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Abstract

Time-reversal symmetry of the microscopic laws dictates that the equilibrium distribution of a

stochastic process must obey the condition of detailed balance. However, cyclic Markov processes

that do not admit equilibrium distributions with detailed balance are often used to model systems

driven out of equilibrium by external agents. I show that for a Markov model without detailed

balance, an extended Markov model can be constructed, which explicitly includes the degrees of

freedom for the driving agent and satisfies the detailed balance condition. The original cyclic

Markov model for the driven system is then recovered as an approximation at early times by

summing over the degrees of freedom for the driving agent. I also show that the widely accepted

expression for the entropy production in a cyclic Markov model is actually a time derivative of

an entropy component in the extended model. Further, I present an analytic expression for the

entropy component that is hidden in the cyclic Markov model.
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I. INTRODUCTION

A Markov process[1, 2] is a paradigmatic model for describing a stochastic process in

various fields of science including biophysics[3–12]. A Markov process can be obtained from

the microscopic dynamics of a closed system by coarse-graining[13, 14]. Thus, it can be

considered as a process where information is continuously being lost. Alternatively, Markov

processes have also been obtained by maximizing the dynamical entropy of the probability

distribution of stochastic paths under appropriate constraints[15–17].

Considering discrete states labelled by an index i, the time evolution of a probability

distribution in a Markov jump process, where transitions occur only at times that are integer

multiples of ∆t, is given by [18]

πi (t+∆t) =
∑

j

πj(t)pj→i, (1)

where πi(t) is the probability that the system is in a state i at time t = n∆t for some

integer n, and pi→j is the transition probability from the state i to j. The conservation of

probability implies that
∑

j pi→j = 1. Eq.(1) can also be written as

∆πi(t)

∆t
=
∑

j

πj(t)kj→i, (2)

where ∆πi(t) ≡ πi(t+∆t)− πi(t) and

ki→j ≡
pi→j − δi,j

∆t
, (3)

with δi,j being the Kronecker delta, which is one if i = j and zero otherwise. Here, ki→j is

called the transition rate from the state i to j for i 6= j. The conservation of probability

imposes the constraint that
∑

j ki→j = 0, from which we obtain ki→i = −
∑

j 6=i ki→j. The

transition rates completely determine the stochastic evolution of the system. The values

of ki→j are considered to be time-independent constants, and the term time-homogeneous

Markov process is sometimes used to emphasize this fact.

The equation for the continuous-time Marvkov process is obtained from Eq.(2) by taking

the limit ∆t → 0:
dπi(t)

dt
=
∑

j

πj(t)kj→i, (4)

which is called the master equation.

2



It is a well-known fact that under appropriate conditions, the probability distribution of

a Markov chain converges to a unique stationary distribution πst
i regardless of the initial

distribution [18]. A stationary distribution satisfies the balance condition:

∑

j

πst
j kj→i =

∑

j

[

πst
j kj→i − πst

i ki→j

]

= 0 ∀i, (5)

where the second expression follows from the first by the conservation of probability,
∑

j ki→j = 0. A stationary distribution is considered a true equilibrium, which we now

denote as πeq
i , only if a stronger condition called detailed balance holds:

πeq
j kj→i − πeq

i ki→j = 0 ∀i, j. (6)

A given Markovian transition matrix admits an equilibrium solution with detailed balance

if and only if Kolmogorov’s criterion is satisfied. It states that for any cycle of states

i0, i1, · · · , in, i0, the product of forward transition rates over the cycle is equal to that of the

reverse rates [19, 20]:

ki0→i1ki1→i2 · · · kin−1→inkin→i0 = ki0→inkin→in−1 · · · ki2→i1ki1→i0. (7)

Therefore, we see that the existence of a cycle in the network topology of a Markov process is

a necessary condition that its stationary distribution violates the detailed balance condition.

From here on, we will call a Markov model that violates Kolmogorov’s criterion simply a

cyclic Markov model, since cycles that satisfy Kolmogorov’s criterion are not of interest here.

Because a Markov process is a coarse-grained description, a state labelled with the index

i is usually not a true microstate of the closed system, but rather an aggregate of such

microstates. The crucial assumption underlying the coarse-graining that leads to Eq.(4) is

that of instantaneous local equilibrium: the equilibration between the microstates within

each Markov state occurs much faster than the transition between distinct Markov states.

Therefore, we may call the index labelling the Markov states as the slow variable, and

the underlying additional hidden index required for specifying the microstate as the fast

variable. Once instantaneous local equilibrium is assumed, the detailed balance condition

for an equilibrium distribution follows from the symmetry of the underlying microscopic laws

under time reversal, under the condition that the index i is invariant under time reversal,

which will be assumed always true in this paper[13, 14]. This suggests that any closed
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system can be described by a Markov process that satisfies Kolmogorov’s criterion if coarse-

graining is performed properly. However, cyclic Markov processes that violate Kolmogorov’s

criterion are often used to model systems continuously driven out of equilibrium by an

external agent[21–30]. The stationary state of such a model is called the nonequilibrium

steady state[25–34] because the detailed balance condition does not hold.

It has been argued that these rather contradictory views can be reconciled if the cyclic

Markov process is embedded in a larger Markov model that explicitly includes the degrees

of freedom for the driving agent[35]. Obviously, the total system consisting of the driven

system plus the outside environment containing the driving agent forms a closed system,

which will eventually reach equilibrium. For example, a cyclic Markov model can be used

to describe a biochemical cycle driven by ATP. However, from a more global point of view,

the cycle will stop once all ATP molecules are used up. If we consider a situation where

ATP itself is regenerated by food intake, we know that the cycle is still a part of a larger

cycle driven by the sun. Considering a closed system that includes all biological organisms

as well as the sun, the whole system will reach equilibrium once the sun has burnt out and

all life processes have ended. Therefore, the dynamics for the driven system are described by

a model where the transition rate is time-dependent. Since the transition rates change with

time, it is possible that the rates violate Kolmogorov’s criterion at earlier times, but satisfy

the criterion as the system reaches equilibrium. A cyclic Markov process is clearly only an

approximate description valid only for time periods much earlier than the equilibration of

the total closed system.

In this work, it is shown that for any time-homogeneous Markov model without detailed

balance, an extended Markov model that explicitly includes the degrees of freedom for the

driving agent and satisfies Kolmogorov’s criterion can be constructed. The original cyclic

Markov model for the driven system is then recovered as an approximation at early times

by summing over the degrees of freedom of the driving agent. By constructing the extended

model, the widely accepted formula for the entropy production in a cyclic Markov model is

explicitly expressed as a time derivative of an entropy component. Furthermore, an analytic

expression for the entropy component is presented, which is hidden in the original cyclic

Markov model.
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II. DERIVATION OF MARKOV MODEL THAT VIOLATES DETAILED BAL-

ANCE

A. Three-state model

Before providing a derivation for general Markov processes without detailed balance, a

simple example of a discrete-time Markov process is presented, consisting of the three states

shown in Figure 1(a), where abc 6= αβγ. Now, consider an extended model where the state

of the driving agent, labelled by an integer X (0 ≤ X ≤ N), is explicitly included. We

assume that the change of X is uniquely determined for each i → j transition, denoted by

∆X(i → j). We also assume that ∆X(i → j) = −∆X(j → i). For example, this three-state

process may be a biochemical cycle driven by the hydrolysis of ATP to ADP. Then, we may

take N to be the total number of ATP and ADP molecules, which is assumed to be fixed,

and let X and N − X be the numbers of ATP and ADP molecules, respectively. In this

case, −∆X(i → j) is the number of consumed ATP molecules in the biochemical reaction

i → j. We request that the sum of ∆X(i → j) along the cycle is nonzero. This leads

to an absence of any cycle in the extended model, which in turn guarantees the detailed

balance. There is no unique extended model corresponding to the cyclic Markov model in

Figure 1(a). For example, we may have ∆X = ±1 for each transition (Figure 1(b)), or

alternatively ∆X = ±1 only for the transitions between C and A and ∆X = 0 for all the

other transitions (Figure 1(c)). However, the model in Figure 1(c) can be clearly mapped

into that of Figure 1(b) by redefining the coordinate X and changing the value of N . Hence,

these models are mathematically equivalent. From here on, X will be defined as in Figure

1(b), so that there are a total of N +1 states in the extended model. Then, X is just a serial

number attached to the states in the extended model, and does not necessarily coincide with

the number of ATP molecules.

We now consider a Markov process for the probability distribution Π(i,X)(t) of the ex-

tended system, and assume that the transition probability P(i,X)→(j,Y ) from (i, X) to (j, Y )

in the extended model has the form

P(i,X)→(j,Y ) = pi→jδ(Y −X,∆X(i → j)), (8)

where δ(x, y) ≡ δx,y is the Kronecker delta function. That is, the nonzero value of the

transition probability depends only on i and j (Figure 1(b), (c)). Starting from the extended
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model, we now sum over the degrees of freedom X to obtain the reduced model describing

the time evolution of πi(t). The dynamics of the reduced model is not described by a time-

homogeneous Markov process in general, but the transition probability q(i → j; t) can still

be defined, and is given by (Appendix A)

q(i → j; t) ≡
Pr(i, t; j, t+∆t)

πi(t)

=

∑

X,Y Pr(i, X, t; j, Y, t+∆t)

πi(t)

=
1

πi(t)

∑

X,Y

Π(i,X)(t)P(i,X)→(j,Y )

= pi→j

∑

X Π(i,X)(t)

πi(t)
(9)

where Pr(i, t; j, t + ∆t) is the joint probability that the state of the driven system is i at

time t and j at time t+∆t. Similarly, Pr(i, X, t; j, Y, t+∆t) is the joint probability that the

state of the extended model is (i, X) at time t and (j, Y ) at time t+∆t. In Eq.(9), the first

line follows from the definition of the transition probability (Appendix A), and the same

definition was used for the extended model to obtain the third line. Finally, the condition

Eq.(8) was used to derive the last line.

Note that X = N and X = 0 are excluded from the summation in the numerator of

Eq.(9) for ∆X(i → j) = 1 and ∆X(i → j) = −1, respectively, leading to

q(i → j; t) =



















pi→j(1−
Π(i,N)(t)

πi(t)
) ∆X(i → j) = 1,

pi→j(1−
Π(i,0)(t)

πi(t)
) ∆X(i → j) = −1,

pi→j otherwise.

