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From the Horowitz-Esposito stochastic thermodynamical description of information flows in dy-

namical systems [J. M. Horowitz and M. Esposito, Phys. Rev. X4, 031015 (2014)], it is known that

while the second law of thermodynamics is satisfied by a joint system, the entropic balance for the

subsystems is adjusted by a term related to the mutual information exchange rate between the two

subsystems. In this article, we present a quantitative discussion of the conceptual link between the

Horowitz-Esposito analysis and the Liang-Kleeman work on information transfer between dynamical

system components [X. S. Liang and R. Kleeman, Phys. Rev. Lett. 95, 244101 (2005)]. In particu-

lar, the entropic balance arguments employed in the two approaches are compared. Notwithstanding

all differences between the two formalisms, our work strengthens the Liang-Kleeman heuristic bal-

ance reasoning by showing its formal analogy with the recent Horowitz-Esposito thermodynamic

balance arguments.

PACS numbers: Thermodynamics (05.70.-a), Entropy (89.70.Cf), Information Theory (89.19.lo), Conserva-

tion Laws (11.30.-j).

I. INTRODUCTION

There are several factors that drive the merging of information-theoretic methods to study the physics of complex

dynamical systems. For instance, an important motivation is provided by the fact that the interacting components

(that is, subsystems) of physical systems generate information at a nonzero rate [1] and exchange information as

they influence each other [2]. A quantitative description for the processes of production, gathering, and exchange of

information can be provided by means of the concept of entropy. In turn, the notions of information and entropy

lead naturally to thermodynamic arguments [3]. Indeed, the second law of thermodynamics is a fundamental guiding

principle that imposes fundamental limits to the amount of information that can be gathered [4] and/or exchanged

[5] between interacting components of a physical system.

The interest in describing and, to a certain extent, understanding the dynamics of information transport in complex
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systems is justified by the important role that information transfer analysis has in detecting asymmetry in the

interaction of subsystems [1], in predicting the weather [6], in controlling a system [7, 8], in inferring causal structures

[9, 10], and, from a more conceptual standpoint, in investigating the thermodynamics of Maxwell’s demon [11–13].

A convenient way to understand the relation between information and thermodynamics is by investigating the man-

ner in which information flow affects the thermodynamics of a system. Two important quantities in information theory

and thermodynamics are given by the rate of mutual information [14] and the thermodynamic entropy production

[15–17], respectively. In particular, entropy production is a central physical observable in stochastic thermodynamics

[17, 18], a framework to study systems far from equilibrium. Entropic rates of information-theoretic nature, instead,

are central quantities in information theory. Therefore, it seems reasonable to expect that the investigation of the

relation between thermodynamic and information-theoretic entropic rates can pave the way to a better understanding

of the link between information and thermodynamics. Indeed, this reasonable expectation has been already explicitly

tested in a quantitative manner in several works in the literature [19–21]. To the best of our knowledge, one of the

first attempts to investigate the thermodynamics aspects of information flow with special regard to the inference of

causal structures was presented in [22], where a version of the second law of thermodynamics was used to character-

ize the thermodynamic cost for information flow in a system defined by a pair of Brownian particles, each coupled

to a thermal bath at different temperatures. A similar type of hybrid information-theoretic and statistical physics

approach, including reasonings based upon the second law, to the study of information flow in interacting systems

has been recently discussed by Hartich-Barato-Seifert and Horowitz-Esposito in Refs. [23] and [2], respectively. More

specifically, in [22] entropic rate is defined as the time derivative of the time-delayed mutual information and is used

to characterize the information flow between two Brownian particles coupled to different heat baths, as mentioned

earlier. In [23], entropic rate is defined as the entropy reduction rate of a subsystem due to its coupling to the other

subsystem composing the bipartite system and is used to show that Maxwell’s demon can be realized in terms of a

bipartite Markov process. Finally, in [2] entropic rate is defined as the time derivative of the mutual information and

is used to investigate the thermodynamics of information flow between two interacting subsystems of a Markovian

bipartite system.

