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We show that in monomeric supercooled liquids and glasses that are plastically flowing at a
constant shear stress σ while being deformed with strain rate ε̇, the microscopic structural relaxation
time τstr is given by the universal relation σ/G∞ε̇ with G∞ a modulus. This equality holds for all
rheological regimes from temperatures above the glass transition all the way to the athermal limit,
and arises from the competing effects of elastic loading and viscous dissipation. In macromolecular
(polymeric) glasses, however, the stress decouples from this relaxation time and τstr is in fact further
reduced even though σ rises during glassy strain hardening. We develop expressions to capture both
effects and thus provide a framework for analyzing mobility measurements in glassy materials.

Glasses form when their structural relaxation time
τstr exceeds the experimentally accessible observation
timescales, and the material falls out of equilibrium. The
larger τstr, the smaller the molecular mobility. Predicting
the dramatic rise of τstr with decreasing temperature or
increasing packing fraction is a central goal for any theory
of the glass transition [1, 2]. In the glassy state, following
a rapid quench in temperature below the glass transition
temperature, the dynamics slows down further due to
physical aging, during which the material slowly recovers
towards an eventual equilibrium state. However, relax-
ation speeds up as soon as the glass is deformed, which
must be accounted for by any theory of deformation and
plastic flow [3–8]. On the most basic level, this accelera-
tion can be understood by realizing that the rate of ex-
ternal driving imposes an upper bound on the relaxation
timescale, beyond which all aging processes cease. One
therefore expects that the relaxation time varies with the
inverse of the deformation rate. This picture, however,
is incomplete as it does not consider the role of other
parameters such as temperature and stress. In this ar-
ticle, we develop a comprehensive description of acceler-
ated dynamics that extends from supercooled fluids to
athermal glasses, and includes all relevant deformation
variables.

In soft glasses such as colloidal mixtures, gels and soft
pastes, the microscropic structural relaxation time can be
accessed through dynamic light scattering [9, 10]. These
materials are usually considered athermal, i.e. rearrange-
ments are purely due to mechanical excitation. For in-
stance, experiments on soft pastes have found that τstr
scales with the visocity of the material under shear [11],
while τstr ∝ ε̇−1 was reported for a colloidal glass sheared
at fixed strain rate ε̇ [12]. Mechanical measurements in
similar systems provide further evidence of accelerated
dynamics during deformation [13].

Polymer glasses form a second important class of glassy
materials with countless technological applications [7].
In contrast to the soft glasses, the fundamental building
blocks in polymer glasses are molecules, and thermal ef-
fects are significant. Both NMR measurements [14] and

fluorescence spectroscopy techniques [15–18] have been
used to characterize accelerated dynamics at the segmen-
tal level [14]. These experiments confirm that the most
important deformation variable that controls the relax-
ation time is the strain rate ε̇. Further insight into accel-
erated dynamics comes from atomistic molecular dynam-
ics simulations, which report close correlations between
the macroscopic deformation and the rate of torsional
transitions in glassy polyethylene [19] or the mobility of
chain segments in polystyrene and polycarbonate [20].
Coarse-grained simulations can access larger ranges of
strain rates, and also indicate a τstr ∝ ε̇−1 proportion-
ality for different measures of the microscopic relaxation
time [21–23]. Here, we build on this work in order to
develop a comprehensive picture of molecular mobility
in flowing glasses. We also seek to understand any dif-
ferences that occur in polymer glasses relative to small
molecule or soft glasses that lack chain connectivity.

Our analysis is based on molecular dynamics simula-
tions of well-studied model amorphous solids. We first
consider the Wahnström model [24], a 50/50 mixture
of 3D Lennard Jones (LJ) particles, as a representative
model for monatomic glasses. We report all results in
reduced simulation units. A periodic simulation box is
filled with 100,000 atoms (at number density ρ = 1.296),
equilibrated at a high temperature T = 1 (where the
mixture is in the fluid state) and then rapidly quenched
to lower temperatures varying between T = 0.0 − 0.7.
Since previous work has established a glass transition
temperature of T ≈ 0.46 for this model [25], this tem-
perature range includes both supercooled fluids and the
athermal limit. After an aging period of 5, 000 LJ time
units at fixed volume, we impose uniaxial tensile volume-
conserving deformation at constant true strain rates, i.e.
ε̇z = −2ε̇y = −2ε̇x, in a range of 10−6 < ε̇z < 10−3, and
measure the tensile stress response σz − σx. Throughout
the simulation, the temperature is held constant with a
Langevin thermostat (addition of frictional and random
forces), and we monitor the monomeric structural relax-
ation time as a measure of (spatially averaged) inverse
molecular mobility via the decay of the self-intermediate
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scattering function (ISF)