(10)

As mentioned earlier, the coarse-graining of microscopic dynamics under appropriate con-

ditions leads to a time-homogeneous Markov model that satisfies Kolmogorov’s criterion.

From Eq.(10), we now see why the cyclic Markov model for the three states violates Kol-

mogorov’s criterion: We cannot assume instantaneous equilibration among the microstates

within a state labelled by the index i, because the dynamics of the variable X is not fast

enough. Only in the limit of t → ∞, Π(i,X)(t) approaches the equilibrium distribution where

the time-dependence in Eq.(10) disappears, leading to a time-homogeneous Markov model

that satisfies Kolmogorov’s criterion. It is straightforward to obtain the analytic form for

the equilibrium solution by using the detailed-balance condition (Appendix B).
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Now consider the early time period. It is clear that if N ≫ 1 and Π(i,X)(0) are nonzero

only around the intermediate values of X , say N/2, then both Π(i,0)(t) and Π(i,N)(t) remain

negligible for t ≪ teq, where teq = N∆t/p is the time scale of equilibration, with p denoting

the typical size of pi→j. In this regime, q(i → j; t) ≃ pi→j, and the time-homogeneous cyclic

Markov model with broken detailed balance is recovered. The driven system reaches the

steady state of the cyclic model around tst = ∆t/p, which is actually a quasi-steady state

that persists for tst ≪ t ≪ teq.

Let us refer to the three-state model with transition probability given by Eq.(10) as

model 1 (Figure 1). The result of a numerical computation for model 1 is shown in Figure

2, with a transition probability given by pC→A = 0.5 and pi→j = 0.25 for all other pairs

with i 6= j. With N = 3000, the system is initially in the state (i, X) = (B, 1500), with X

defined as in Figure 1(b). Note that for t < 1500∆t, Πi,N(t) = Πi,0(t) = 0, so the system is

exactly described by the time-homogeneous three-state Markov model with broken detailed

balance (Figure 1(a)). The steady-state distribution and the currents of the cyclic model are

(πst
A , π

st
B , π

st
C ) = (5/12, 1/3, 1/4), and J st = 1/48, respectively, which are actually the quasi-

steady state distribution and currents of the extended model. We see that the system reaches

the quasi-steady state at around t/∆t ∼ 4 (Figure 2(a)). As we look at a longer time scale,

we see that the system makes a transition from the nonequilibrium quasi-steady state to true

equilibrium with (πeq
A , πeq

B , πeq
C ) = (2/5, 2/5, 1/5) and Jeq = 0 around t/∆t ∼ 25000 (Figure

2(b)). The three-state system is now described by a time-homogeneous Markov model with

detailed balance, where pC→A = 0.5, pB→C = 0.125, and pi→j = 0.25 for all other pairs with

i 6= j.

The condition that the nonzero values of the transition rates depend only on the states

of the driven system, Eq.(8), may be overly strict to be realistic. We now consider a more

general situation, where the nonzero values of the transition rate P(i,X)→(j,Y ) also depend on

X , so that the constant pi→j in Eq.(8) is now replaced by pi→j(X), which is a function of

X . Even in this more general case, the previous arguments presented under the condition

Eq.(8) remain valid, as long as pi→j(X) is a slowly varying function of X so that

P(i,X)→(j,Y ) = pi→j(X)δ(Y −X,∆X(i → j))

≃ pi→j(X0)δ(Y −X,∆X(i → j)) (11)

for X ≪ N . We then get q(i → j; t) ≃ pi→j(X0) for t ≪ t1 = N∆t/p(X0). However, in

7



contrast to the model where the values of pi→j are constants that are independent of X , the

system does not reach equilibrium at t ∼ t1, because pi→j(X) deviates significantly from

pi→j(X0) as t → t1. This means that teq is less well defined in the model with X-dependent

values of non-zero transition probability, suggesting that the transition to equilibrium is

smoother.

As a simple example, let us consider a three-state model that is more realistic than model

1, which we call model 2, where the transitions C → A andA → C are driven by the reactions

ATP → ADP+ P and ADP+P → ATP, respectively. We take N = 3000, as in the case of

model 1, where N + 1 is the total number of states in the extended model, labelled by the

coordinates X = 0, · · ·N . As in the case of model 1, we assume that the state of the driven

system at both ends of the Markov chain is B. It is then easy to see that the numbers of ATP

and ADP molecules are NATP = [(X + 1)/3] and NADP = N/3 − [(X + 1)/3], respectively,

with their total number fixed as Ntot = N/3 = 1000, where [X ] denotes the integer part of

the number X . The result of the numerical computation for model 2 is shown in Figure 2(a)

and (c), where the initial condition and parameters are the same as in the case of model 1,

except that p(C → A) = 0.50NATP/Ntot and p(A → C) = 0.25NADP/Ntot so that they are

proportional to the numbers of ATP and ADP, respectively. The parameters are chosen so

that they coincide with those of model 1 for the initial value ofX = X0 ≡ 1500. The behavior

of model 2 is almost identical to that of model 1 at early times, as expected (Figure 2 (a)). As

in model 1, the system reaches the quasi-steady state at tst ∼ ∆t/p(X0) ≃ 4∆t. However,

in contrast to model 1, the system does not make a sharp transition to equilibrium at a

well-defined teq, but rather makes a much smoother transition to equilibrium characterized

by (πeq
A , πeq

B , πeq
C ) = (1/3, 1/3, 1/3) and Jeq = 0, as predicted. Further details regarding the

equilibrium distribution for both model 1 and model 2 can be found in Appendix B.

B. General derivation

The discussion above can be generalized to any Markov model that violates detailed

balance. Now there can be more than one cycle in the Markov network, and accordingly more

than one driving agent. All the degrees of freedom for the driving agent are now grouped

and expressed as a vector X, where we regard the components of X to be dimensionless

without loss of generality. For example, in a realistic biochemical cycle, ATP will not simply
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be exhausted, but rather replenished by another biochemical cycle. This biochemical cycle

may be coupled to other chemical cycles, which are ultimately coupled to radiation energy

coming from the sun. Then, the vector X represents the state of all the degrees of freedom

involved in driving the biochemical cycle of interest, including the amount of hydrogen in the

sun. To encompass both discrete-time models and continuous-time models, I will describe a

model in terms of transition rate rather than transition probability, and denote the transition

rates in the extended and reduced models by W(i,X)→(j,Y) and ki→j respectively.

Again, we assume that there is no cycle in the extended model and therefore the detailed

balance is satisfied. We also assume that

F (X, i, j) ≡
∑

Y

W(i,X)→(j,Y) (12)

is a slowly varying function ofX . That is, there is a large number N ≫ 1 such that F (X, i, j)

does not deviate significantly from its initial value F (X0, i, j) if |X| ≪ N :

F (X, i, j) ≃ ki→j ≡ F (X0, i, j) (for |X| ≪ N). (13)

Then, the transition rates of the driven system are obtained by summing over the states of

the driving agent (Appendix A):

w(i → j; t) ≡ ∆t−1(q(i → j; t)− δi,j)

= ∆t−1 1

πi(t)

∑

X,Y

(Pr(i,X, t; j,Y, t+∆t)− Pr(i,X, t; j,Y, t))

=
1

πi(t)

∑

X,Y

Π(i,X)(t)W(i,X)→(j,Y)

≃ ki→j

∑

X
Π(i,X)(t)

πi(t)
≃ ki→j (14)

for t ≪ t1 ≡ N/k, with k being the typical size of ki→j. Again, the summation of X in the

numerator of the last line excludes the states at the boundary of the Markov network, whose

effect is negligible at early times, leading to the final approximation. Although the definition

of the transition rate for discrete-time model has been used, the final result does not depend

on ∆t, and Eq.(14) can be used for both discrete-time and continuous-time models.

From here on, let us refer to the time regime t ≪ t1, where the system can be described

by a time-homogeneous cyclic Markov model without detailed balance, as the cyclic regime.
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III. ENTROPY PRODUCTION

A. Continuous time

The formalism presented in this work clarifies the notion of entropy production [28,

29, 34–39, 46, 47, 54–59] for the case of a Markov process without detailed balance. The

entropy production is connected with time-irreversibility via the fluctuation theorem [40–53]

. For a continuous-time Markov process described by the transition rates ki→j, the entropy

production of the whole closed system has been defined as

Σ ≡
∑

i,j

πi(t)ki→j log

(

πi(t)ki→j

πj(t)kj→i

)

, (15)

where the Boltzmann constant has been set to unity1. This formula for the entropy produc-

tion was originally proposed by Schnakenberg [54], and is widely used nowadays [28, 29, 34–

39, 46, 47, 55–59]. It can be shown that Σ ≥ 0 for any Markov process (Appendix C, D).

The Schnakenberg entropy production Σ is explicitly expressed as the time-derivative of

an entropy in the case of a Markov model that satisfies Kolmogorov’s criterion. From the

detailed balance condition in Eq.(6), we obtain

Σ =
∑

i,j

πi(t)ki→j log

(

πi(t)π
eq
j

πj(t)π
eq
i

)

= −
∑

i,j

(πj(t)kj→i − πi(t)ki→j) log

(

πi(t)

πeq
i

)

= −
∑

i

π̇i(t) log

(

πi(t)

πeq
i

)

= −
d

dt

[

∑

i

πi(t) log

(

πi(t)

πeq
i

)

]

, (16)

where the condition
∑

i π̇i(t) = 0 was used to derive the last line. Therefore, we find that

Σ = Ṡclosed, where

Sclosed = −
∑

i

πi(t) log

(

πi(t)

πeq
i

)

(17)

is the entropy of the whole closed system. It takes the form of the negative of the relative

entropy, also called the Kullback-Leibler divergence [61]. The Kullback-Leibler divergence

1 The base of the log function will be kept arbitrary, because the results do not depend on it.

10



DKL(P ||Q) measures the distance of a probability distribution P (i) from a given distribution

Q(i), which is defined as

DKL(P ||Q) =
∑

i

P (i) log
P (i)

Q(i)
. (18)

Because of the sign flip, Sclosed measures the similarity of the distribution π(t) to πeq
i . There-

fore, we may say that Sclosed is a nondecreasing function of time because π converges to πeq
i as

time proceeds. However, Ṡclosed ≥ 0 even when limt→∞ πi(t) 6= πeq
i (Appendix C). The phys-

ical interpretation of Sclosed is very clear. At the equilibrium, a closed system has an equal

probability to be in each microstate that is consistent with the given constraints [60, 62]

(Appendix H). Consequently, the equilibrium probability πeq
i is proportional to the number

of such microstates corresponding to the state i, denoted as Ωi [60] (Appendix H):

πeq
i ∝ Ωi = BSi , (19)

where Si ≡ log Ωi is the Boltzmann entropy corresponding to the state i, and B is the base

of the log function. From Eq.(19), we have

Sclosed = −
∑

i

πi(t) log πi(t) +
∑

i

πi(t)Si(t) + const. (20)

The first term in Eq.(20), called the Shannon entropy [15, 63], results from the uncertainty

of the slow variable i. The second term, the average Boltzmann entropy, is due to the

uncertainty of the remaining fast degree of freedom that is in instantaneous local equilib-

rium (Appendix H).