The notion of entropy rate in information transport mechanisms is not uniquely defined in the literature but it is

not the scope of this article to provide a review of such diverse definitions. Instead, inspired by the works in [2, 22, 23],

we focus on two main points in this article. First, we point out the conceptual link between the Liang-Kleeman notion

of information transfer [6] and the Horowitz-Esposito notion of information flow [2]. This allows us to avoid some
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heuristic arguments in the Liang-Kleeman approach and replace them with thermodynamic reasoning. This first

point sets the Liang-Kleeman analysis on more foundational grounds and, in addition, exhibits its similarity with the

Horowitz-Esposito thermodynamic analysis of information flow. Second, we compare the foundationally strengthened

Liang-Kleeman notion of information transfer with that provided by Schreiber, after having briefly discussed the

physical [24] and thermodynamical [25] interpretations of the latter. This second point improves our understanding

of the differences between the two notions from a more fundamental point of view [22].

The layout of this article is as follows. In Sec. II, we reexamine the entropic aspects of both the Liang-Kleeman

and the Horowitz-Esposito approaches. In Sec. III, we strengthen the Liang-Kleeman heuristic entropic balance ar-

guments by emphasizing the formal analogies between the two approaches. We also compare such thermodynamically

strengthened information transfer measure with the thermodynamic interpretation of Schreiber’s transfer entropy.

Finally, in Sec. IV we present our conclusive remarks.

II. CONSERVATION OF PROBABILITY

The transport of a conserved quantity is described by a continuity equation whose differential form is given by [26],

∂ρ

∂t
+ ~∇ ·~j = 0, (1)

where ρ denotes the volume density of the conserved quantity and~j is the ordinary vector flux of the conserved quantity.

In classical electrodynamics, for instance, the electric charge is the conserved quantity, ρ is the electric charge density,

and ~j is the electric current density [27]. A similar line of reasoning appears in fluid dynamics, thermodynamics, and

quantum theory where the electric charge is replaced with mass, heat, and probability distributions, respectively. A

continuity equation associated to the conservation of probability is the fundamental starting point of discussion in

both the Liang-Kleeman and the Horowitz-Esposito approaches to information transfer and information flow.

A. The Liang-Kleeman approach: Heuristic arguments

The Liang-Kleeman approach can be applied to both deterministic and stochastic systems of arbitrary finite di-

mensionality, either discrete or continuous. For a recent comprehensive review of the Liang-Kleeman approach, we

refer to [28]. For the latest developments on this approach, we refer instead to [29]. In this article, our discussion is

based upon the working hypotheses of the original work presented in [6] which contains the essence of the philosophy

of the Liang-Kleeman approach. Specifically, we shall be considering a two-dimensional continuous and deterministic
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autonomous system with a priori knowledge of the dynamics,

d~x

dt
= ~F (~x) , (2)

where ~x = (x1, x2) belongs to the state space Ω = Ω1 × Ω2 and ~F = (F1, F2) with Fi = Fi (x1, x2) for any i = 1,

2 is the (known) flow vector. The sample values (x1, x2) are associated to a stochastic process ~X = (X1, X2) with

(known) joint probability density distribution at time t given by ρ = ρ (x1, x2, t). The vector flux ~j equals ρ~F and

the continuity equation associated with Eq. (2) becomes,

∂ρ

∂t
+ ~∇ ·

(

ρ~F
)

= 0. (3)

Assuming that ρ vanishes at the boundaries, after some suitable algebraic manipulations of Eq. (3), it is found that

the temporal rate of change of the joint entropy of X1 and X2,

H (t)
def
= −

∫ ∫

Ω

ρ log ρdx1dx2, (4)

satisfies the relation [6],

dH

dt
= E

(

~∇ · ~F
)

. (5)

The base of the logarithm in Eq. (4) determines the units used for measuring information: bits and nats for base-2

and base-e, respectively. Equation (5) states the dH/dt equals the expectation value of the divergence of the flow

vector ~F ,

E

(

~∇ · ~F
)

def
=

∫ ∫

Ω

ρ
(

~∇ · ~F
)

dx1dx2. (6)