Fs(q, t, εz) = 〈exp [iq ·∆rNA(t, εz)]〉, (1)

where εz is the macroscopic (box) strain in the ten-
sile direction and ∆rNA denotes nonaffine displacements,
where the trivial motion arising from the global deforma-
tion has been subtracted. We obtain τstr(εz) by fitting
Fs(q, t, εz) to a stretched exponential (KWW) function
exp[−(t/τstr(εz))

β ]. By setting |q| = 2π, the ISF de-
cays when the larger particles have moved of order their
own diameter, and thus τstr is the time for particles to
break local cages. Light scattering experiments measure
directly the ISF, and fluorescence spectroscopy experi-
ments report a similar relaxation time that originates
from motion at the segmental level.

Figure 1(a) shows representative normal stress differ-
ences vs. strain from such simulations, and reveals the
typical mechanical response of glassy solids: the stress
first rises linearly and then peaks at strains of order
0.1 before falling back onto a steady state plastic flow
plateau. The height of the peak stress and hence the
degree of softening depend on the preparation and aging
history. We are primarily interested in the post-yield,
plastic flow regime, where the flow stress is constant dur-
ing deformation. Its variation with strain rate and tem-
perature has already been rationalized in previous work
[26, 27]. The quantity of interest here is the relaxation
time τstr during deformation, displayed in panel (b) of
Fig. 1. In the post-yield plastic flow regime, τpl ≡ τstr is
constant and decreases with increasing strain rate.

We now proceed with a quantitative analysis of the
relaxation time in temperature - strain rate parameter
space. The upper inset of Fig. 2 shows τpl for 8 different
temperatures each as a function of inverse strain rate.
We see that the data points from T < Tg are indeed
proportional to ε̇−1z , but the prefactor varies with tem-
perature. For T > Tg, however, the behavior changes
dramatically and τpl ≈ const. at T = 0.7. We thus ob-
serve that the system is crossing over from yield stress
fluid (low T ) via shear thinning to Newtonian (high T )
behavior. The lower inset shows that the relaxation times
can be collapsed onto a common curve if all times are
rescaled in terms of the relaxation time measured at the
slowest available strain rate.

Can these trends be captured in a common frame-
work? A starting point is provided by the high tem-
perature fluid, whose viscoelastic behavior is usually
well described by phenomenological models introduced
by Maxwell 150 years ago: the fluid flows with viscosity
η = G∞τM , where G∞ is the elastic modulus in rapid de-
formation and τM is a (fixed) Maxwell relaxation time.
For a Newtonian fluid, both G∞ and τM are material
constants and hence η = const. as well. The strain be-
tween rearrangements γ̇τM thus varies proportional to
the shear rate. In the glassy regime, however, the (effec-
tive) viscosity η = (σz − σx)/ε̇z depends on shear rate

FIG. 1. (a) True stress vs true strain during deformation
at constant true strain rates 10−3 (red), 10−4 (green), 10−5

(cyan), 10−6 (magenta) and temperature T = 0.3 < Tg. (b)
Structural relaxation time τstr vs. true strain.

[28], and shear thinning with eventual yield stress fluid
behavior is found. In contrast to the fluid regime, re-
arrangements are now driven by the deformation field,
and hence the strain between rearrangements is constant.
Despite these different mechanisms, we propose that the
steady-state rheology at all temperatures is universally
governed by the competition between the rates of elas-
tic loading (G∞ε̇z) and viscous dissipation ((σz−σx)/τ).
Equality of the two terms defines a timescale τ , and we
thus suggest

τ = τpl = c(σz − σx)/G∞ε̇z. (2)

The main panel of Fig. 2 tests this prediction and
shows that this formula collapses the data for all tem-
peratures onto a single line with slope unity (in general,
a unitless constant prefactor c may be needed, but here
c = 1). Remarkably, all temperature effects are now cap-
tured by the temperature dependence of the shear stress
σz − σx. Eq. (2) was found in ref. [11] to describe the
relaxation times of sheared (athermal) pastes. Our re-
sults show that this relationship is far more general, and
captures the molecular mobility at finite temperatures all
the way to the supercooled liquid regime. Eq. (2) and its
implied data collapse constitutes our first major result.