For a cyclic Markov model without detailed balance, the entropy in Eq.(17) is still a

nondecreasing function of time (Appendix C). We now denote it as

Scyc ≡ −
∑

i

πi(t) log

(

πi(t)

πst
i

)

, (21)

with πst
i being the stationary distribution without detailed balance. However, Scyc does not

lend itself to a clear physical interpretation as Eq.(20). Furthermore, although the fact that

Σ ≥ 0 remains true regardless of the detailed balance, Σ is no longer equal to Ṡcyc. In fact,

it has been shown that Σ > Ṡcyc[64, 65] in the absence of detailed balance (Appendix D).

No analytic expression for the entropy component, whose time derivative is Σ, has been

constructed so far.

In this section, it will be shown that by embedding the cyclic Markov model into a

larger Markov model with detailed balance that explicitly includes the degrees of freedom
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for the drivers, the Schnakenberg entropy production Σ can be explicitly expressed as a time

derivative of an entropy component under an appropriate condition, justifying its identity

as an entropy production. The total entropy of the extended model is simply obtained from

Eq.(17) by making the replacements πi(t) → Π(i,X)(t) and πeq
i → Πeq

(i,X):

Stot ≡ −
∑

i,X

Π(i,X)(t) log
Π(i,X)(t)

Πeq
(i,X)

. (22)

By performing the decomposition

Π(i,X)(t) = πi(t)Π(X/i)(t), (23)

where πi(t) ≡
∑

X
Π(i,X)(t) is the marginal probability and Π(X/i)(t) ≡ Π(i,X)(t)/πi(t) is the

conditional probability, Stot is now decomposed as

Stot = −
∑

i

πi(t) log πi(t) +
∑

i,X

Π(i,X)(t) logΠ
eq
(i,X) −

∑

i,X

Π(i,X)(t) logΠ(X/i)(t). (24)

The first term, the Shannon entropy of the driven system

Sshan = −
∑

i

πi(t) log πi(t), (25)

results from the uncertainty of the state i of the driven system. The third term, the hidden

entropy

Shid = −
∑

i,X

Π(i,X)(t) logΠ(X/i)(t), (26)

originates from the uncertainty of the driver degrees of freedom X for a given value of i.

Finally, the second term, the average Boltzmann entropy

Sbol =
∑

i,X

Π(i,X)(t) logΠ
eq
(i,X) =

∑

i,X

Π(i,X)(t)S(i,X), (27)

comes from the uncertainty of the remaining fast degrees of freedom for given (i,X). Because

fast degrees of freedom are locally equilibrated, the corresponding indices do not appear

explicitly in Eq.(27) [60](Appendix H).

It is straightforward to show that (Appendix F)

Ṡtot − Ṡhid = Ṡshan + Ṡbol = Σexact (28)

where

Σexact ≡
∑

i,j,X,Y

Π(i,X)(t)W(i,X)→(j,Y) log
πi(t)W(i,X)→(j,Y)

πj(t)W(j,Y)→(i,X)

. (29)
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We now assume that in the cyclic regime where Eq.(13) holds, the ratio

W(i,X)→(j,Y)/W(j,Y)→(i,X) is also determined solely by the indices i and j. That is, we assume

that
W(i,X)→(j,Y)

W(j,Y)→(i,X)

≃ rij, (30)

which can be rewritten as

W(i,X)→(j,Y) = rijW(j,Y)→(i,X). (31)

By summing Eq.(31) over X andY, we get rij = ki→j/kj→i. Therefore, the condition Eq.(30)

can be rewritten as
W(i,X)→(j,Y)

W(j,Y)→(i,X)

≃
ki→j

kj→i
. (32)

Under the conditions Eq.(13) and Eq.(32), Σexact is approximated as

Σexact ≃
∑

i,j,X,Y

Π(i,X)(t)W(i,X)→(j,Y) log
πi(t)ki→j

πj(t)kj→i

=
∑

i,j,X

Π(i,X)(t)F (X, i, j) log
πi(t)ki→j

πj(t)kj→i

≃
∑

i,j

Π(i,X)(t)ki→j log
πi(t)ki→j

πj(t)kj→i

= Σ. (33)

and we get

Ṡtot ≃ Σ + Ṡhid. (34)

The hidden entropy Shid is a newly identified entropy component that cannot be expressed in

terms of the parameters of the reduced model. Hidden entropy production has been discussed

previously[52, 66, 67], but the analytic expression for Shid itself has not been derived up to

the present. I also derived the condition Eq.(32), required in addition to Eq.(13), for the

Schnakenberg entropy production Σ to be equal to Ṡtot − Ṡhid. If these conditions are not

satisfied, then Σ should be replaced by the exact form Σexact in Eq.(29).

B. Discrete time

Even for a discrete Markov jump process, Sclosed and Scyc, defined by Eq. (17) and Eq.

(21) respectively, are nondecreasing functions of time (Appendix C)[68]. The discrete-time
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counterpart of Ṡclosed is (Appendix G):

∆Sclosed

∆t
≡ [Sclosed(t +∆t)− Sclosed(t)]

1

∆t

= ∆t−1
∑

i,j

πi(t)pi→j log

(

πi(t)pi→j

πj(t +∆t)pj→i

)

=
∑

i,j

πi(t)ki→j log

(

πi(t)ki→j

πj(t+∆t)kj→i

)

+∆t−1
∑

i

πi(t) log

(

πi(t)

πi(t +∆t)

)

. (35)

Therefore, it is reasonable to generalize Eq.(35) to a Markov model without detailed balance

and define the Schnakenberg entropy production Σ as

Σ ≡ ∆t−1
∑

i,j

πi(t)pi→j log

(

πi(t)pi→j

πj(t +∆t)pj→i

)

=
∑

i,j

πi(t)ki→j log

(

πi(t)ki→j

πj(t+∆t)kj→i

)

+∆t−1
∑

i

πi(t) log

(

πi(t)

πi(t +∆t)

)

(36)

for the case of a discrete-time model. As in the case of continuous-time models, Σ >

∆Scyc/∆t ≥ 0 for discrete-time models in the absence of detailed balance (Appendix D).

We now define Σexact as

Σexact ≡
∑

i,j,X

Π(i,X)(t)W(i,X)→(j,Y) log
πi(t)W(i,X)→(j,Y)

πj(t +∆t)W(j,Y)→(i,X)

+∆t−1
∑

i

πi(t) log
πi(t)

πi(t+∆t)
, (37)

which is the discrete-time counterpart of Eq.(29). It is then straightforward to show

that (Appendix F)

Σexact =
∆Stot

∆t
−

∆Shid

∆t
=

∆Sshan

∆t
+

∆Sbol

∆t
, (38)

with the same definitions of Stot, Shid, Sshan, and Sbol (Eqs.(22),(26),(25), and (27)) as in

the case of continuous time.

In the regime where the conditions Eq.(13) and Eq.(32) are satisfied, we have

Σexact ≃
∑

i,j

πi(t)ki→j log
πi(t)ki→j

πj(t+∆t)kj→i

+ ∆t−1
∑

i

πi(t) log
πi(t)

πi(t +∆t)

= Σ, (39)

and therefore
∆Stot

∆t
≃ Σ +

∆Shid

∆t
. (40)
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C. Examples with Σexact ≃ Σ

Eq.(13) and Eq.(32) are the crucial assumptions for Σexact = Ṡtot−Ṡhid to be approximated

by the Schnakenberg entropy production Σ. We discuss a couple of examples where these

two conditions are satisfied.

First, let us assume that the change of X, ∆X, is uniquely determined by the states of

the driven system before and after the transition. We write this as ∆X(i → j), where i and

j denote the states before and after the transition, respectively. Then, the transition rate

takes the form

W(i,X)→(j,Y) = g(i → j;X)δ(Y −X,∆X(i → j)). (41)

We also assume that

∆X(i → j) = −∆X(j → i). (42)

The transition rates in the example considered earlier, namely the ATP-driven biochemical

cycle with a fixed total number of ATP and ADP, takes the form of Eq. (41) with Eq. (42).

If g(i → j;X) is a slowly-varying function, then

W(i,X)→(j,Y) ≃ ki→jδ(Y −X,∆X(i → j)) (43)

at early times. It is easy to see that Eq. (43) and Eq. (42) imply that both Eq. (13) and

Eq. (32) hold.

The change of X for a given transition i → j does not have to be unique in order for the

conditions in Eq. (13) and Eq. (32) to hold. For example, let us say that the number of

driver molecules consumed for the transitions C → A and A → C in the three-state model

considered earlier are not unique. Then, the transition rates take the form W(C,X)→(A,X−1) =

k1X, W(A,X−1)→(C,X) = k̃1(N −X + 1), W(C,X)→(A,X−2) = k2X
2, W(C,X−2)→(A,X) = k̃2(N −

X+2)2, · · · , where X is the number of ATP molecules, and N is the total combined number

of ATP and ADP molecules. Eq. (13) holds at early times because X does not deviate

significantly from its initial value. Eq. (32) is also satisfied if k1/k̃1 = k2/k̃2 · · · , because

X ≫ 1 at early times.
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D. Housekeeping entropy

In a cyclic Markov model without detailed balance, the entropy defined in terms of the

nonequilibrium steady state,

Scyc ≡ −
∑

i

πi(t) log
πi(t)

πst
i

, (44)

is often considered, which increases with time as explained earlier. This motivates us to

perform an alternative decomposition

Stot = −
∑

i

πi(t) log
πi(t)

πst
i

+
∑

i,X

Π(i,X)(t) log
Πeq

(i,X)

πst
i

−
∑

i,X

Π(i,X)(t) logΠ(X/i)(t)

= Scyc + Shk + Shid, (45)

where we now define the housekeeping entropy Shk as

Shk ≡
∑

i,X

Π(i,X)(t) log
Πeq

(i,X)

πst
i

. (46)

It is easy to see the equivalence of Eq. (45) to Eq. (24), because πst
i in the first and the

second terms of Eq. (45) cancel with each other, leading to Eq. (24). We then see that

Σexact − Ṡcyc = Ṡhk (47)

for a continuous-time model. In the regime where Eq. (13) and Eq. (32) are valid, we get

Σ− Ṡcyc ≃ Ṡhk. (48)

It has been argued that even after the steady-state has been reached in a cyclic Markov

model, where Ṡcyc ≃ 0, heat should be constantly generated in order to maintain the steady

state, called the housekeeping heat [64, 65, 69–71]. Clearly, the generation of such heat is

proportional to the production of an entropy component. Eq. (46) is the analytic formula

for this entropy component, and was accordingly termed the house-keeping entropy. Details

on the relations between Shk and the housekeeping heat are given in Appendices I and J.

