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The comprehension of tumor growth is a intriguing subject for scientists. New researches has
been constantly required to better understand the complexity of this phenomenon. In this paper,
we pursue a physical description that account for some experimental facts involving avascular tumor
growth. We have proposed an explanation of some phenomenological (macroscopic) aspects of
tumor, as the spatial form and the way it growths, from a individual-level (microscopic) formulation.
The model proposed here is based on a simple principle: competitive interaction between the cells
dependent on their mutual distances. As a result, we reproduce many empirical evidences observed in
real tumors, as exponential growth in their early stages followed by a power law growth. The model
also reproduces the fractal space distribution of tumor cells and the universal behavior presented
in animals and tumor growth, conform reported by West, Guiot et. al.[1, 2]. The results suggest
that the universal similarity between tumor and animal growth comes from the fact that both
are described by the same growth equation - the Bertalanffy-Richards model - even they does not
necessarily share the same biophysical properties.

I. INTRODUCTION

The understanding of tumor growth has for long been
regarded as a subject of outstanding interest in many
fields such as biology, oncology, mathematics and physics
[3–5]. Empirical observations lead us to believe that the
growth of tumors are ruled by general growth laws which
can be represented by differential equations [6]. The ad-
vantages of these representations are uncountable. These
models can be useful to estimate the progress of the tu-
mor and, consequently, to determine the frequency for
performing exams such as mammography screening or
to control the success of some therapy [7–10]. Further-
more, experimentalists are becoming increasingly con-
vinced that mathematical modeling can clarify and in-
terpret many experimental findings.
Even after decades of study, researchers are still at-

tempting to answer the main question with regard to this
topic: how the tumor increases over time as the disease
develops? Even though this point may seem simple, the
basic mechanisms underlying growth of tumors are still
not clear enough. The Gompertz curve, one of the most
important models used for such studies, has been able to
describe many animal and human data [1, 6, 11, 12]. On
the other hand, the Bertalanffy-Richards model [13–15],
which has Gompertz, Verhulst and exponential growth
models as particular cases [6, 16–18], provides accurate
description of tumors growth as well [19].
Within this context, we are interested in characteriz-

ing avascular tumor [20] to better understand it develpo-
ment. Although avascular growth correspond only to the
initial stage of tumors, the knowledge of this phase is
quite important since most empirical evidences are based
on avascular tumor spheroids in vitro [21–23]. This kind
of experiments are easily manipulated as opposed to in

vivo ones.
Our current research, supported by previous works

[24, 25], proposes a microscopic model to describe tumors
growth using just a few physical principles. However,
it is able to clarify empirical evidences and reproduces

some widely known models under certain conditions.
Our model was formulated based on distance-dependent
competitive interactions between cells. Even considering
just this very simple interrelation, our approach is able
to interpret (at microscopic level) the phenomenological
Bertalanffy-Richards model and consequently, the Gom-
pertz curve. We also explain the fractal distribution of
the tumor cells, verified by empirical studies [26, 27].

In addiction, the model presents a widely robust be-
havior. This mean that no matter the parameters val-
ues of the model, all the setting always collapse in the
same curve. And this curve is exactly the same universal
curve that describes tumor and animal growth, as shown
in figure (1). West et. al. [1] explains that the universal
behavior observed in animal growth is due to the similar
way that the organisms allocate energy to growth and
to maintenance. Although this pattern is also observed
for tumors, the biological mechanisms behind it is not
clear enough. However, our model is able to explain this
phenomenon, because we show that the universality is
a key feature, since it just comes from two microscopic
principles: competition and self-replication.
It is well known that universality is observed in many

physical and biological systems [28–30]. So, our model
will be very useful to investigate universality and com-
mon patterns in population growth in general (tumor,
animal and any other one). This subject has drawn
attention of many theoretical [17, 31–39] and empirical
[1, 2, 40, 41] researches in the last decades.
This paper is organized as follows: section (II) gives

a brief description of some empirical evidences that are
considered common features in the most of avascular tu-
mors. In the section (III) our mathematical model to tu-
mor growth is presented. In section (IV) we show the con-
cept of optimal fractal dimension, whose consequences for
tumor growth will also be explained. In section (V) we
get the Bertalanffy-Richards model using first principles
and we also obtain the Gompertz model as a particular
case of our approach. In section (VI) we show that our
model is able to explain why tumors, as well as animal
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FIG. 1. The universal growth law of the dimensionless mass
(µ) as a function of the dimensionless time (τ ). Completely
different animals, tumors and data from the model proposed
(see section (VI)), regardless the parameter values, collapse
in the same universal curve.

