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Microcanonical analysis of a nonequilibrium phase transition
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Microcanonical analysis is a powerful method for studying phase transitions of finite-size systems.
This method has been used so far only for studying phase transitions of equilibrium systems, which
can be described by microcanonical entropy. I show that it is possible to perform microcanonical
analysis of a nonequilibrium phase transition, by generalizing the concept of microcanonical entropy.
One-dimensional asymmetric diffusion process is studied as an example where such a generalized
entropy can be explicitly found, and the microcanonical method is used to analyze a nonequilibrium
phase transition of a finite-size system.
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Microcanonical analysis is a powerful method for
studying phase transitions of finite-size systems [1, 2].
In this approach, the form of the microcanonical entropy
is examined to see whether there is a convex region. Ex-
istence of such a region signals the onset of an inhomo-
geneity, and the system is considered to undergo a first-
order phase transition in this region. The phase tran-
sition in microcanonical analysis is a well-defined con-
cept even for a finite-size system, which is in contrast
to most of the traditional canonical ensemble approach
where phase transition is defined only for infinite size
systems, defined in terms of singular behavior of physi-
cal quantities in this limit. The microcanonical analysis
has been applied for studying phase transitions of vari-
ous finite-size systems such as spin models [3–6], atomic
clusters and nuclei [2, 7], polymers [8–15], peptides [16],
and proteins [17–21].
Since only equilibrium systems can be described in

terms of microcanonical entropy, microcanonical method
has been used exclusively for analyzing equilibrium phase
transitions so far. In this Letter, I show that it is possi-
ble to apply this method for analyzing a nonequilibrium
phase transition [22–28], by a proper generalization of
the concept of microcanonical entropy.
Let us first briefly review the connection between the

convex region of microcanonical entropy and the phase
transition [1, 2]. We consider a finite closed system with
a conserved quantity, say energy E, and denote the num-
ber of corresponding microstates as ΩL(E), where the
subscript denotes the dependence on the system size L.
The microcanonical entropy is then defined as

SL(E) = lnΩL(E) (1)

where we use the unit with kB = 1. Now suppose we
construct a larger system by assembling two identical
subsystems of energy E and size L. We let the two
subsystems make a thermal contact, but let the cou-
pling between the two systems be weak enough so that
the total energy is Etot = 2E = EA + EB where EA

and EB are the energy values of the two subsystems.
We then examine the qualitative feature of the probabil-

ity distribution of the energy values of the subsystems,
P (EA, EB) ∝ exp(SL(EA)+SL(EB)). If SL(E) is a con-
cave function, then P (E,E) > P (E−, E+) for any E±

with E− < E < E+, so the homogeneous distribution of
energy among the subsystems is preferred. On the other
hand, if there is a convex region in SL(E) so that one
can find values E1, E2 and 0 < p < 1 satisfying

E = pE1 + (1− p)E2,

SL(E) < pSL(E1) + (1− p)SL(E2), (2)

then there are values E± such that P (E,E) <
P (E−, E+) so that an inhomogeneous distributions is fa-
vored, and we say that the system is in the region of
the first-order phase transition. The argument can eas-
ily be generalized to the case of subsystems of different
sizes, more than two subsystems, and multiple conserved
quantities [1, 2].
We note that the only relevant property of ΩL(E) ex-

ploited in the argument is that when a conserved quantity
Q = QA+QB of the total system is distributed over two
subsystems A and B, the probability distribution of QA

and QB is proportional to the product of Ωs:

P (QA,QB) ∝ ΩL(QA)ΩL′(QB) (3)

where L and L′ denote the sizes of the subsystems A and
B. We can also impose a certain boundary condition
at the interface between the subsystems, in which case
P (QA,QB) becomes a conditional probability. There-
fore, it is clear that even for a nonequilibrium system, if
a probability of the distribution of a conserved quantity
Q among subsystems under appropriate boundary con-
dition can be expressed in the form Eq.(3), then we can
consider ΩL(Q) as the generalized density, and their log
as the generalized entropy, which can then be used as the
target of the microcanonical analysis. This is the main
claim of this Letter.
As an example of a nonequilibrium model on which

microcanonical analysis can be performed, we consider a
diffusion model where particles of two types, labelled as 1
and 2, move asymmetrically on a periodic lattice of length
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L [23–25, 29]. Treating the vacancy as a particle with
label 0, the transition rates gαβ for the particle exchange
of the type (α, β) → (β, α) at neighboring sites are given
as [24, 25, 29]

g10 = g02 = 1, g12 = q, g21 = 1 (4)

with all other components of gs being zero. We note that
the numbers of both types of particles are conserved sep-
arately, which we will denote as n1 and n2. The matrix
representation of the stationary state for this process has
already been found, and is given as [24, 25, 29]

Pst(β1, · · ·βL) = trGβ1
· · ·GβL

/
∑

γ1,···,γL

trGγ1
· · ·GγL

(5)

where βk denotes the particle type at the k-the site, and
the components of the three infinite-dimensional matrices
Gβ (β = 0, 1, 2) are given as

(G0)ij = δ1iδ1j

(G1)ij = aiδij + tiδij−1

(G2)ij = aiδij + sjδi−1j . (6)

where

ak =
1 + q2−k − 2q1−k

q − 1
,

sktk =
1− q−k

(q − 1)2
(

1− q3−k + 4q2−k
− 4q1−k

)

(7)

Now let us suppose that there are vacancies at sites a
and b. The whole periodic lattice can be divided into two
regions bounded by these two sites, and we would like to
obtain conditional probability for particles in these two

regions being nA = (n
(A)
1 , n

(A)
2 ) and nB = (n

(B)
1 , n

(B)
2 ).