Both Scyc and Shk are expressed in terms of the relative entropy, and we see that Scyc

in Eq. (44) measures the similarity of the distribution π(t) to the quasi-steady state πst
i .

Also, we see that Shk in Eq. (46) measures the tendency of Π(i,X) to move away from the

quasi-steady state and approach the true equilibrium Πeq
(i,X).
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Note that from the viewpoint of the extended model, πst
i is just a quasi-steady state.

Therefore, in contrast to equilibrium distribution Πeq
(i,X) ∝ Ω(i,X), which is expressed in

terms of the number of microstates Ω(i,X) for a given (i,X), the quasi-steady state πst
i is

just an artefact of the dynamics, and does not seem to have a microscopic interpretation as

in the case of Πeq
(i,X). Because the alternative decomposition in Eq. (45) is defined in terms

of πst
i , Scyc and Shk do not lend themselves to clear interpretations as uncertainties of some

degrees of freedom, in contrast to Sshan and Sbol. Although we considered a continuous-time

model in this section, all of the results given here are valid for a discrete-time model if we

make the replacements Ṡcyc → ∆Scyc/∆t and Ṡhk → ∆Shk/∆t. The explicit connections of

Shk and Shid to the quantities considered in previous literature are provided in Appendices

I, J, and K.

E. Behavior of various entropy components

Let us summarize the general behavior of various entropy components. We will use the

notation for the continuous-time Markov process. The result for the discrete-time Markov

process is obtained by simply replacing Ṡ with ∆S/∆t. We assume that the condition

Eq.(32) holds in the cyclic regime so that Σexact ≃ Σ. From the results in the literature

for cyclic models[35, 64, 65, 68], we already know that Ṡcyc ≥ 0 and Σ − Ṡcyc ≥ 0 in the

cyclic regime, and therefore Ṡhk ≥ 0 (Appendix C, D). Once the system reaches the quasi-

steady state, Ṡcyc ≃ 0. By embedding the cyclic Markov model into a larger model, it can

be shown that Ṡhid ≥ 0 in the cyclic regime (Appendix E). During the transition from the

quasi-steady state to true equilibrium, we have Ṡcyc ≤ 0, because the distribution diverges

from the quasi-steady state. However, we have Ṡhk + Ṡhid ≥ 0 because Ṡtot ≥ 0. All entropy

components will reach constant values after the system reaches equilibrium. Various entropy

components for the previous cyclic three-state discrete-time Markov jump process are shown

in Figure 3, where this general behavior is confirmed.

IV. CONCLUSION

It has been shown that for any time-homogeneous Markov process that violates Kol-

mogorov’s criterion, one can always find a larger Markov process that satisfies the criterion,
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where the degrees of freedom X for the driving agent are explicitly included. The original

Markov model is then recovered as an approximation at early times after eliminating X.

The nonequilibrium steady state of the original model is then found to be a quasi-steady

state.

An important contribution of the current work is that by extending the cyclic model to a

model with detailed balance, we indeed find analytic expressions for Shk and Shid that satisfy

Ṡhk = Σ− Ṡcyc and Ṡhid = Ṡtot−Σ in the cyclic regime. Here, Shk itself cannot be expressed

with parameters in the cyclic Markov model, but its derivative Σ− Ṡcyc can. Furthermore,

neither Shid nor its derivative can be expressed with parameters of the cyclic Markov model.

That is, they are completely hidden in the cyclic Markov model description.

The current formalism is very general and can be applied to any closed system. Such a

closed system includes, but is not limited to, an open system and an infinitely large heat

bath in contact with each other (Appendix I). Although we assumed that the state index i

is discrete in this work, the extension of the current formalism to a Markov process with a

continuous index such as Langevin dynamics [46, 47, 70, 71, 73], is straightforward (Appendix

J). Note that the construction of the extended system is by no means unique. The situation

is analogous to that of the canonical ensemble of an equilibrium system, where the properties

of the system depend only on the temperature of the heat bath and microscopic details of

the bath are arbitrary.
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Appendix A: Definition of transition rate for a general dynamic system

In any stochastic process with discrete time, the transition probability q(i → j; t) is

defined as the conditional probability that the state of the system is j at time t+∆t, given

that the state is i at time t:

q(i → j; t) ≡
Pr(i, t; j, t +∆t)

π(i, t)
(A1)

where πi(t) is the probability that the state of the system is i at time t, and Pr(i, t; j, t′)

is the joint probability that the state of the system is i at time t and j at time t′. By

multiplying both sides of Eq.(A1) by πi(t) and summing over i, we obtain

∑

i

πi(t)q(i → j; t) =
∑

i

Pr(i, t; j, t+∆t) = πj(t+∆t). (A2)

Note that for a general non-Markov process, the transition probability q(i → j; t) is not a

time-independent constant, and its value may depend on the previous history of the system.

Only for the special case when q(i → j; t) is a time-independent constant pi→j do we recover

the dynamical equation for a time-homogeneous Markov jump process, Eq.(1).

Analogous to the procedure in the Markov model, the transition rate w(i → j; t) is also
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defined as

w(i → j; t) ≡ (∆t)−1(q(i → j; t)− δi,j) (A3)

and Eq.(A2) can be rewritten as

∆πi(t)

∆t
=
∑

j

πj(t)w(j → i; t). (A4)

Note that by substituting Eq.(A1) into Eq.(A3), the transition rate w(i → j, t) can be

written as

w(i → j; t) = (∆t)−1

(

Pr(i, t; j, t +∆t)

π(i, t)
− δi,j

)

= (∆t)−1Pr(i, t; j, t+∆t)− δi,jπ(i, t)

π(i, t)

= (∆t)−1Pr(i, t; j, t +∆t)− Pr(i, t; j, t)

πi(t)
. (A5)

where we used the fact that Pr(i, t; j, t) = δi,jπi(t).

A stochastic process with continuous time is obtained from a discrete-time model by

taking the limit of ∆t → 0. Then, Eq.(A4) reduces to

π̇i(t) =
∑

j

πj(t)w(j → i; t), (A6)

where Eq.(A5) now becomes

w(i → j; t) =
1

πi(t)

d

dt′
Pr(i, t; j, t′)|t′=t. (A7)

Again, the transition rate w(j → i; t) may in general depend on the previous history of

the system. In the special case that w(j → i; t) is a time-independent constant ki→j, we

recover the time-homogeneous master equation Eq.(4).

Appendix B: Analytic form of the equilibrium solution of the extended three-state

model

Here, the analytic form of the equilibrium distribution of the extended three-state model

(Fig.1(b,c)) is presented. By defining X as a serial coordinate labelling the states of the

extended model (Fig 1(b)), we obtain a simple relation between the label i of the driven

system and X :

i = X mod 3, (B1)
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where i = 1, 0, 2 correspond to the states A,B,C, if we assume that the driven system is at

state B for X = 0. Because i is uniquely determined by X , we will write the equilibrium

distribution Πeq
i,X simply as Πeq

X . The equilibrium distribution of model 1 can be obtained

analytically using the following detailed balance conditions:

Πeq
3m+1a = Πeq

3mα

Πeq
3m+2c = Πeq

3m+1γ

Πeq
3m+3b = Πeq

3m+2β, (B2)

where m is an integer. Because the network topology is linear, one can use Eq.(B2) as a

recursion relation in order to express Πeq
X in terms of the state Πeq

0 :

Πeq
3m =

(

αβγ

abc

)m

Πeq
0

Πeq
3m+1 =

(

αβγ

abc

)m
α

a
Πeq

0

Πeq
3m+2 =

(

αβγ

abc

)m
γα

ca
Πeq

0 . (B3)

The constant Πeq
0 is obtained from the normalization condition

∑N
X=0Π

eq
X = 1 as

Πeq
0 =

[

(1−
(

αβγ
abc

)N/3
)(1 + α

a
+ γα

ca
)

1−
(

αβγ
abc

) +

(

αβγ

abc

)N/3
]−1

, (B4)

where the formula for the summation of the geometric series was used.

For model 2, the detailed balance condition is the same as in Eq.(B2) except that the

second line of Eq.(B2)is modified to

Πeq
3m+2c(m+ 1) = Πeq

3m+1γ(N/3−m). (B5)

The solution of the recurrence relation is now

Πeq
3m =

(

αβγ

abc

)m
(N/3)!

m!(N/3−m)!
Πeq

0

Πeq
3m+1 =

(

αβγ

abc

)m
α

a

(N/3)!

m!(N/3 −m)!
Πeq

0

Πeq
3m+2 =

(

αβγ

abc

)m+1
b

β

(N/3)!

(m+ 1)!(N/3−m− 1)!
Πeq

0 . (B6)

Again, the constant Πeq
0 is obtained from the normalization condition

∑N
X=0Π

eq
X = 1 as

Πeq
0 =

[

(

1 +
αβγ

abc

)N/3(

1 +
α

a
+

b

β

)

−

(

αβγ

abc

)N/3
α

a
−

b

β

]−1

, (B7)
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where the formula for the binomial expansion was used.

The equilibrium distribution is shown in log scale as a function of X in Figure 4, where

the parameters were set to the values used in the numerical computation. As expected, Πeq
X

for model 1 is a decreasing function of X , because the rate for X → X + 1 is always less

than that for X+1 → X . In contrast, this is not the case for model 2, where Πeq
X has a peak

around X = 1000. This is because for small X , the small number of ATP discourages the

forward reaction X +1 → X , and the large number of ADP encourages the reverse reaction

X → X + 1, pushing the system away from X = 0.