To describe the decomposition of the various mechanisms responsible for the joint and individual temporal rates of

changes of entropies of X1, X2, and (X1, X2) in terms of information transfers, Liang and Kleeman employ a very

clever heuristic argument. First, following the very same line of reasoning and working hypotheses used to obtain

Eq. (5), they compute both dH1/dt and dH2/dt where Hi denotes the entropy of Xi defined in terms of ρi obtained

from ρ after marginalizing over the degree of freedom j with j 6= i. Second, they observe that if X2 is frozen and X1

evolves on its own, its entropic rate of change would be equal to E (∂F1/∂x1). In the presence of interacting processes

X1 and X2 they find that,

dH1

dt
6= E

(

∂F1

∂x1

)

def
=

dH∗
1

dt
. (7)
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Therefore, they arrive at the conclusion that the difference between dH1/dt and E (∂F1/∂x1) must equal the rate of

entropy transfer from X2 to X1, and define transfer entropy as

T2→1
def
=

dH1

dt
−

dH∗
1

dt
= −

∫ ∫

Ω

ρ2|1 (x2 |x1 )
∂ (ρ1F1)

∂x1
dx1dx2, (8)

where ρ2|1 (x2 |x1 )
def
= ρ (x1, x2, t) /ρ1 (x1, t). Observe that combining Eqs. (5), (7), and (8), we obtain

dH1

dt
+

dH2

dt
=

dH

dt
+ T1→2 + T2→1. (9)

At this juncture we make the following remarks. First, when a flow is additive, matter has to be lost in one component

of the system in order for another component to receive it. However, information does not have to be lost in

one component in order for another component to receive it. A key difference between flow of matter and flow of

information is encoded into the asymmetry of the latter. Specifically, we note that if F1 = F1 (x1) and does not

depend on x2, we have T2→1 = 0 and there is no information transfer from X2 to X1. As a result of the asymmetric

nature of information transfer however, this does not necessarily imply that T1→2 = 0. We point out that the idea of

frozen variables also appears in the framework of bipartite networks [19] where one considers Markov processes with

states that are specified by two variables. In a transition between states, only one of the variables can change while

the other one is kept fixed. A few recent and interesting applications of such bipartite network formalism applied

to stochastic modeling for cellular and biochemical sensing appear in Refs. [20] and [21], respectively. Second, the

physical consistency of the Liang-Kleeman approach with the Schreiber work [1] (see also Section III) can be explained

as follows. In the former approach, a direction of the phase space is frozen in order to extract information transfer.

In the latter, the transition probabilities are essentially obtained from joint probabilities by fixing one component of

the joint system. Third, a conserved information-theoretic charge can be defined as,

Q (t)
def
= H (t)−

∫ t

E
(

~∇ · ~F
)

dt′. (10)

In general, Q (t) is not an additive quantity and it becomes so if one assumes ρ = ρ1ρ2, F1 = F1 (x1), and F2 = F2 (x2).

In other words, the conserved charge Q (t) is additive and equals Q1 (t) +Q2 (t) if and only if there is no information

flow between the components X1 and X2 of the joint system (X1, X2). We therefore conclude that the presence of

information transfers between the components of a complex system is incompatible with the additivity of a conserved

information-theoretic charge.
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B. The Horowitz-Esposito approach: Thermodynamic arguments

The second law of thermodynamics states that the entropy of an isolated macroscopic system cannot decrease in

time [30]. If fluctuation effects are also taken into account, it is possible to provide a new version of the second law

and, more generally, a new thermodynamic description for small systems. Such a framework is known as stochastic

thermodynamics [17, 18, 31]. In Ref. [23], being within the framework of stochastic thermodynamics, Hartich-Barato-

Seifert have investigated various second-law-like inequalities valid for bipartite systems. In particular, they have

provided an especially clear thermodynamical interpretation of Maxwell’s demon. Specifically, they have considered

a bipartite system (xy-system) where Maxwell’s demon is one of the subsystems (y-system) that affects the other

subsystem (x-system) used to extract work from a heat bath. Here we focus on the stochastic thermodynamical

formalism used in [2] by Horowitz and Esposito to characterize how information flow influences the thermodynamics

of a system described by a probability distribution that evolves according to a Markovian master equation [32] (or,

more specially, a Fokker-Planck equation [33]).