growth, also follow the universal behavior. Both are de-
scribed by the same mathematical - Bertalanffy-Richards
- model, even though they do not necessarily follow the
same biological principles. Finally, in the last section we
present our conclusions. The appendix (A) is just a very
short review of the West model [1].

II. EMPIRICAL EVIDENCES

Many empirical works [19, 43–45] suggest that the total
mass m forming the tumor increases with time t obey-
ing two different regimes: an initial exponential growth
followed by a power-law one. That is, after the early
exponential stage, we have

m(t) ∼ tα, (1)

where α is a exponent which depends on the tumor type
and the micro-environment conditions [43, 46, 47]. The
data presented in Fig. (2), reproduced from [43], show
this typical time evolution of tumor size. Moreover, some
experiments [43, 48] also show that the radius of the solid
tumor, Rmax, grows linearly with time (Rmax ∼ t). Con-
sequently, the spatial size of the tumor scales with its
mass as

Rmax ∼ m1/α. (2)

Previously, tumor growth was characterized as chaotic
[40, 47]. But nowadays it is known that fractal geometry
is more suitable to quantify the morphological character-
istics of solid tumors [41, 46, 49]. This property has also
been used in the diagnosis concerning the tumor malig-
nancy. Some studies suggest that higher fractal dimen-
sion implies greater tumor aggressiveness [50–53].

Another empirical aspect about tumors is that its
growth seems to present the same universal pattern ob-
served in animal growth [2, 40]. West et. al. [1] first
proposed that the growth of different species (mammals,
birds and fish) collapse in the same universal curve. After
it was also verified for tumor growth (in vivo, in vitro, and
in clinical practice) [2, 40, 41]. Figure (1) summarize such
finds, showing the plot of the dimensionless mass (µ) as
a function of the dimensionless time (τ), for completely
different kind of animals (cow, chicken, and guppy), and
for two different tumors (the ones described in the figure
(2)). All of them collapsing in the same universal curve:
µ = 1− e−τ (more details in appendix (A)).
The universal behavior of animal growth is because

all species allocate energy for growth and maintenance
in a similar way [1, 41, 42]. However, for tumors, this
universal behavior is still not clear enough. In the present
work, we will show that self-replication and competition
among the cells can also generate the universal growth
pattern.
In order to corroborate this empirical evidences we pro-

pose a simple microscopic model, based on the distance-
dependent interaction between cells living in a compet-
itive environment. This model explains the following
properties of solid-tumor growth:

1. exponential growth in early time;

2. power law growth for large enough time;

3. diameter follows a power law with the number of
cells;

4. fractal-like structure;

5. universal behavior.

The details of the model is presented in the next section.

III. THE MICROSCOPIC MODEL

We have formulated a simple mathematical model
based on four basic “principles”:

1. The cells compete by resources in their micro-
environment;

2. The cells moves in order to minimize the competi-
tive interaction.

3. The replication rate of each cell is affected by its
competitive interaction with the other ones;

4. The intensity of the competitive interaction decays
with the distance between the cells;

We will show in the next sections that these basic
premises are enough to explain the tumor growth empir-
ical evidences which were reported on previous section.
In order to put these principles in a mathematical way,



3

4 16 64
time (days)

0.0625

0.25

1

m
 (

gr
am

s)

empirical data
power law growth
exponencial growth

EMT6

(a)

4 16
time (days)

0.0625

0.25

1

m
 (

gr
am

s)

KHJJ

(b)