The equilibrium probability distribution πeq
i for model 1 can be obtained by summing the

expressions in (B3) over m. The summation range is 0 ≤ m ≤ N for Πeq
3m and 0 ≤ m ≤ N−1

for the others. However, for the parameter values used in the numerical computation, we

have (αβγ/abc)N/3 = (1/2)1000, which is negligible for all practical purposes. Therefore,
∑N/3

m=0(αβγ/abc)
m ≃

∑N/3−1
m=0 (αβγ/abc)m, and we get πeq

0 : πeq
1 : πeq

2 = 1 : α/a : γα/ca = 1 :

1 : 0.5, leading to (πeq
A , πeq

B , πeq
C ) = (2/5, 2/5, 1/5). Similarly, πeq

i for model 2 is obtained by

summing the expressions in (B6) over m, and we get πeq
0 : πeq

1 : πeq
2 = 1 : α/a : b/β = 1 : 1 : 1,

leading to (πeq
A , πeq

B , πeq
C ) = (1/3, 1/3, 1/3). One can check that πi(t) indeed converges to πeq

i

at late times of the simulation, both for model 1 and model 2 (Figure 2 (b),(c)).

Appendix C: Proof of Scyc/∆t ≥ 0 or Ṡcyc ≥ 0

We prove that the relative entropy

Scyc ≡ −
∑

i

πi(t) log

(

πi(t)

πst
i

)

(C1)

is a non-decreasing function of time, where πst
i the stationary distribution. Regarding the

special case of a Markov model with detailed balance, πst
i is the equilibrium distribution πeq

i ,

and Scyc is denoted as Sclosed. The proof for the discrete-time case has been provided by

Morimoto [68], which is reproduced below. First, note the definition of a convex function

φ(x), which states that

aφ(x1) + (1− a)φ(x2) ≥ φ(ax1 + (1− a)x2) (C2)
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for any combination of x1, x2, and a with 0 ≤ a ≤ 1. As an immediate consequence, for any

nonnegative numbers aj with
∑

j

aj = 1, (C3)

we have
∑

j

ajφ(xj) ≥ φ(
∑

j

ajxj). (C4)

The nonnegative quantities defined by aj ≡
πst
j pj→i

πst
i

satisfy the normalization condition in

Eq.(C3) due to the balance condition in Eq.(5). Therefore, by setting xj = πj(t)/π
st
j , we

obtain
∑

j

πst
j pj→i

πst
i

φ

(

πj(t)

πst
j

)

≥ φ

(

∑

j

πj(t)pj→i

πst
i

)

= φ

(

πi(t +∆t)

πst
i

)

. (C5)

Multiplying both sides of Eq.(C5) by πst
i and summing over i, we obtain

∑

i,j

πst
j pj→iφ

(

πj(t)

πst
j

)

=
∑

j

πst
j φ

(

πj(t)

πst
j

)

≥
∑

i

πst
i φ

(

πi(t +∆t)

πst
i

)

. (C6)

Introducing the convex function φ(x) = x log x into Eq.(C6), we now have

∑

j

πj(t) log

(

πj(t)

πst
j

)

≥
∑

i

πi(t +∆t) log

(

πi(t+∆t)

πst
i

)

, (C7)

from which we obtain
∆Scyc

∆t
≥ 0. (C8)

The proof of Ṡcyc ≥ 0 for a continuous-time model follows straightforwardly from Eq.(C8)

by taking the limit ∆t → 0. Nevertheless, a direct derivation is also presented for the sake

of completeness. Note that

Ṡcyc = −
∑

i

π̇i(t) log

(

πi(t)

πst
i

)

=
∑

i,j

(πi(t)ki→j − πj(t)kj→i) log

(

πi(t)

πst
i

)

= −
∑

i,j

πj(t)kj→i log

(

πi(t)π
st
j

πj(t)π
st
i

)

. (C9)

Now we use the fact that

− lnx ≥ 1− x (C10)
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to obtain

Ṡcyc ≥
∑

i,j

πj(t)kj→i

[

1−
πi(t)π

st
j

πj(t)πst
i

]

× const.

=

[

∑

i,j

πj(t)kj→i −
∑

i

πi(t)

πst
i

∑

j

πst
j kj→i

]

× const.

=
∑

i

π̇i(t)× const. = 0. (C11)

Since Scyc has the form of a negative relative entropy, which measures the similarity of

the distribution πi(t) to πst
i , the result here tells us that π becomes more similar to πst

i as

time proceeds. Note that only the balance condition for πst
i was used in the derivation.

Therefore, the result holds even for the case where πi(t) does not converge to πst
i . The result

here can be considered a consequence of a detailed fluctuation theorem [49].

Appendix D: Proof of Σ ≥ Scyc/∆t or Σ ≥ Ṡcyc

Here we show that the Schnakenberg entropy production Σ, defined by Eq.(15) and

Eq.(36) for continuous-time and discrete-time Markov models, respectively, is not less than

the increase of Scyc with time. Regarding discrete time, by using the definition of Σ in

Eq.(36) and the expression for ∆Scyc/∆t in Eq.(G3), we have

Σ−
∆Scyc

∆t
=
∑

i,j

πi(t)ki→j log

(

πi(t)ki→j

πj(t+∆t)kj→i

)

−
∑

i,j

πi(t)ki→j log

(

πi(t)π
st
j

πj(t+∆t)πst
i

)

= −
∑

i,j

πi(t)ki→j log

(

πst
j kj→i

πst
i ki→j

)

. (D1)

Note that ∆t disappears in Eq.(D1). Therefore, the expression for Σ− Ṡcyc in the continuum

model is also given by Eq.(D1). Using Eq.(C10), we obtain

Σ−
∆Scyc

∆t
≥
∑

i,j

[

πi(t)ki→j −
πi(t)π

st
j kj→i

πst
i

]

× constant

=
∑

j

∆πj(t)

∆t
= 0. (D2)

This also shows that Σ− Ṡcyc ≥ 0 in a continuous-time model[64]. Therefore, combining the

result with that in Appendix C, we have proved that

Σ ≥
Scyc

∆t
≥ 0 (D3)
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for a discrete-time model, and

Σ ≥ Ṡcyc ≥ 0 (D4)

for a continuous-time model. These results can be considered a consequence of a detailed

fluctuation theorem[49]. The explicit connections between the production of entropy com-

ponents defined in this work, and those in ref.[49], are given in appendix K.

Appendix E: Proof of ∆Shid/∆t ≥ 0 or Ṡhid ≥ 0 in the cyclic regime

We prove that the hidden entropy production is nonnegative in the cyclic regime[35, 52,

66, 67]. An important contribution of the current work is that the hidden entropy production

can be explicitly expressed as Ṡhid with Shid having an analytic expression constructed from

the probability distributions of the extended model. Regarding the extended model with

discrete time, we construct the quantity

Σ̃ ≡ ∆t−1
∑

i,j

πi(t)q(i → j; t) log

(

πi(t)q(i → j; t)

πj(t+∆t)q(j → i; t+∆t)

)

, (E1)

where q(i → j; t) ≡ δi,j + w(i → j; t)∆t is the time-dependent transition probability of the

reduced model, with w(i → j; t) being the time-dependent transition rate. Note that Σ̃ is

reduced to Σ in the cyclic regime where w(i → j; t) ≃ ki→j.

Now, we define a two-variable function φ(x, y) ≡ x ln(x/y). This function is convex in

the range 0 ≤ x, y ≤ 1, implying that

φ(
∑

β

aβxβ,
∑

γ

aγyγ) ≤
∑

β

aβφ(xβ, yβ) (E2)

for any values of 0 ≤ xβ , yβ ≤ 1 and 0 ≤ aβ ≤ 1 with
∑

β aβ = 1. The convexity of φ(x, y)

can be shown by utilizing the fact that a multivariate function is convex if and only if its

Hessian matrix is positive semidefinite. In fact, we find that the Hessian matrix H(x, y) is

H(x, y) ≡





∂2φ(x,y)
∂x2

∂2φ(x,y)
∂x∂y

∂2φ(x,y)
∂y∂x

∂2φ(x,y)
∂y2



 =





1
x

− 1
y

− 1
y

x
y2



 , (E3)

whose eigenvalues are λ1 = 0 and λ2 = x/y2 + 1/x, both of which are nonnegative for

0 ≤ x, y ≤ 1.

For a given pair of indices i and j of the reduced Markov model, we now use β = (X,Y),

xβ = Π(i,X)(t)P(i,X→j,Y), yβ = Π(j,Y)(t + ∆t)P(j,Y→i,X) with P(i,X→j,Y) ≡ W(i,X→j,Y)∆t +
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δi,jδX,Y, and aβ = 1/(ninj) with ni denoting the total number of X values corresponding to

i. The left-hand side of Eq.(E2) then becomes

φ(
∑

β

aβxβ ,
∑

γ

aγyγ) = φ(
∑

X,Y

Π(i,X)(t)P(i,X→j,Y)/ninj,
∑

X̃,Ỹ

Π(j,Ỹ)(t +∆t)P(j,Ỹ→i,X̃)/ninj)

= φ(πi(t)q(i → j; t)/ninj , πj(t+∆t)q(j → i; t +∆t)/ninj)

=
1

ninj

πi(t)q(i → j; t) ln
πi(t)q(i → j; t)

πj(t+∆t)q(j → i; t +∆t)
, (E4)

and the right-hand side of Eq.(E2) becomes

∑

β

aβφ(xβ, yβ) =
∑

X,Y

1

ninj

φ(Π(i,X)(t)P(i,X→j,Y),Π(j,Y)(t +∆t)P(j,Y→i,X))

=
1

ninj

∑

X,Y

Π(i,X)(t)P(i,X→j,Y) ln
Π(i,X)(t)P(i,X→j,Y)

Π(j,Y)(t+∆t)P(j,Y→i,X)

. (E5)

Therefore, using the inequality Eq.(E2) and summing over i and j, we get

Σ̃ ≤
∆Stot

∆t
. (E6)

The continuous counterpart of Eq.(E6),

Σ̃ ≡
∑

i,j

πi(t)w(i → j; t) log

(

πi(t)w(i → j; t)

πj(t)w(j → i; t)

)

≤ Ṡtot, (E7)

is obtained straightforwardly by taking the limit ∆t → 0 of Eq.(E6), which has also been

derived directly [35]. The discrete generalization Eq.(E6) is a new contribution of the current

work.