In a monomeric or small-molecule glass, the flow stress
in steady state is constant. Under these conditions, Fig. 1
evidences that the relaxation time is also constant. Is this
still the case when the flow stress depends on strain? This



3

FIG. 2. Main panel: post-yield relaxation times τpl vs. (σz −
σx)/G∞ε̇z, where G∞ = 17 was measured in the fluid state.
Data for 8 temperatures T = 0.0 (black), T = 0.1 (green),
T = 0.2 (red), T = 0.3 (blue), T = 0.4 (cyan), T = 0.5
(magenta), T = 0.6 (orange), and T = 0.7 (brown) are shown.
Upper inset: same data but plotted against 1/ε̇z only. Lower
inset: data collapse when time is measured in units of the
longest relaxation time.

situation occurs in fact in polymer glasses. While their
pre-yield behavior is generally accepted to be qualita-
tively similar to monomeric glasses, polymers exhibit the
phenomenon of strain hardening by virtue of their macro-
molecular character. We now consider a well-known lin-
ear bead-spring model [29], where monomers interacting
with a LJ potential are coupled together with stiff springs
to form chains of N = 500 beads. These coarse-grained
chains have been used before in many simulations of ac-
celerated dynamics [21–23] and strain hardening [30] in
glassy polymers .

As before, we prepare glasses from a rapid quench from
the melt and impose deformation after a brief aging pe-
riod. Since the chains are long enough to be entangled,
we use the bond-swap method to equilibrate the chain
conformations in the melt [31]. The stress-strain curves
obtained from the same uniaxial deformation at constant
true strain rate in Fig. 3(a) now exhibit substantial hard-
ening. The relaxation times measured again from the de-
cay of the ISF at various deformation strains are shown
in Fig. 3(b). Remarkably, the relaxation times are no
longer constant, but decrease monotonically with increas-
ing strain.

The further acceleration of the monomer mobility is
unexpected, and runs counter to some theories that pre-
dict instead a further slowing down of activated dynamics
during hardening [32]. In fact, it also cannot be explained
by eq. (2), from which one would expect an increase of

FIG. 3. (a) True stress vs true strain during deformation
of polymer glasses at constant true strain rates 10−3 (red),
10−4 (green), 10−5 (cyan), 10−6 (magenta) and temperature
T = 0.2. (b) Structural relaxation time τstr vs true strain.
Solid lines show the functions τstr = τ0(σ0/(σz − σx))n with
n = 0.5.

τpl with increasing stress. In order to understand the
trend observed here, it is useful to recall the molecu-
lar mechanisms of strain hardening that were identified
by Hoy and Robbins with simulations of the same poly-
mer model [30]. They showed that the stress does not
arise from loss of conformational entropy of the chains
as in rubber elasticity, but reflects instead irreversible
work dissipated as heat. Since the chains deform glob-
ally affine, the chain connectivity enforces ever increasing
plastic activity at the monomer level. Indeed, the rate
of plastic rearrangements closely tracks the dissipative
component of the stress [30].

Our finding of accelerating dynamics during harden-
ing is consistent with this picture if we recall that the
nonaffine particle displacement is just another charac-
terization of irreversible particle rearrangements. In-
deed, Vorselaars et al. [33] reported that harden-
ing in glassy polymers is closely coupled with an in-
crease in the rate of nonaffine displacements. Not-
ing that 〈exp[iq∆r(t, εz)]〉 ≈ exp[−q2〈∆NAr

2(t, εz)〉/6]
if q2〈∆NAr

2(t, εz)〉/6 � 1, we see directly that a faster
relaxation implies a faster rate of increase of the mean
squared nonaffine monomer displacement. This is ex-
actly what happens as the chains become more and more
stretched in the glassy matrix. Since the rate of plastic
rearrangements is strongly correlated with the mobility,
we expect the hardening process to decrease the relax-
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FIG. 4. Main panel: post-yield relaxation times in
polymer glasses, where G∞ = 11 and the values
of n = 0.8, 0.6, 0.5, 0.5, 0.2, 0.05 at temperatures T =
0, 0.1, 0.2, 0.3, 0.4, 0.5, resp. Colors as in Fig. 2. Upper in-
set: same data but plotted against 1/ε̇z only. Lower inset:
data collapse when time is measured in units of the longest
relaxation time.

ation time (inverse mobility) with the inverse of the hard-
ening stress. In Fig. 3(b) we find the measured times to
follow closely the functional form τstr = τ0(σ0/(σz−σx))n

with an exponent n = 0.5 and τ0 a rate-dependent pref-
actor. Here σ0 denotes the flow stress, which we take as
the normal stress difference near εz = 0.12, where the
stress differences σz − σx exhibit a minimum.