FIG. 2. Empirical data of growth (the dots) of two types of tumors (a) EMT6 and (b) KHJJ implanted in mice and rats. These
data was extracted directly from the reference [42] and represent the usual growth behavior in tumors: exponential growth in
the first stage followed by a power-law growth.

consider a interaction function f(r) which represents the
effects - the field - perceived by a single cell, say i, due
to the presence of another cell at distance r. Consider
also that the population of cells is spatially distributed
according to the density function ρ(r), where r is the po-
sition vector. Then the total interaction field affecting
the cell i is

Ii =

∫

VD

ρ(r)f(r)dDr. (3)

Here, D (integer) is the Euclidean dimension, dDr is
the hyper-volume element, and VD the hyper-volume in
which the population is immersed.
It is quit plausible that the interaction between two

cells decay with distance, and therefore, a reasonable
choice for the interaction function is

f(r) =

{ 1
rγ if r > 2r0

1
(2r0)γ

otherwise
, (4)

where γ is the decay exponent, and r0 is the diameter of
the cell. The hypothesis (4) has been used recently to
describe population cell growth [24, 25]. Consider here-
after, by convenience, r0 = 1/2.
Based on the empirical evidence described in subsec-

tion (II), let’s suppose the population evolves forming a
structure with dimension Df ≤ D. While the number of
cells scales as rDf , the hyper-volume in which the cells
are inserted scales as rD [54]. This fact allows us to write
the density of cells as

ρ(r) =
Number of cells

Volume
= ρ0

rDf

rD
= ρ0r

Df−D, (5)

where ρ0 is a constant.
With these assumptions one can solve (3) consid-

ering periodic boundary conditions, and using dDr =

rD−1dr dΩD, where dΩD is the solid angle. These con-
siderations allows us to write the interaction field as (see
details in ref. [24])

Ii = I(Df , N) =
ωD

Df
ln(β−1)

(

Df

ωD
N

)

+
ωD

Df
, (6)

where

β ≡ 2−
γ

Df
, (7)

and lnβ−1(x) ≡ (xβ−1 − 1)/(β − 1) is the generalized

logarithm (see [55]). The particular case β → 1 (or
γ → Df ) leads to the natural logarithm. Some recent
works [24, 32, 35] suggested that generalized growth mod-
els can be written in terms of generalized logarithm, which
allows a easier algebraic treatment. In Eq. (6) we also
introduced ωD ≡ ρ0

∫

dΩD which is a constant that de-
pends only on the dimension D. In the case N → ∞, the
interaction field (6) diverges if γ < Df , which implies the
existence of long range interactions between cells, and
converges if γ > Df , a short range interaction between
cells. We will restrict this work to the short range in-
teraction situation, that is, γ > Df , which means that
the cells interact only with their closer neighbors. In this
case, the periodic boundary conditions simplify the prob-
lem and it is good enough to describe realistic situations.
Note that the field given by Eq. (6) does not depend on

the index i, that is, it is the same for all the individuals
of the population. It is a consequence of the periodic
boundary conditions [24] and the self-similarity of the
fractal structure formed by the tumor [54]. The result (6)
means that all cells feel the same influence from their
neighbors cells. In fact this influence depends only on the
fractal dimension and the size of the population, that is
Ii = I(N,Df ).
In section (IV) it is showed that the population reaches

a fractal space distribution when the cells move in order
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to minimize the competitive interaction. That is, the
model is able to explain, by a microscopic approach, the
spacial distribution observed in real tumor.
As a first application of this model, one can use it

to predict how the diameter of the tumor, say 2Rmax,
behaves with the increase of the number of cells N . Con-
sidering that N =

∫

all space ρ(r)d
D
r and the density given

by Eq. (5), one has N = ρ0
∫

dΩD

∫ Rmax

0
rDf−1dr and,

consequently,

Rmax ∼ (DfN)
1

Df . (8)

This result is in accordance with the empirical fact that
the diameter of the tumor follows a power law with the
number of cells [43, 48].