In the cyclic regime, we have

∆Shid

∆t
=

∆Stot

∆t
− Σexact ≃

∆Stot

∆t
− Σ ≃

∆Stot

∆t
− Σ̃ ≥ 0 (E8)

for the discrete-time model and

Ṡhid = Ṡtot − Σexact ≃ Ṡtot − Σ ≃ Ṡtot − Σ̃ ≥ 0 (E9)

for the continuous-time model, where the first approximation in each of these equations is

valid if Eq.(32) is satisfied.

Note that Eq.(E6) or Eq.(E7) is an exact result that hold without the conditions Eq.(13)

and Eq.(32), which is a consequence of an integral fluctuation theorem [52]. This leads

to an alternative definition of the hidden entropy, S̃hid(t) ≡ Stot −
∫ t

0
Σ̃(t′)dt′ (continuous

time) or S̃hid ≡ Stot − ∆t
∑n

j=0 Σ̃(j∆t) (discrete time). We then have ˙̃Shid = Ṡtot − Σ̃

(continuous time) or ∆S̃hid/∆t = ∆Stot/∆t− Σ̃ (discrete time). However, it does not seem

straightforward to find an analytic expression for S̃hid(t).
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Appendix F: Derivation of ∆Stot/∆t−∆Shid/∆t = Σexact (Eq.(38)) or Ṡtot−Ṡhid = Σexact

(Eq.(28))

By applying Eq.(35) to the extended model, we have

∆Stot

∆t
=

∑

i,j,X,Y

Π(i,X)(t)W(i,X)→(j,Y) log
Π(i,X)(t)W(i,X)→(j,Y)

Π(j,Y)(t+∆t)W(j,Y)→(i,X)

+ ∆t−1
∑

i,X

Π(i,X)(t) log
Πi,X(t)

Πi,X(t +∆t)
(F1)

for the discrete-time Markov model. By performing the decomposition Π(i,X)(t) ≡

πi(t)Π(X/i)(t), Eq.(F1) is rewritten as

∆Stot

∆t
=
∑

i,j,X

Π(i,X)(t)W(i,X)→(j,Y) log
πi(t)W(i,X)→(j,Y)

πj(t +∆t)W(j,Y)→(i,X)

+
∑

i,j,X,Y

Π(i,X)(t)W(i,X)→(j,Y) log
Π(X/i)(t)

Π(Y/j)(t+∆t)

+∆t−1
∑

i

πi(t) log
πi(t)

πi(t+∆t)

+∆t−1
∑

i,X

Π(i,X)(t) log
ΠX/i(t)

ΠX/i(t+∆t)

= Σexact +
∑

i,j,X,Y

Π(i,X)(t)W(i,X)→(j,Y) log
Π(X/i)(t)

Π(Y/j)(t+∆t)

+∆t−1
∑

i,X

Π(i,X)(t) log
ΠX/i(t)

ΠX/i(t+∆t)

= Σexact −
∑

i,j,X,Y

Π(i,X)(t)W(i,X)→(j,Y) logΠ(Y/j)(t+∆t)

+∆t−1
∑

i,X

Π(i,X)(t) log
ΠX/i(t)

ΠX/i(t+∆t)
, (F2)

where we used
∑

j,Y W(i,X)→(j,Y) = 0 to derive the last line, and Σexact for the discrete-time

model is defined as

Σexact ≡
∑

i,j,X

Π(i,X)(t)W(i,X)→(j,Y) log
πi(t)W(i,X)→(j,Y)

πj(t+∆t)W(j,Y)→(i,X)

+∆t−1
∑

i

πi(t) log
πi(t)

πi(t+∆t)
.

(F3)

Now, using the definition of the hidden entropy,

Shid ≡ −
∑

i,X

Π(i,X)(t) log Π(X/i)(t), (F4)
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we obtain

∆Shid = −
∑

i,X

Π(i,X)(t+∆t) log Π(X/i)(t+∆t) +
∑

i,X

Π(i,X)(t) log Π(X/i)(t)

= −
∑

i,X

Π(i,X)(t+∆t) log Π(X/i)(t+∆t) +
∑

i,X

Π(i,X)(t) log Π(X/i)(t +∆t)

−
∑

i,X

Π(i,X)(t) logΠ(X/i)(t+∆t) +
∑

i,X

Π(i,X)(t) logΠ(X/i)(t)

= −
∑

i,X

∆Π(i,X)(t) log Π(X/i)(t +∆t)

+
∑

i,X

Π(i,X)(t) log
Π(X/i)(t)

Π(X/i)(t +∆t)

= −∆t
∑

i,j,X,Y

Π(j,Y)(t)W(j,Y)→(i,X) log Π(X/i)(t+∆t)

+
∑

i,X

Π(i,X)(t) log
Π(X/i)(t)

Π(X/i)(t +∆t)
. (F5)

From Eq.(F2) and Eq.(F5), we see that

∆Stot

∆t
= Σexact +

∆Shid

∆t
. (F6)

for the discrete-time model.

The result for the continuous time model,

Ṡtot = Σexact + Ṡhid, (F7)

is obtained by taking the limit ∆t → 0 in Eq.(F6), where we now have

Σexact ≡
∑

i,j,X,Y

Π(i,X)(t)W(i,X)→(j,Y) log
πi(t)W(i,X)→(j,Y)

πj(t)W(j,Y)→(i,X)

, (F8)

for the continuous-time model.
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Appendix G: Derivation of expressions for ∆Scyc/∆t and ∆Sclosed/∆t (Eq.(35))

We have

∆Sclosed

∆t
≡ [Sclosed(t+∆t)− Sclosed(t)]

1

∆t

= −
∑

i

πi(t+∆t)

∆t
log

(

πi(t +∆t)

πeq
i

)

+
∑

i

πi(t)

∆t
log

(

πi(t)

πeq
i

)

= −
∑

i

πi(t+∆t)

∆t
log

(

πi(t +∆t)

πeq
i

)

+
∑

i

πi(t+∆t)

∆t
log

(

πi(t)

πeq
i

)

−
∑

i

πi(t+∆t)

∆t
log

(

πi(t)

πeq
i

)

+
∑

i

πi(t)

∆t
log

(

πi(t)

πeq
i

)

= ∆t−1
∑

i

πi(t+∆t) log

(

πi(t)

πi(t +∆t)

)

−
∑

i

∆πi(t)

∆t
log

(

πi(t)

πeq
i

)

= −
∑

i,j

πj(t)kj→i log

(

πi(t)

πeq
i

)

+∆t−1
∑

i

πi(t+∆t) log

(

πi(t)

πi(t +∆t)

)

= −∆t−1
∑

i,j

(πj(t)pj→i − πi(t)pi→j) log

(

πi(t)

πeq
i

)

+∆t−1
∑

i,j

πj(t)pj→i log

(

πi(t)

πi(t+∆t)

)

= −∆t−1
∑

i,j

πj(t)pj→i log

(

πi(t)π
eq
j

πj(t)π
eq
i

)

−∆t−1
∑

i,j

πj(t)pj→i log

(

πi(t +∆t)

πi(t)

)

= −∆t−1
∑

i,j

πj(t)pj→i log

(

πi(t+∆t)πeq
j

πj(t)π
eq
i

)

. (G1)

By using detailed balance condition, we can rewrite Eq.(G1) as

∆Sclosed

∆t
= ∆t−1

∑

i,j

πj(t)pj→i log

(

πj(t)pj→i

πi(t+∆t)pi→j

)

=
∑

i,j

πj(t)kj→i log

(

πj(t)kj→i

πi(t+∆t)ki→j

)

+∆t−1
∑

i

πi(t) log

(

πi(t)

πi(t+∆t)

)

.(G2)
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Note that Eq.(G1) is valid even for the model without detailed balance, with the change of

notation Sclosed → Scyc and πeq
i → πst

i :

∆Scyc

∆t
= −∆t−1

∑

i,j

πj(t)pj→i log

(

πi(t +∆t)πst
j

πj(t)πst
i

)

= −
∑

i,j

πj(t)kj→i log

(

πi(t +∆t)πst
j

πj(t)π
st
i

)

−∆t−1
∑

i

πi(t) log

(

πi(t+∆t)

πi(t)

)

. (G3)

Appendix H: Coarse-graining of Shannon entropy

We assume that c labels a macrostate, which is an aggregate of microstates, and that

an additional index α = 1, · · ·Ωc is required to completely specify a microstate. Then the

Shannon entropy of the closed system is

Sshan = −
∑

c

Ωc
∑

α=1

p(c, α)(t) log p(c, α)(t). (H1)

where p(c, α)(t) is the probability that the system is at the microstate (c, α) at time t.

Now we assume that the microstates for given c are at local equilibrium, meaning that
∑Ωc

α=1 p(c, α) log p(c, α) is maximized for each c. Thus, c is a slow variable and α is a

fast variable. We first make decomposition p(c, α) = Pcpα/c where Pc ≡
∑

α p(c, α) and

pα/c ≡ p(c, α)/Pc are the marginal and the conditional probabilities, respectively. Then

Sshan is rewritten as [60]

Sshan = −
∑

c

Pc logPc −
∑

c

Pc

Ωc
∑

α=1

pα/c log pα/c. (H2)

To obtain local equilibrium, Eq.(H2) is maximized with respect to pc/α, under the normal-

ization constraint
Ωc
∑

α=1

pα/c = 1, (H3)

treating Pc as a constant.

Introducing the Lagrange multiplier λc for the constraint Eq.(H3), we take the derivative
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of the target function2

F (pα/c) ≡ −
∑

c

Pc logPc −
∑

c

Pc

Ωc
∑

α=1

pα/c log pα/c +
∑

c

λc

Ωc
∑

α=1

pα/c, (H4)

with respect to pα/c and set it to zero [60]:

∂F

∂pα/c
= −Pc(1 + ln pα/c)(lnB)−1 + λc = 0, (H5)

leading to

pα/c = exp(λc lnB/Pc − 1), (H6)

where B is the base of the log function. The second derivative of F (pα/c) is

∂2F

∂pα/c∂pβ/c
= −

Pc

pα/c
(lnB)−1δα,β ≤ 0, (H7)

implying that the solution Eq.(H6) is the maximum rather than the minimum or extremum.

The Lagrange multiplier λc is obtained by the normalization constraint Eq.(H3), so that

pα/c = Ω−1
c . (H8)

That is, all the microstates for given macrostate state c are occupied with equal probability.