We investigate the relaxation time in the strain hard-
ening regime for multiple temperatures ranging from
T = 0.0 − 0.5, which exceed the glass transition tem-
perature Tg ≈ 0.35 for this model [26]. In the inset of
Fig. 4, we first observe that for temperatures of T = 0.3
or lower, the relaxation times overall scale with inverse
strain rate. In contrast to the LJ mixture, the times
further decrease by several times for a given strain rate,
hence the data points no longer overlap. As the tempera-
ture increases beyond the glass transition, the relaxation
times become independent of rate and also no longer in-
crease in the hardening regime. This further supports the
notion that accelerated dynamics is an intrinsically glassy
strain hardening effect and absent in entropic hardening
that dominates in elastomers and rubbers.

We now introduce a modification of eq. (2) that ac-
counts for the observed trends in polymers. We propose
that the effects of strain hardening decouple from the
steady state timescale τ that arises from the balance of
elastic loading and viscous dissipation. The latter only
sets the prefactor timescale τ0 = σ0/G∞ε̇z with the flow
stress introduced above replacing the steady state shear

FIG. 5. KWW-exponent β during steady state flow of (a)
the binary LJ-mixture and (b) the polymer glass. Colors re-
flect temperatures T = 0.0 (black), 0.1 (green), 0.2 (red), 0.3
(blue), 0.4 (cyan), 0.5 (magenta), 0.6 (orange).

stress in eq. (2). Any further decrease of the relaxation
time due to polymeric effects should then be proportional
to the hardening stress relative to the flow stress, as evi-
denced in Fig. 3(b). We write

τpl = c(σ0/G∞ε̇z)(σ0/(σz(εz)− σx(εz)))
n(T ), (3)

where a temperature dependent exponent n(T ) is re-
quired to interpolate between glassy (0.5 < n < 0.8) and
elastomeric (n = 0) regimes. In the main panel of Fig. 4,
we test this expression against the simulation data and
find that it nicely collapses the data from the inset onto
a straight line. To achieve this data collapse, we had to
optimize the value of the exponent n for each tempera-
ture. Eq. (3) and the implied accelerated dynamics in
strain hardening polymers constitute the second major
result of the present work.

Additional information about the flow of the driven
glasses can be obtained from the KWW exponent β,
which is fitted to the ISF simultaneously with the relax-
ation time. We find in Fig. 5 that β settles on a steady-
state value in the plastic flow regime that increases with
shear rate and decreasing temperature. Larger values of
β correspond to a more homogeneous distribution of re-
laxation times. In the shear dominated regime at low
temperatures, β is close to one as the imposed shear rate
is the only dynamical timescale in the system. At higher
temperatures, thermally activated relaxation competes
with deformation-induced plastic events, and the relax-
ation time distribution broadens. The dynamics in the



5

binary mixture is more heterogeneous than the polymer.

We have developed predictions of the particle scale mo-
bility in the plastic flow regime of supercooled liquids
and glasses. The starting point is that the steady state
is characterized by a balance of elastic loading and vis-
cous stress relaxation. For a Herschel Bulkley material
with the flow stress given by σpl = σ0 + a

√
ε̇, eq. (2)

predicts τpl = σ0/ε̇+ a/
√
ε̇, while τpl = const. for a New-

tonian fluid. It is of course expected that the macroscopic
viscosity is related to microscopic structural relaxation,
but the fact that eq. (2) interpolates universally across
all rheological regimes commonly observed in glassy ma-
terials has so far not been demonstrated. In an energy
landscape viewpoint, the deformation rate sets the global
time scale for cage deformation, while the stress further
lowers the barriers for cage breaking. In strain hardening
polymers, by contrast, accelerated dynamics arises from
increased dissipation due to irreversible chain deforma-
tion in the glassy matrix that is no longer balanced by
an elastic stress. As a result, the polymeric contribution
to the structural relaxation time decouples from the bal-
ance between elastic and viscous stresses, and is instead
governed by the increased amount of local nonaffine seg-
mental motion as the chains are forced to stretch globally.

Our work has established a robust link between mi-
croscopic relaxation time and the macroscopic deforma-
tion variables stress and strain rate. The predictions of
eqs. (2) and (3) are readily testable in soft glasses with
light scattering [11] and in polymer glasses with fluores-
cence spectroscopy techniques [16]. Our results also pro-
vide an important new benchmark for the formulation of
theories of the deformation of glassy solids [8] and poly-
mers [4–7], which frequently invoke a Maxwell material
as constitutive law and the evolution of the mobility as
an internal state variable.
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ments on the manuscript and the Natural Sciences and
Engineering Research Council of Canada for financial
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