IV. OPTIMAL FRACTAL DIMENSION

During growth, the cells compete by available resources
in their micro-environment. It means that each cell must
to move in order to minimize the competitive influence
from the other cells. Fig. (3) shows schematically the
movement of a single cell to minimize the “pressure” from
its neighbors. If all cells perform such a movement, the
spatial distribution of the population will change adap-
tively. Consequently the (fractal) dimension of the struc-
ture formed by the population will change.

FIG. 3. Schematic representation of the cellular dynamics.
In competition, each cell tries to move in a direction that min-
imize the influence of the other cells. In the case represented
by this figure, the cell moves in the direction that minimize
the “pressure” from the other cells.

The interaction field generated by the cells presents
two extreme values: when Df → 0 and Df → 3. It is
because if Df → 0 the population tends to concentrate
in a single point (see Eq. (8): Rmax → 0 when Df → 0),
generating a high interaction field. On the other extreme,
if Df ≈ 3, and N is sufficiently large, the population is
compacted (high density), which also result in a strong
interaction field. Then, there is an optimal fractal di-

mension around these two extremes, that we will call
Dopt

f , which minimize the competitive influence among

0 500 1000 1500
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2,5

2,6
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2,8

2,9

3

D
f

opt

γ = 5

FIG. 4. (a) Plot of the field I(N,Df ), given by Eq. (6), as a
function of the fractal dimension. The plot were performed
for some fixed values of population size and using γ = 5.
The black dots represent the minimum value of I(N,Df ) in
relation to the fractal dimension, which leads to D

opt

f . When
the population is small, the plot suggests that the population
tends to be compact, that is D

opt

f = 3. However, when the
population becomes sufficiently large, the optimal dimension
is fractal. (b) Plot of the fractal dimension which minimize
the interaction field (Dopt

f ) as a function of the population
size. The optimal fractal dimension decreases monotonically
as the population increases, and more slowly for sufficient
large population.

the cells. That is, Dopt
f is the fractal dimension which

minimize the field (6) experienced by each cell, that is
obtained by the condition

∂

∂Df
I(N,Df )

∣

∣

∣

∣

∣

Df=Dopt

f

= 0. (9)

Such ideas are illustrated quantitatively in Fig. (4(a)),
which presents the plot of the interaction field I(N,Df ),
given by Eq. (6), as function of the fractal dimension of
the population, keeping the population size fixed. By this
plot it is possible to see that the interaction field always
has a minimum (in Df = Dopt

f ) if the population is large

enough. If N is small Dopt
f = 3 (maximally compacted

population), but for a sufficiently large population, the
optimal dimension is fractal.
Our microscopic model clarifies the role of the fractal

geometry of tumor growth since this structure emerges
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spontaneously as a response of the cells to minimize com-
petitive pressure. In the next section we present the pop-
ulation growth process in this competitive context. We
will see that the model proposed presents an early expo-
nential stage, followed by a power-law growth regime, in
accordance with the empirical evidences over again.

V. POPULATION GROWTH

Our model presents two time scales. The first one is
the time that the cells take to reach the optimal fractal
dimension arrangement. The second time scale, repre-
sented by t, is measured in generations. At the end of
each generation the cells reproduce. Consider that the
time between two consecutive generations is sufficiently
large to allow population to reach the optimal spatial
distribution, and consequently achieves Dopt

f , before re-
production. Then, at the moment of the reproduction,
the field felt by each cell is Iopt(N) ≡ I(N,Df = Dopt

f ).
In a competitive context, the interaction field exercise

a inhibitory behavior in the reproduction of the cells [24,
25, 49]. In this way, it is quite reasonable to consider
that the replication rate Ri of the i-th cell is given by

Ri = k − JIopt. (10)

This equation says that the reproductive capability of
the cells depends in part on an inherent property - given
by the intrinsic replication rate k -, and in part on the
influence (inhibitory) of the other cells of the population
- given by JIopt. The parameter k is identical, by defini-
tion, to all cells, while JIopt represents the rate of com-

petition. The parameter J > 0 measure the intensity of
the inhibition (competition). The case J < 0 provides us
a different approach than we are interested, which means
cooperation between cells, and was already discussed in
previous works [24, 35, 56].
Since ∆tRi is the number of daughters that the cell i

generates in a time interval ∆t, the update of the size of
the population in this period is