Substituting Eq.(H8) into Eq.(H2), we get [60]

Sclosed = −
∑

c

Pc logPc +
∑

c

PcSc + constant, (H9)

where Sclosed is the entropy of the closed system at local equilibrium. Note that now the fast

variable α does not explicitly appear in Sclosed. The equilibrium distribution over the slow

variable c is now obtained by maximizing Sclosed with respect to Pc, under the normalization

constraint
∑

c Pc = 1, which is

P eq
c ∝ Ωc. (H10)

The equilibrium distribution P eq
c reduces to the Boltzmann distribution in the special case

when number of fast degrees of freedom per energy is effectively infinite (See Appendix I).

From Eq.(H8) and Eq.(H10), we also get

peq(c, α) ∝ ΩcΩ
−1
c = constant, (H11)

the well-known result that at the equilibrium, all the microstates of the closed system con-

sistent with given constraints are occupied with equal probabilities [60, 62].

2 We assume that the summation range of (c, α) in Eq.(H1) goes only over the states that satisfy appropriate

constraints, such as those on the values of conserved quantities, so that the Lagrange multipliers for these

additional constraints do not have to be introduced explicitly.
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Appendix I: Open system

The Markov model of an open system, often discussed in the literature [46, 47, 64, 65,

70, 71], constitutes a special case of the Markov model presented in the current work, whose

details are given below. First, it is assumed that the total energy Eclosed of the closed system

is additive:

Eclosed
c,α = Eslow

c + Efast
α , (I1)

where, following the notation of Appendix H, c and α denote the slow and fast variables,

respectively. Second, it is assumed that for given values of Eslow
c = E1 and Efast

α = E2, the

total number of microstates g(E1, E2) is multiplicative:

g(E1, E2) = gslow(E1)× gfast(E2), (I2)

where gslow(E1) (gfast(E2)) is the number of states with energy E1 (E2) that the slow (fast)

variable can take. Finally, it is assumed that the number of fast degree of freedom is

effectively infinite for a given energy value so that its temperature,

T ≡

(

d

dE2
log gfast(E2)

)−1

(I3)

can be regarded as a constant. In this case, we call the fast variables as a heat bath of

temperature T , and we call the slow variables an open system in contact with the heat bath.

The equilibrium distribution in Eq.(H10) now reduces to the Boltzmann distribution:

P eq
c ∝ Ωc = g(Eclose − Ec) ≃ B−Ec/T × constant, (I4)

where B is the base of the log function. Using Eq.(I4), the total entropy of the closed system

in Eq.(20) is now rewritten as

Sclosed = −F/T + constant, (I5)

where

F ≡
∑

c

πcEc − T
∑

c

πc(t) log πc(t), (I6)

is a free energy that is well defined even out of equilibrium [65, 72]. Therefore, the entropy

production can also be called the free energy reduction.
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After decomposing the slow degrees of freedom into those of the driver and the driven

system, c = (i,X), Eq.(I6) is rewritten as

F = −TSbol − TSshan − TShid, (I7)

where the definitions of Sshan and Shid are unchanged from those in the general case, Eq.(25)

and Eq.(26), but Sbol is now rewritten as

Sbol =
∑

(i,X)

Π(i,X) log Ω(i,X) ≃ −
∑

(i,X)

Π(i,X)E(i,X)/T + constant. (I8)

As in the general case, the free energy excluding the contribution from the driver degrees of

freedom, F̃ ≡ F +TShid, is often considered. From the general result, we already know that

TΣ ≃ − ˙̃F = T Ṡshan + T Ṡbol (I9)

in the cyclic regime where the conditions Eq.(13) and Eq.(32) hold. Because fast and slow

variables are considered to represent the system and the bath, respectively, Ṡbol gives the

production of entropy in the bath. Therefore,

qtot ≡ T Ṡbol ≃ T (Σ− Ṡshan), (I10)

is considered as the heat production in the bath [46, 47, 64, 65, 70, 71].

From the alternative decomposition Sshan+Sbol = Scyc+Shk, we see that when the system

reaches the steady state πi(t) ≃ πst
i , we have Ṡshan ≃ Ṡcyc ≃ 0, so that qtot = T Ṡbol ≃ T Ṡhk.

Therefore, we see that the housekeeping heat production, defined as

qhk ≡ T Ṡhk, (I11)

is the rate of heat being dissipated while the quasi-steady state is maintained. The excess

heat production qex is the rate of extra heat dissipation during the approach to the quasi-

steady state:

qex ≡ qtot − qhk = T (Ṡbol − Ṡhk)

= T (Ṡcyc − Ṡshan)

= T
d

dt

∑

i

πi(t) log π
st
i

= T
∑

i,j

πj(t)kj→i log π
st
i . (I12)
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Appendix J: The Langevin and Fokker-Planck equations

Overdamped Langevin dynamics on a circle, described by the equation

γẋ = −
∂U(x, λ)

∂x
+ f + ζ(t) (J1)

where λ is a control parameter, f is a non-conservative force, and ζ(t) is a Gaussian white

noise satisfying the relation

〈ζ(t)ζ(t′)〉 = 2γT, (J2)

has often been considered in the literature [46, 47, 70, 71, 73]. The time evolution of the

probability density ρ(x) of this system is described by the Fokker-Planck equation:

ρ̇ = −∂x(F (x)ρ) +B∂2
xρ, (J3)

where F (x) ≡ −∂xU/γ + f/γ and B ≡ T/γ [14].

The Fokker-Planck equation Eq.(J3) is nothing but a Markov process with a continuous

state index x, and can be easily obtained from the Markov model with discrete state indices

by taking an appropriate continuum limit, where the fast degree of freedom is considered

to form a heat bath of constant temperature T (Appendix I). More concretely, we identify

the state i = 0, 1, · · ·N − 1 with a position on a circle, with equal spacing ℓ between the

neighboring sites, which will shrink to zero in the continuum limit. We also initially consider

discrete time with a time step ∆t, so that we can take a simultaneous limit of ℓ → 0 and

∆t → 0, with ℓ ∝ ∆tα. The dynamics of the system is described by Eq.(2), with the

condition that ki→j = 0 unless j = [(i± 1) mod N ]:

∆πi(t)

∆t
=
∑

|j−i|≤1

πj(t)kj→i = πi−1(t)k(i−1)→i+πi+1(t)k(i+1)→i−πi(t)(ki→(i−1)+ki→(i+1)). (J4)

Now we define the symmetric and antisymmetric components of ki→j as

si ≡ (ki→(i+1) + ki→(i−1))/2

ai ≡ (ki→(i+1) − ki→(i−1))/2, (J5)

so that ki→j = si ± ai for j = i± 1. The antisymmetric component ai describes the drift of

the particle in one direction, which will be shown to be proportional to the f − ∂xU term

in the Langevin dynamics, and the symmetric component si describes the diffusion due to
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random fluctuations ζ . Considering the fact that the strength of ζ is independent of the

position, we drop the position dependence of si and write it as s. Eq.(J4) is then rewritten

as
∆πi(t)

∆t
= −ai+1πi+1(t) + ai−1πi−1(t) + s (πi−1(t) + πi+1(t)− 2πi(t)) . (J6)

In the continuum limit ℓ → 0, πi(t) also shrinks to zero, and it is no longer a meaningful

quantity. Instead, we have to consider the probability density ρ(x, t), which is related to

πi(t) by

ρ(x) ≡
πi

ℓ
, x ≡ ℓi. (J7)

By making identification

F (x) = 2ℓai, B = sℓ2, (J8)

we recover the Fokker-Planck equation Eq.(J3). Note that ai and s depend on ∆t. Eq.(J8)

shows that in order to obtain the correct limit, ℓ and ∆t should approach zero such that ai

and s diverge as

ai ∼ ℓ−1, s ∼ ℓ−2. (J9)

The Schnakenberg entropy production formula now becomes

Σ =
∑

i

∑

j=i±1

πi(t)ki→j log

(

πi(t)ki→j

πj(t)kj→i

)

=
∑

i

∑

j=i±1

πi(t)ki→j log

(

πi(t)

πj(t)

)

+
∑

i

πi(t)ai

[

log

(

ki→(i+1)

k(i+1)→i

)

− log

(

ki→(i−1)

k(i−1)→i

)]

+ s
∑

i

πi(t)

[

log

(

ki→(i+1)

k(i+1)→i

)

+ log

(

ki→(i−1)

k(i−1)→i

)]

=
∑

i

∑

j=i±1

πi(t)ki→j log

(

πi(t)

πj(t)

)

+
∑

i

πi(t)ai

[

log

(

s+ ai
s− ai+1

)

− log

(

s− ai
s+ ai−1

)]

+ s
∑

i

πi(t)

[

log

(

s+ ai
s− ai+1

)

+ log

(

s− ai
s+ ai−1

)]

. (J10)

From Eq.(J9), we see that ai/s vanishes in the continuum limit as ai/s ∼ ℓ, and consequently

we can expand Eq.(J10) in powers of ai/s. Since ai ∼ ℓ−1 and s ∼ ℓ−2, the log term in the
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second and third lines of Eq.(J10) should be expanded up to the order of O(ℓ) and O(ℓ2),

respectively. Thus, we obtain

Σ =
∑

i

∑

j=i±1

πi(t)ki→j (log πi(t)− log πj(t))

+
∑

i

πi(t)ai

[

2
ai
s
+

ai+1

s
+

ai−1

s
+O(ℓ2)

]

+
∑

i

πi(t)

[

ai+1 − ai−1 −
a2i
s

+
a2i+1

2s
+

a2i−1

2s
+O(ℓ3)

]

→ −
d

dt
〈ln ρ(x, t)〉+ γ〈

F (x)2

T
〉+ 〈∂xF (x)〉, (J11)

where for simplicity we now consider the log function to be the natural log function. As in

the case of the discrete state space, the heat production in the medium is (appendix I)

qtot = T (Σ− Ṡshan) = γ〈F (x)2〉+ T 〈∂xF (x)〉 (J12)

where the Shannon entropy now takes the form3

Sshan ≡ −〈ln ρ(x, t)〉 = −

∫

dxρ(x, t) ln ρ(x, t). (J13)

As in the case of the discrete state space, the total heat production is decomposed into

the house-keeping and excess heat production:

qtot = qhk + qex, (J14)

where the excess heat production is obtained as in the case of the discrete state space (Ap-

pendix I):

qex = T (Scyc − Sshan) = T
d

dt
〈

∫

dx ln ρst(x)〉, (J15)

with ρst(x) being the continuum limit of πst
i . Consequently, we get

qhk = γ〈F (x)2〉+ T 〈∂xF (x)〉 − T
d

dt
〈

∫

dx ln ρst(x)〉. (J16)