Obviously, from Eq.(5), we see that it is proportional to

P (nA,nB) ∝
∑

γ1,···,γL

tr(Gγ1
· · ·Gγa−1

G0Gγa+1
· · ·Gγb−1

×G0Gγb+1
· · ·GγL

)δ(
∑

i∈A

δγi,1, n
(A)
1 )δ(

∑

j∈A

δγj ,2, n
(A)
2 )

×δ(
∑

k∈B

δγk,1, n
(B)
1 )δ(

∑

l∈B

δγl,2, n
(B)
2 ) (8)

where δ(a, b) = δa,b denotes Kronecker delta function
that vanishes when the indices are not equal. Note that

tr(Gγ1
· · ·Gγa−1

G0Gγa+1
· · ·Gγb−1

G0Gγb+1
· · ·GγL

)

= tr(G0Gγa+1
· · ·Gγb−1

G0Gγb+1
· · ·Gγa−1

)

=
[

Gγa+1
· · ·Gγb−1

]

11

[

Gγb+1
· · ·Gγa−1

]

11

= tr(G0Gγa+1
· · ·Gγb−1

)tr(G0Gγb+1
· · ·Gγa−1

). (9)

Therefore, the conditional probability for the steady state
is expressed in the form Eq.(3), where the generalized

density for a system of size L is now defined as

ΩL(n)

=
∑

γ1,···,γL

tr(G0

L−1
∏

k=1

Gγk
)δ(

L−1
∑

i=1

δγi,1, n1)δ(
L−1
∑

j=1

δγj ,2, n2)

=
∑

γ1,···,γL

[

L−1
∏

k=1

Gγk

]

11

δ(

L−1
∑

i=1

δγi,1, n1)δ(

L−1
∑

j=1

δγj ,2, n2),(10)

where the system size L includes one vacancy. We an-
alyze the phase transition of the current model by per-
forming the microcanonical analysis on the generalized
entropy SL(n) = logΩL(n). It is expressed in terms of
(L/2)×(L/2) submatrices ofGβ , which can be computed
exactly for given values of q and L [24, 25, 29].
By performing analytic computations, Monte Carlo

simulation, mean field calculations [24], and partition
function zero analysis [25], it has been argued that this
system undergoes a nonequilibrium phase transition in
the limit of L → ∞. There is a qc > 1 such that the
system remains homogeneous for q ≥ qc, but inhomo-
geneities of particle densities appear for certain range of
particle numbers when q < qc. In fact, the latter can be
considered as a region of first order transition between
the fluid and the condensed phases, as will be elaborated
below.
From the viewpoint of microcanonical analysis, the cri-

terion for a first-order transition is the existence of a
nonconcave region in the microcanonical entropy, a set
of points where one can find a direction with positive
second derivative [1, 2]. For the current model where the
conserved quantity n is discrete, I examined discretized
second derivatives

∆a∆bSL ≡ SL(n1 + a, n2 + b) + SL(n1 − a, n2 − b)

− 2SL(n1, n2), (11)

along the horizontal ((a, b) = (1, 0)), vertical ((a, b) =
(0, 1)), and two diagonal ((a, b) = (1,±1)) directions. A
point in the interior is nonconcave if any one of these four
quantities has a positive value.
The generalized entropy function SL(n1, n2) are shown

in the left panels of the figures 1 and 2 for L = 10 and
L = 100 respectively, for various values of q. Note that
the entropy has the symmetry with respect to the line
n1 = n2 due to the invariance under the simultaneous
application of particle type exchange 1 ↔ 2 and the par-
ity inversion k ↔ −k. We see that for small enough
values of q, a nonconcave region appears in the gener-
alized entropy, enclosed by dashed lines in figure 1 and
denoted as gray regions in figure 2. As q increases, the
nonconcave region shrinks, and eventually disappears for
large enough values of q. We find that nonconcave re-
gion always includes a part of the line n1 = n2. The
second derivative at such a point is also largest along the
(1, 1) direction, which tells us that for sufficiently small q,
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FIG. 1: The generalized entropy function SL(n1, n2) for L =
10 is displayed with distinct symbols for points belonging to
different ranges of function values, for (a) q = 0.5 , (c) q = 0.7,
and (e) q = 2.0. The nonconcave region is enclosed by dashed
lines. The cross section along the diagonal line n1 = n2 in
figures (a), (c), and (e), are displayed in figures (b), (d), and
(f). The concave envelopes are drawn in figures (b) and (d)
with dashed lines as visual guides.

when the system is divided into subsystems with respect
to a pair of vacancies, it is most probable that there is a
inhomogeneity for the total particle numbers, but there
are the same numbers of two species at both sides. Note
that this is an exact statement for a finite value of L, in
contrast to the results of previous works where limit of
L → ∞ was considered [24, 25].