N(t+∆t) = N(t) + ∆t

N
∑

i=1

Ri. (11)

In the limit ∆t → 0, one has an Ordinary Differential
Equation (ODE):

dN

dt
= N

(

k − JIopt
)

. (12)

Introducing the result given by Eq. (6), one gets

dN

dt
= cNβopt

− bN (13)

where

b ≡
JωDγ

Dopt
f (γ −Dopt

f )
− k, (14)

c ≡
−J

(

1− γ

Dopt

f

)

(

Dopt
f

ωD

)

−

γ

D
opt
f

, (15)

and

βopt
≡ 2−

γ

Dopt
f

. (16)

Assuming that each cell of the population has the same
mass mc, the total mass of the tumor at time t can be
written as m(t) = mcN(t). So, Eq. (13) becomes

dm

dt
= amβopt

− bm, (17)

with

a ≡
−Jm

γ

D
opt
f

−1

c

1− γ

Dopt

f

(

Dopt
f

ωD

)

−

γ

D
opt
f

. (18)

Note that this model reproduce the Bertalanffy-Richards
model when the parameter Df is constant. This partic-
ular case is discussed in the section (VA).

As βopt is not fixed (it depends on Dopt
f , which in turn

depends on the population size), analytical solution of
Eq. (17) is difficult to be obtained. However, the dy-
namics of the model can be investigated solving numer-
ically the recurrence relation given by Eq. (11). This
computational solution is presented in Fig. (5), which
shows that the population size (the mass) of the tumor
growths exponentially at the beginning, and then pass
through a power law regime before saturates or blow up.
If the population growth according to one (saturation)
or other (blow up) regime depends on the value of the
self-replication rate. The value of k that divides these
two regime is k = kpower, where

kpower ≡
JωDγ

Dopt
f (γ −Dopt

f )
(19)

is obtained taking b = 0 in Eq. (14) (more details in the
section (VA)).
When k = kpower the population grows purely in a

power law regime, described by (see section (VA))

m(t) ∼ t
Df

γ−Df . (20)

In fact, the power law growth happens because the repli-
cation rate Ri decreases as a power law in this case (see
Fig (5-b)). The population saturates when k < kpower

because in this case the replication rate go to zero as the
time evolves. And finally, the population blow up (ex-
ponentially) when k > kpower because, in this case, the
replication rate Ri converge to a constant (greater than
zero)1.

1 Constant replication rate conducts to a Malthusian growth.
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What is important to note in these numerical results
is that no matter what the value of the intrinsic replica-
tion rate is, the dynamics of the population always pass
through a power law growth regime, in accordance with
what is observed in empirical tumor growth. Accord-
ing to the numerical results, the time that the popula-
tion growth stays on this regime depends on the intrinsic
replication rate of the cells. If k ∼ kpower then the pop-
ulation stay a large period on a power law growth, but if
k is very different from kpower the population stays only
a small period on this regime (see figure (5)).

The dynamics of the fractal dimension Dopt
f is also pre-

sented in Fig. (5). Note that this dimension decreases
rapidly when the population is small and then satu-
rates, for N sufficiently large, to a value that we will
call Dconv

f (convergence value). When k ≥ kpower, then

Dconv
f → γ/2.

In a real situation, k < kpower must be obeyed (other-
wise the population blows up), and then the population
must saturates in a sufficiently large time. However, as
discussed in [2, 40, 41], the real tumor does not saturate
because before this the patient is died or the tumor cells
start the vascularization and, consequently, the metasta-
sis. Nevertheless, our microscopic model is good enough
to describe the power law growth phase of real tumors.
The merit of the model proposed here is that it ex-

plain, with few principles, the spatial distribution and
the growth process of real tumor. It is important also
to empathize that the model is built using a micro-
scopic (individual-level) approach, and not a phenomeno-
logical (macroscopic) perspective, as is usually done
[3, 6, 24, 47, 57].