In what follows, we limit our discussion to bipartite thermodynamics and information flow [2]. For a very recent

analysis extended to multipartite flow, we refer to [5]. Specifically, consider a Markovian system (X , Y ) described by

a joint probability distribution p (x, y) that evolves according to a master equation,

dp (x, y)

dt
−

∑

x′, y′

[

W y, y′

x, x′ p (x
′, y′)−W y′, y

x′, xp (x, y)
]

= 0, (11)

where W y, y′

x, x′ is the the transition rate (matrix) at which the system (X , Y ) jumps from (x′, y′) to (x, y). An

important working hypothesis in [2] is the so-called bipartite assumption according to which the fluctuations (noises)

in each subsystem X and Y are independent. Although these fluctuations are not required to be generated by distinct

thermodynamics reservoirs, Horowitz and Esposito employ this additional assumption for the sake of simplicity of

exposition of their original argument. Equation (11) can be recast as a continuity equation as in Eq. (1) since

probability is conserved. To do so, the current (probability flux) J flowing from (x′, y′) to (x, y) is defined as,

Jy, y′

x, x′

def
= W y, y′

x, x′ p (x
′, y′)−W y′, y

x′, xp (x, y) . (12)

Combining Eqs. (11) and (12), the continuity equation becomes

dp (x, y)

dt
−

∑

x′, y′

Jy, y′

x, x′ = 0. (13)

A key point in the Horowitz-Esposito approach that plays an essential role in our comparison with the Liang-Kleeman

work is the exploitation of the bipartite structure in order to split the current Jy, y′

x, x′ into two separate flows, Jy
x, x′
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(the current from x′ to x along y) and Jy, y′

x (the current from y′ to y along x), in such a manner that

∑

x′, y′

Jy, y′

x, x′

def
=

∑

x′

Jy
x, x′ +

∑

y′

Jy, y′

x . (14)

Equation (14) implies that the flow in the joint (X , Y )-direction is the sum of two separate flows, one in the X-

direction and one in the Y -direction. The reasoning of Horowitz and Esposito goes as follows. They are interested in

describing how the information flow between the subsystems X and Y is linked to the thermodynamics of the joint

system (X , Y ). First, they observe that the second law of thermodynamics applied to (X , Y ) requires that [32],

Ṡi = dtS
XY + Ṡr ≥ 0, (15)

where Ṡi is the irreversible entropy production rate, Ṡr is the entropy rate flowing to the environment, and dtS
XY

denotes the time derivative of the joint (Shannon) entropy of (X , Y ). Second, they note that Eq. (15) does not

explain the manner in which information flows between X and Y . To achieve this goal, they point out that Ṡi,

dtS
XY , and Ṡr are linear functionals of the currents, that is, they are flows. Then, in analogy to the splitting of the

current as in Eq. (14), they decompose any current functional A [J ] as,

A [J ] = AX +AY . (16)

The quantities AX and AY denote the variations in the X-direction and Y -direction of A [J ], respectively. In

particular, we find

Ṡi = ṠX
i + ṠY

i , and Ṡr = ṠX
r + ṠY

r . (17)

Using Eq. (17), recalling the information-theoretic relation SXY = SX + SY − I between joint entropy SXY and

mutual information I [14],

I
def
=

∑

x, y

p (x, y) log

[

p (x, y)

p (x) p (y)

]

, (18)

and defining the so-called information flow as [2],

dtI
def
= İX + İY , (19)

it follows after some simple algebra that Eq. (15) can be decomposed into two equations,

ṠX
i = dtS

X + ṠX
r − İX and, ṠY

i = dtS
Y + ṠY

r − İY , (20)

respectively. Observe that combining Eqs. (15), (17), and (20), we obtain

dtS
X + dtS

Y = dtS
XY + İX + İY . (21)
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The two relations in Eq. (20) and especially the reasoning underlying their derivation represent the main result

provided by Horowitz and Esposito that we are concerned with in this article.

