǫ = 0, for several values of K/b.

The vertical axis is in log scale. The dashed lines are the results from the numerical integration of

Eq.(9) with finite values of K/b. The gray solid line is the result for K/b = ∞, obtained from the

numerical integration of Eq.(11). The black solid line is the result from the analytic expressions in

Eqs.(24) and (25).

40



 0

 3000

 0  100

b 
τ

K/b
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ρ=0

ρ=0.2 (K/b=    )8

ρ=0.2

FIG. 6. The dimensionless mean leakage time bτ as the function of K/b, for a/b = 10, r = 1, and

ǫ = 0. The dashed line shows the value at K/b = ∞. The black and the gray lines are for ρ = 0

and ρ = 0.2, respectively.
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FIG. 7. The probability distributions P (m,n, t) of bound (n = 1, dashed lines) and free (n = 0,

solid lines) modes (a) at bt = 1 (b) and bt = 10. The distributions for K/b = 100 and K/b = 1 are

compared, shown in gray and black lines, respectively. The other parameters are b/a = 10, r = 1,

ρ = 0, and ǫ = 0. For better visibility of the distributions of the free mode, those of the bound

modes are scaled by 0.2 and 0.5 in figures (a) and (b), respectively.
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FIG. 8. The graphs of 1 − p0(t) for ρ = 0, ǫ = 0, a/b = 100, r = 0.4, and K = 0.005. The gray

and the black lines are for the initial conditions P (m,n, 0) = δm,50δn,1, and P (m,n, 0) = δm,50δn,0,

respectively.
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FIG. 9. The dimensionless mean leakage time bτ as the function a/b − r, for various values of r,

for K/b = ∞, ρ = 0, and ǫ = 0.
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FIG. 10. The graphs of pst0 (ǫ) for a/b = 10, r = 1, and ρ = 0, for various values of K/b.
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FIG. 11. The baseline production threshold ǫθ as the function of a/b − r, for various values of r,

for K/b = ∞ and ρ = 0.
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(a) (b) (c)

FIG. 12. The shift of the minimum of the stationary distribution. In each figure, the tail of

the arrow is located at the unstable fixed point x− = 0 of the deterministic rate equation with no

baseline production. (a,b) The local minimum is shifted rightward, when the effect of the stochastic

noise dominates over that of the baseline production. (a) For large noise and the corresponding

large shift of the unstable fixed point, a divergence occurs at x = 0, leading to the effective erasure

of the non-zero stable fixed point for t → ∞. (b) For small magnitude of noise, probability at

x = 0 becomes comparable to the peak near the non-zero stable fixed point, leading to the noise-

induced bistability for t → ∞. (c) When the effect of the baseline production dominates that of

the stochastic noise, the local minimum is shifted leftward. The local minimum disappears into the

unphysical region of x < 0, and the probability distribution is dominated by the global maximum

near the non-zero stable fixed point, even for t → ∞.
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FIG. 13. The probability distribution at bt = 50, for the initial condition P (m,n, 0) = δm,0δn,0 and

the parameters ρ = 0, a/b = 100, r = 0.4, K = 0.3, and ǫ = 0.001. The distributions for the free

(P (m, 0, t)) and the bound mode (P (m, 1, t)) are shown as black and the gray lines, respectively.

The stationary distribution is also shown in red line. The free mode makes negligible contribution

to the stationary distribution and therefore pstm ≃ P st(m−1, 1). Probability distribution at bt = 106

for ρ = 0, a/b = 100, r = 0.4, K = 0.3, and ǫ = 0, is indistinguishable from pstm, as long as the

initial state is away from m = 0.
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