The cross sections of SL(n1, n2) along the line n1 =
n2 = n, SL(n, n), are also displayed in the right panels of
figures 1 and 2, where the concave envelopes are denoted
by dashed lines whenever they exist. These correspond
to the regions of the first-order transition, whose upper
and lower boundaries ρ± in the space of particle density
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FIG. 2: The contours of the generalized entropy function
SL(n1, n2) for L = 100 are drawn for (a) q = 0.8 , (c) q = 1.1,
and (e) q = 2.0, at intervals of 200, 50, 20, respectively. The
nonconcave region is colored gray. The cross section along the
diagonal line n1 = n2 in figures (a), (c), and (e), are displayed
in figures (b), (d), and (f). The concave envelopes are drawn
in figures (b) and (d) with dashed lines as visual guides.

ρ ≡ n/L (0 ≤ ρ < 0.5) are drawn as functions of q to
produce a phase diagram in the figure 3, for L = 10 and
L = 100. The mean field result q̃(ρ) = (1 + 6ρ)/(1 + 2ρ)
in the limit of L → ∞ is shown in the figure 3 with a
dashed line for comparison [24], where q̃(ρ) is the inverse
function of ρ±(q).

The high-density side of the phase boundary, ρ ≥ ρ+,
corresponds to the condensed phase. Note that there is
a q1(L) such that ρ− = 0 for q ≤ q1(L), in which case
the low-density phase ρ = ρ− = 0 is just the vacuum
without any particles present. For q > q1(L), the low-
density phase ρ ≤ ρ− is the fluid phase. As q increases,
ρ± approaches toward each other and eventually merges
at the critical point q = qc(L), after which the system
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FIG. 3: The phase boundary ρ±(q) for L = 10 and L = 100.
The mean field result in the limit of L → ∞ is shown with
dashed line for comparison.

is in a homogeneous phase. The values of q1 and qc for
L = 10 and L = 100 are indicated by arrows in Figure
3. The mean field prediction for these parameters are
q1(∞) = 1 and qc(∞) = 2, as can be easily read off from
the analytic expression for q̃(ρ).
The regions q ≤ q1, q1 < q < qc, and q ≥ qc have been

called pure, mixed, and disordered phases [24]. However,
microcanonical analysis shows that in ρ space, each of the
regions q ≤ qc and q1 < q < qc is divided into vacuum
(or fluid) phase (ρ ≤ ρ−), condensed phase (ρ ≥ ρ+),
and the phase coexistence region (ρ− < ρ < ρ+). The
situation is analogous to the two-dimensional Ising model
with the conserved magnetization M and the tempera-
ture T . When one simply considers the T dependence,
then there is a critical temperature Tc such that the sys-
tem is in a disordered phase for T ≥ Tc and ordered phase
for T < Tc. However, by examining the M dependent be-
havior of the system, one realizes that the ordered phase
in fact gets divided into up-spin phase, down-spin phase,
and the region of the first-order transition between up
and down phases.
I also plot qc(L) and q1(L) as functions of L in figure

4. Both qc(L) and q1(L) approach their mean field values
qc(∞) = 2 and q1(∞) = 1.
The current work also clarifies the physical meaning

of a previous work based on the partition function ze-
ros (PFZs) [25]. There, a partition function of the form
∑

n1,n2
ΩL(n1, n2)x

n1+n2 was constructed where x was
called the chemical potential. Then the PFZs in the
complex plane of x was analyzed to claim that there is
a first-order transition as L → ∞, for sufficiently small
values of q. It is obvious that ΩL(n) was used implic-
itly as the generalized density of states, but it was not
explained why ΩL(n) should have such a special status.
Also, the physical meaning of the chemical potential was
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FIG. 4: The critical values qc (solid line) and q1 (dashed line)
as functions of the system size L. The first-order phase tran-
sition exists for q < qc. The low-density phase is a vacuum
phase for q ≤ q1 and fluid phase for q1 < q < qc

unclear, because ΩL(n) was regarded as describing the
the particles on a periodic lattice of size L, which is an
isolated system. The current work not only justifies the
use of ΩL(n) as a generalized density, via the factoriza-
tion Eq.(3), but also shows that ΩL(n) in PFZs approach
describes a subsystem of size L−1 bounded by pair of va-
cancies, rather than the whole system. Then the chemical
potential x can be considered as a parameter describing
the rest of the system whose size is much larger than L,
acting as an infinite-size particle reservoir. The micro-
canonical analysis is more general since the phase transi-
tion is well defined for a system with a finite size. In fact,
the notion of finite-size nonequilibrium phase transition
itself is introduced for the first time in the current work
via microcanonical analysis, which would be a subject of
much interest for future study.
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