Here, qhk and qex, as given in Eq.(J16) and Eq.(J15) respectively, are time-derivatives of

the path ensemble averages of the housekeeping and excess heats defined by Hatano and

3 − ln ρ(x, t) for a given position x has been called the system entropy [46, 47]. Similarly, γẋF (x)/T for a

given path has been called the medium entropy production [46, 47]. Therefore, we see that Sshan is the

average of the system entropy over the ensemble of states, and qtot/T = Σ − Ṡshan is the path ensemble

average of the medium entropy production, by using Eq.(J19).
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Sasa [70] for a given path. The details are as follows. The house-keeping and excess heat

generated during a time-interval [0, τ ] are defined in ref.[70] as

Qhk =

∫ τ

0

dt(f − ∂xU − T∂x ln ρ
st(x;λ, f))ẋ

Qex = T∆ ln ρst(x;λ, f) + T

∫ τ

0

dtλ̇∂λ ln ρ
st(x;λ, f) + T

∫ τ

0

dtḟ∂f ln ρ
st(x;λ, f) (J17)

where ρst(x;λ, f) is the steady state distribution of the Fokker-Planck equation obtained for

fixed values of λ and f . Because the focus of the current work is on the entropy production

of a time-homogeneous Markov process, we assume λ and f to be time-independent. In this

case, Eq.(J17) is simplified to

Qhk = γ

∫ τ

0

dtẋF (x)− T∆ ln ρst(x)

Qex = T∆ ln ρst(x) (J18)

where the dependence of ρst on λ and f is not explicitly shown, for the simplicity of nota-

tion. The path average of the ẋF (x) term in Qhk is computed by the path integral using

Stratonovitch discretization, leading to [46, 47]

〈F (x)ẋ〉 = 〈F (x)2 − BF (x)ρ(x, t)−1∂xρ(x, t)〉, (J19)

and we get

〈Qhk〉 = γ〈

∫ τ

0

dtF (x)2〉+ T 〈

∫ τ

0

dt∂xF (x)〉 − T 〈∆ ln ρst(x)〉

〈Qex〉 = T 〈∆ ln ρst(x)〉 (J20)

where we have used the fact that

〈ρ(x, t)−1∂xρ(x, t)F (x)〉 =

∫

dx∂xρ(x, t)F (x) = −

∫

dxρ(x, t)∂xF (x) = −〈∂xF (x)〉 (J21)

to derive the second term of the first line. By comparing Eq.(J20) with Eq.(J15) and

Eq.(J16), we find that

qhk =
d〈Qhk〉

dτ
|τ=t, qex =

d〈Qex〉

dτ
|τ=t. (J22)

Appendix K: The relation of the entropy components to nonadiabatic and adiabatic

entropy productions [49]

A time-dependent Markov process defined by the transition rateW ν
i→j(λt), with t ∈ [0, T ],

has been considered by Esposito and Van den Broeck[49]. Here, λt is a time-dependent

39



parameter that controls the dynamics of the system, which changes with time according to

a fixed schedule. Multiple sources affecting the transition are considered, and the index ν

denotes the mechanism responsible for the transition. A given path with N jumps occurring

at times τj , (j = 1, · · ·N) due to mechanisms νj was considered, with the states of the system

being mj for τj−1 < t < τj , with τ0 ≡ 0 and τN+1 ≡ T . For such a trajectory, the total

entropy production was defined by

∆Stot = ln
πm0(0)

πmN
(T )

+

N
∑

j=1

ln
W

νj
mj−1→mj (λτj )

W
νj
mj→mj−1(λτj )

, (K1)

which was then decomposed into the nonadiabatic entropy production ∆Sna and the adia-

batic entropy production ∆Sa:

∆Stot = ∆Sna +∆Sa, (K2)

with

∆Sna = ln
πm0(0)

πmN
(T )

+

N
∑

j=1

ln
πst
mj
(λτj )

πst
mj−1

(λτj−1
)

∆Sa =

N
∑

j=1

ln
W

νj
mj−1→mj(λτj )π

st
mj−1

(λτj−1
)

W
νj
mj→mj−1(λτj)π

st
mj

(λτj )
. (K3)

Since the focus of the current article is on the cyclic time-homogeneous Markov model, we

consider a special case where λ is time-independent, and derive the relation between the

entropy production components given by Eq.(K3) and those given in this work. Because

λ is a fixed constant and plays no important role, the λ-dependence can be dropped from

the notation. Furthermore, because we make no distinctions between various mechanisms

causing the transition, but rather combine all of these effects into one transition rate, the ν

dependence can be removed, and the transition rate can simply be written as ki→j. Under

these assumptions, the expression in Eq.(K3) is simplified to

∆Sna = ln
πm0(0)

πmN
(T )

+ ln
πst
mN

πst
m0

= ln
πm0(0)π

st
mN

πmN
(T )πst

m0

∆Sa =
N
∑

j=1

ln
kmj−1→mj

kmj→mj−1

+ ln
πst
m0

πst
mN

= ln
πst
m0

∏N
j=1 kmj−1→mj

πst
mN

∏N
j=1 kmj→mj−1

, (K4)
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where πst
mj

with 1 ≤ j ≤ N − 1 from the denominator and numerator cancelled each other

to obtain these expressions. Note that the quantities in Eq.(K4) are defined for a given

trajectory. Because entropy production for an ensemble of such trajectories is considered

in the current work, we average ∆Sna and ∆Sa over path probabilities in order to make

comparisons. We also shift the time interval from [0, T ] to [t, t+T ] without loss of generality

and take the limit T → 0. We then obtain

〈 ˙Sna〉 ≡ lim
T→0

〈∆Sna〉/T = lim
T→0

∑

m,n

πm(t)P (m → n;T )

T
ln

πm(t)π
st
n

πn(t+ T )πst
m

,

〈Ṡa〉 ≡ lim
T→0

〈∆Sa〉/T

= lim
T→0

1

T

∞
∑

N=0

∑

m

∑

m1 6=m

∑

m2 6=m1

· · ·
∑

mN−1 6=mN−2

∑

n 6=mN−1

∫ T

0

dτ1

∫ T

τ1

dτ2 · · ·

∫ T

τN−1

dτN

× πm(t)P (m → m1; τ1) · · ·P (mN−1 → n; τN ) ln
πst
mkm→m1 · · · kmN→n

πst
n kn→mN−1

· · · km1→m
. (K5)

Here, P (m → n;T ) = (expKT )mn is the conditional probability that the system is at the

state n at time t+ T , given that it is at the state m at time t, where K is the matrix whose

(m,n) component is km→n. For small T , we have the expansion

(expKT )mn = δmn + Tkmn +O(T 2). (K6)

Therefore, we get

〈 ˙Sna〉 =
∑

m,n

πm(t)km→n ln
πm(t)π

st
n

πn(t)πst
m

+ lim
T→0

1

T

∑

n

πn(t)(ln πn(t)− ln πn(t + T ))

=
∑

m,n

πm(t)km→n ln
πm(t)π

st
n

πn(t)πst
m

−
∑

n

π̇n(t)

=
∑

m,n

πm(t)km→n ln
πm(t)π

st
n

πn(t)πst
m

,

〈Ṡa〉 ≡ lim
T→0

〈∆Sa〉/T = lim
T→0

∞
∑

N=0

TN−1

N !

∑

m

∑

m1 6=m

∑

m2 6=m1

· · ·
∑

mN 6=mN−1

∑

n 6=mN

× πm(t)km→m1 · · · kmN−1→n ln
πst
mkm→m1 · · · kmN→n

πst
n kn→mN−1

· · · km1→m

=
∑

m6=n

πm(t)km→n ln
πst
mkm→n

πst
n kn→m

=
∑

m,n

πm(t)km→n ln
πst
mkm→n

πst
n kn→m

. (K7)
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Comparing these expressions with

Ṡcyc = −
∑

i

π̇i(t)

(

ln

(

πi(t)

πst
i

)

+ 1

)

= −
∑

i,j

(πj(t)kj→i − πi(t)ki→j)

(

ln

(

πi(t)

πst
i

)

+ 1

)

=
∑

i,j

πi(t)ki→j ln

(

πi(t)π
st
j

πj(t)πst
i

)

(K8)

and

Ṡhk = Σ− Ṡcyc

=
∑

i,j

πi(t)ki→j log

(

πi(t)ki→j

πj(t)kj→i

)

−
∑

i,j

πi(t)ki→j ln

(

πi(t)π
st
j

πj(t)π
st
i

)

=
∑

i,j

πi(t)ki→j log

(

πst
i ki→j

πst
j kj→i

)

, (K9)

in the cyclic regime, we immediately see that 〈 ˙Sna〉 = Ṡcyc and 〈Ṡa〉 = Ṡhk. Note that

because the driver degrees of freedom are not explicitly incorporated in the model, Stot in

Eq.(K1) does not include the contribution from the hidden entropy.
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FIG. 1: (a) Cyclic Markov model with three states. (b),(c) Examples of extended models where

an additional degree of freedom X is introduced.
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FIG. 2: Time evolution of three-state model with discrete time. Model 1: a = b = α = β =

γ = 0.25/∆t, and c = 0.5/∆t. Model 2: a = b = α = β = 0.25/∆t, c = 1.0(X/N)∆t−1, and

γ = 0.5(1 − X/N)∆t−1. The probability distribution and currents are displayed as functions of

time. (a) Probability distribution and currents of both models at early times. (b) Probability

distribution and currents of model 1 at late times. For better visibility, J was multiplied by 10.

(c) Probability distribution and currents of model 1 at late times. For better visibility, J was

multiplied by 10.
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FIG. 3: Time evolution of three-state model with discrete time. Model 1: a = b = α = β =

γ = 0.25/∆t, and c = 0.5/∆t. Model2: a = b = α = β = 0.25/∆t, c = 1.0(X/N)∆t−1, and

γ = 0.5(1 −X/N)∆t−1. The entropy components are displayed as functions of time. (a) Entropy

components of both models at early times. Separate constants were added to Shk of the two

models, so that their graphs are superposed. (b) Entropy components of model 1 at late times. (c)

Entropy components of model 2 at late times. For each model, a constant was added to Shk for

easier comparison, and Scyc was multiplied by 100 for better visibility.
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FIG. 4: Equilibrium distribution of model 1 and model 2 as a function of X, shown in log scale.

Parameters are set to the values used for generating Figures 2 and 3.
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