III. A THERMODYNAMIC COMPARISON

In 2000, Schreiber formulated the current broadly accepted information-theoretic notion of transfer entropy [1].

Transfer entropy is a measure of time-asymmetric information transfer between jointly distributed random vectors

associated with time series observations. For an interesting outline of general differences between transfer entropy and

information flow defined via a time-shifted mutual information, we refer to [22]. For relatively recent thermodynamic

interpretations of transfer entropy, we refer to [24, 25].

In what follows, we compare the thermodynamic interpretation of Schreiber’s transfer entropy as presented in

[24, 25] with the Liang-Kleeman measure of information transfer after having emphasized its formal analogy with the

Horowitz-Esposito thermodynamic formalism.

A. The Liang-Kleeman approach: Thermodynamic arguments

Recall that the mutual information I between X1 and X2 is formally defined as [14],

I (t)
def
=

∫ ∫

Ω

ρ log

(

ρ

ρ1ρ2

)

dx1dx2, (22)

and equals,

I (t) = H1 (t) +H2 (t)−H (t) . (23)

Differentiating both sides of Eq. (23) with respect to time, we obtain

dtI = dtH1 + dtH2 − dtH . (24)

By combining Eq. (9) and (24), we find

dtI = T1→2 + T2→1, (25)

where I is defined in Eq. (22) and T1→2 in Eq. (8). After having reexamined both the Horowitz-Esposito and the

Liang-Kleeman approaches, the similarities between the two approaches become almost self-evident. Specifically, Eqs.

(3), (9), and (25) within the Liang-Kleeman approach correspond to Eqs. (13), (21), and (19) within the Horowitz-

Esposito approach, respectively. Due to these conceptual and mathematical analogies, the heuristic entropic balance
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arguments in [6] are automatically supported by the thermodynamically grounded entropic balance arguments as

presented in [2]. One of our main contributions in this article is pointing out these hidden connections after a critical

reconsideration of both approaches. We emphasize that the structure of Eq. (25) is similar to that of Eq. (B.5) in

[23]: the time derivative of mutual information in Eq. (18) and the Liang-Kleeman definition of transfer entropy in

Eq. (8) are replaced in [23] by the continuous time rate of mutual information and the continuous time version of

Schreiber’s transfer entropy, respectively.

B. The Schreiber approach: Thermodynamic arguments

The problem addressed by Schreiber was the following: given time series observations associated with interacting

subsystems of a complex system, quantify how information produced by an individual subsystem is exchanged with

another subsystem. To address this problem, Schreiber proposed an information-theoretic measure containing both

dynamical and directional information. To incorporate aspects of the dynamics of information transport into the

measure, Schreiber considered transition rather than static probabilities. Subsystems are assumed to be modeled in

terms of stationary Markov processes. A Markov process I is of order k if the conditional probability to find I in the

state in+1 does not depend on the state in−k,

p (in+1 |in,..., in−k+1 ) = p (in+1 |in,..., in−k ) , (26)

where for notational simplicity we define i
(k)
n

def
= (in,..., in−k+1). Ignoring static correlations due to common history,

transfer entropy is able to detect the directed exchange of information between two subsystems by measuring the

deviation from the generalized Markov property,

p
(

in+1

∣

∣

∣
i(k)n

)

= p
(

in+1

∣

∣

∣
i(k)n , j(l)n

)

. (27)

In the absence of information transfer from J to I, the state of J has no influence on the transition probabilities on

system I. Transfer entropy quantifies the departure from the assumption in Eq. (27) and is defined as

TJ→I
def
=

∑

in+1, i
(k)
n , j

(l)
n

p
(

in+1, i
(k)
n , j(l)n

)

log





p
(

in+1

∣

∣

∣
i
(k)
n , j

(l)
n

)

p
(

in+1

∣

∣

∣
i
(k)
n

)