A. Connection with Bertalanffy-Richards model

Analytical solution of Eq. (17) is obtained when the
parameterDf is keeping fixed during the growth process,
for example takingDf = Dconv

f . That is reasonable forN
sufficiently large. Thus, one obtains a simpler version of
the original approach, that reveals to be the Bertallanfy-
Richards growth model [15, 58, 59] whose solution is

m(t) =
[a

b
+
(

m1−β
0 −

a

b

)

eb(β−1)t
]

1

1−β

, (21)

where a, b and β are give by (18), (14), and (7), respec-
tively.
Fig. (6) shows a comparison between the original model

(evolving Df ) and its simplified version (keeping Df =
Dconv

f fixed). Note that, besides the two dynamics differ
during the growth process, they converge to the same
saturation mass.
The Bertalanffy-Richards growth model has been used

successfully to describe tumor growth [2, 6, 42, 58, 60].
What is the main point of the connection of our model
with the Bertalanffy-Richards model is that Eq. (17) and
consequently its solution (21) are obtained by a micro-
scopic approach given by the interaction between cells,

and not from a phenomenological (macroscopic) perspec-
tive, as has been done in previous works [3, 6, 47, 57].
The solution given by Eq. (21) has two asymptotic be-

haviors: saturation or divergence according to the sig-
nal of the argument in the exponential of Eq. (21). As
γ/Df > 1 (short range interaction regime), then (β − 1)
is always negative, and consequently the signal of such
argument depends only on b. In fact, this quantity can
be written as b = kpower − k, where kpower is given by
Eq. (19).
If b < 0 (that is, k > kpower), then the population

growth exponentially and b plays also a role of growth
rate. Otherwise, if b > 0 (that is, k < kpower), the pop-
ulation saturates asymptotically. These two accessible
phases are limited by a line characterized by b = 0, when
the population grows asymptotically as a power law. The
Eqs. (19) and (20) are obtained in this context.

B. Connection with Gompertz model

The Bertalanffy-Richards model is in fact a general-
ized model, in the sense that it reaches some well know
phenomenological models as particular cases. The rele-
vant quantity in the generalization process is the ratio
γ/Df (or the parameter β, by Eq. (7)). For instance, the
Verhulst model [61] is reach if γ ≪ Df (that is, β → 2).
As proposed in [24, 25, 62], this happens when the inter-
action between cells do not depends on distance. That
is, Verhulst model is some kind of mean-field model.
The Gompertz model [63] is also a particular case of

the Bertalanffy-Richards model, which is reaching when
γ → Df (or β → 1). It is easy to see how the Gompertz
model emerges from the proposed theoretical framework.
Defining δ = a− b and α = b(1− βopt), the Bertalanffy-
Richards Eq. (17) becomes

dm

dt
= δmβopt

− αmβopt

(

m1−βopt

− 1

1− βopt

)

. (22)

If we take the limit βopt → 1
−
:

dm

dt
= δm− αm ln (m) = −α ln

(m

K

)

(23)

which is the Gompertz equation, with K ≡ exp (δ/α). We
see that the Gompertz model is recovered at the limit of
β → 1 which corresponds to the optimal fractal dimen-
sion Dopt

f be numerically equivalent to the decay coeffi-

cient γ (see Eqs. (4,16)).
It is well known the relationship between the tumor

malignancy and the fractal dimension of the cancerous
cell body. The more malignant the tumor, the greater
the fractal dimension [46]. If the condition Df = γ is
reasonable, malignancy involves cells with shorter-range
interaction when compared to normal cells.
It is also noticed that, for population size big enough,

the replication rate decays exponentially, as shown in
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FIG. 5. Dynamics generated by the microscopic model: (a) mass, (b) replication rate, and (c) optimal fractal dimension. It
was used some possible values of the intrinsic replication rate k, and keeping fixed the parameters J = 0.1, γ = 5, and mc = 1.
The curves were getting solving the relation of recurrence given by Eq. (11). When k > kpower the population diverges; when
k = kpower the population (or its mass) growth as a power-law; and when k < kpower the population saturates. If k ∼ kpower ,
the population pass a long period in a power-law growth regime. The population growth as a power law regime because the
replication rate Ri also decreases as a power law. The optimal fractal dimension decreases rapidly when the population is small
and then saturates (to Dcov

f ) when the population is sufficiently large.
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and γ = 5. The red line show the situation with Df fixed
and numerically identical to Dconv

f of the first approach. The
straight dashed line shows a power-law behavior as a guide
to the eyes. The red line (Df constant) is slightly different
from the dots curve during the growth process, but they con-
verge to the same saturation value. Inset: population fractal
dimension for the two approaches. In the dots line, the pop-
ulation starts with D

opt

f = D = 3 (compacted form), but
shortly becomes fractal and converges to a saturation value
(Dopt

f → Dconv
f ).

Fig. (5). Our model was formulated based on interac-
tions between the cells which depend just on the distance
that separates them. Even considering just this very sim-
ple interaction, the model is able to explain very well the
success of the phenomenological Gompertz model to de-
scribe tumors growth.

VI. UNIVERSAL GROWTH BEHAVIOR

In animal growth, conform suggest West et. al. in Ref.
[1], the common pattern observed in the figure (1) comes
from the fact that species allocates energy to growth
or to maintenance in the same universal way (see ap-
pendix (A)). Moreover, this explanation takes into ac-
count the fact that the species obey the allometric law

(or the Kleiber’s law), which says that the metabolic rate
grows sub-linearly with the mass of the organism [64].
However, tumors do not necessarily obey such allometric
law and, furthermore, they present fractal form, instead
of space-filling process required by West et. al. theory
[1, 40]. In this way, the explanation based on allocation
of energy is not necessarily suitable for tumors.
Our model, on the other hand, suggest that such uni-

versal growth pattern can come from two principles at
microscopic level: competition and self-replication. In
animal growth, the dimensionless mass µ is related to
the ratio between the maintenance energy and the to-
tal energy of the organism (see appendix (A)). But in
our model this quantity gets another interpretation, al-
though still universal. In fact, using the relations given
by Eqs. (14), (18), (19), (A6) and (A7), one can shown
that

µ =
kpower − k

kpower − JIi
. (24)

This result means the dimensionless mass is a relation-
ship between the intrinsic replication rate k and the com-

petition rate JIi. While k is constant during the process,
the competition rate increase due to the increase of the
population size. For small times (i.e. τ ≈ 0), the compe-
tition rate is very small compared to the intrinsic replica-
tion rate, resulting in µ ≈ 1− k/kpower. In this case, the
tumor keep growing. However, for τ sufficiently large, the
competition rate starts to be of the same magnitude of
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the intrinsic replication rate. In this case the tumor stops
to growth (population saturates), which means µ → 1.
According to the model, as noted in Fig. (1), no matter
the intensity of the competition J , the decay exponent
of the competitive interaction γ (and consequently β), or
the intrinsic replication rate k, all the settings collapse
into a single universal curve, exactly in the same way that
happens to tumor and animal growth. Of course, k has
to be less than kpower to avoid the unrealistic situation
of blow up the population.
This model explain the universal growth pattern ob-

served in empirical data just using first principles (i.e.
cell interactions). This is one of the good points of the
model. Moreover, this approach also explains that as
long as the competition among cells increase, due to the
population increase, the replication rate decreases.
As mentioned before, no matter the values of the pa-

rameter β (given by different values of γ since β =
2 − γ/Df), all dynamics collapse in the same universal
curve. It means that even if an organism does not fol-
low the allometric law (β = 3/4) it will still follow the
universal curve, as is the case of tumors.
Finally, the microscopic model proposed suggests

that the universal similarity between tumor and animal
growth does not necessarily come from common biophys-
ical properties. The universal behavior emerges maybe
because any biological growth (animal, tumor) are in fact
described by the same equation, the Bertalanffy-Richards
model (17). Given a process (biological, physical or what-
ever) that can be modeled by such a equation, this pro-
cess will also collapse in the same universal curve.

VII. CONCLUSIONS

In this paper, we presented good reasons to consider
that our mathematical model is able to explain some em-
pirical evidences about tumor growth. Our microscopic
model describe well enough the form and the growth pro-
cess of avascular tumors, taking into account just few
basic principles. In our prototype, the competition be-
tween cells influence their replication rate and the cells
can also move in order to minimize this competitive in-
fluence from their surrounding cells. As were presented,
such basic assumptions at microscopic level, conducts to
many macroscopic properties that is observed in real tu-
mors.
The model reproduces, for instance, the exponential

growth in early stage followed by a power law curve for
later times. This patterns is very common in real tu-
mors. The fractal structure, observed in many solid tu-
mors [46, 52, 65], is also described in our model since
the optimal fractal dimension emerges spontaneously, as
a consequence of the interrelation between the cells.
Moreover, this model shows that the relation between

the intrinsic replication rate and the competition rate
of the cells plays the same role of the energy allocation
in growing animals. This leads both animal and tumor

growth to the same universal behavior. In other words,
different biophysical mechanisms can be represented by
the same ubiquitous equation, given by Bertalanffy-
Richards model. Besides, the universality found for tu-
mor growth is regardless of the values of the parameters
of the microscopic model.
In short, we present a robust and powerful model

able to describe growth process in general. Regardless
of the system concerned, since it was described by the
Bertalanffy-Richards model, it will follow the universal
growth behavior. In conclusion, we believe that our mi-
croscopic model is able to provide a better comprehension
of growth patterns and it will can be useful in other fields,
involving natural, social and economic contexts.
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Appendix A: WBE model for Animal Growth

In this appendix we give a short description of the West
model [1], which describes the animal growth considering
the Kleiber’s law [64], and the principle of conservation
of energy. The Kleiber’s law says that the metabolic
rate B of an organism scales sub-linearly with its body
mass, that is B = B0m

β, where B0 is a constant and
β < 1 is the allometric constant. According to the West
model, the total metabolized energy of an organism must
be used on maintenance of the already existent cells or
in the growth of new cells. That is,

[Total Metabolic Energy] = [Maintenance] + [Growth].

It yields the ordinary differential equation:

B0m
β = Bcm+ Ec

dm

dt
, (A1)

where Bc is the metabolic rate of a single cell and Ec is
the energy necessary to create a new cell. The equation
above can be write as

dm

dt
= amβ

− bm, (A2)

where it was defined

a ≡
B0mc

Ec
, (A3)

which is a parameter that does not depend on the species
(scale invariant, because it depends only on universal pa-
rameters); and

b ≡
Bc

Ec
, (A4)
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which depends on the biological species.
The solution of the Eq. (A2) is

m(t) =
[a

b
+
(

m1−β
0 −

a

b

)

eb(β−1)t
]

1

1−β

, (A5)

where m0 is the initial mass of the organism.
As β < 1, the solution of Eq. (A5) converges to

M ≡ m(t → ∞) =
(a

b

)
1

1−β

, (A6)

which can be interpreted as the maturity mass of the
organism.

One can show that if one plot the quantity

µ ≡

(m

M

)1−β

=
Maintenance Energy

Total Metabolic Energy
, (A7)

a kind of dimensionless mass, as a function of

τ ≡ − ln

(

1−
(m0

M

)1−β
)

+
a(1− β)

M1−β
t, (A8)

a kind of dimensionless time, many kinds of animals
(birds, mammals, fish) and also tumors collapse in the
same universal curve (µ = 1− e−τ ), as it was showed in
the figure (1).

[1] G. B. West, J. H. Brown, and B. J. Enquist, Nature 413,
628 (2001).

[2] C. Guiot, P. G. Degiorgis, P. P. Delsanto, P. Gabriele,
and T. S. Deisboeck, Journal of theoretical biology 225,
147 (2003).

[3] S. McElwain and R. Araujo,
Bulletin of Mathematical Biology 66, 1039 (2004).

[4] A. G. e. Alberto d’Onofrio,Mathematical Oncology 2013 ,
1st ed., Modeling and Simulation in Science, Engineering
and Technology (Birkhäuser Basel, 2014).
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