 . (28)

Noting that p (i, j, k) = p (i |j, k ) p (j, k) = p (i, j |k ) p (k), after some simple algebraic manipulations, it is found

that the transfer entropy in Eq. (28) can be rewritten as,

TJ→I = ∆sI|J −∆sI , (29)
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where the entropy rates ∆sI|J and ∆sI are given by,

∆sI|J
def
=

∑

in+1, i
(k)
n , j

(l)
n

p
(

in+1, i
(k)
n , j(l)n

) [

log p
(

in+1, i
(k)
n

∣

∣

∣
j(l)n

)

− log p
(

i(k)n

∣

∣

∣
j(l)n

)]

, (30)

and

∆sI
def
=

∑

in+1, i
(k)
n

p
(

in+1, i
(k)
n

) [

log p
(

in+1, i
(k)
n

)

− log p
(

i(k)n

)]

, (31)

respectively. From Eq. (29), one concludes that the transfer entropy from the process J to the process I equals the

difference between the entropy rate in I (under the condition J) and the entropy rate in I. This physical interpretation

of transfer entropy was originally proposed in [24]. In addition, in Ref. [24] Ito and Sagawa employed the notion

of transfer entropy as defined by Schreiber in their generalized version of the second law of thermodynamics. They

showed that the entropy production in a single system J interacting with multiple other systems in K = {K1,..., KN}

is bounded by the information flow between these systems. Specifically, modeling the interacting systems by means

of a Bayesian network [34], they showed that

〈∆I〉 − 〈σ〉 ≤

N
∑

l=1

TJ→Kl
, (32)

where 〈∆I〉
def
= 〈Ifin〉−〈Iini〉 is the difference between the ensemble averages of the final and initial correlations between

J and the other subsystems in K (that is, the mutual information exchanged between the systems J and K), 〈σ〉 is the

ensemble average of the entropy production σ of subsystem J , and TJ→Kl
is the transfer entropy that characterizes

the information transfer from J to Kl. For further technical details, we refer to [24]. We also remark that, inspired by

the fluctuation relation for causal networks obtained in [24] and using the concept of transfer entropy in the continuos

time limit [19], Barato-Hartich-Seifert have recently presented a similar fluctuation relation for a stochastic trajectory

of a bipartite system [23].

In what follows, we shall focus on the thermodynamic interpretation of Schreiber’s transfer entropy as proposed

by Prokopenko et al. in Ref. [25]. The Prokopenko et al. approach can be synthesized as follows. For the sake of

simplicity, consider a joint system (X , Y ). For each subsystem, the variation of entropy ∆S equals the sum of the

entropy change caused by interactions with the surrounding ∆Sext and the internal entropy production σ inside the

system itself. Therefore,

∆S = σ +∆Sext. (33)

Two assumptions are employed. First, the conditional probability p (xn+1 |xn ) is related to the transition probability

of the system’s reversible state change. Second, the conditional probability p (xn+1 |xn, yn ) is related to the transition
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probability of the system’s possibly irreversible internal state change, due to the interactions with the external

surroundings. Furthermore, assuming a Boltzmann entropic expression for the Shannon entropy, Prokopenko et

al. arrive at the proportionality between local transfer entropy tY→X and external entropy production ∆Sext in the

additional working hypothesis of small fluctuations near equilibrium [25],

tY→X (n+ 1) ∝ −∆SX
ext, (34)

where

tY →X (n+ 1)
def
= log

[

p (xn+1 |xn, yn )

p (xn+1 |xn )

]

, (35)

and transfer entropy TY→X in Eq. (29) is the expectation value 〈tY →X (n+ 1)〉 of tY →X at each time step n.

Considering Eq. (33) for both subsystems, using Eq. (34) and setting Boltzmann’s constant kB equal to one (the

proportionality factor in Eq. (34) is given by kB ln 2 when entropy is given in units of nats), it is determined that

σX + σY = ∆S + [tY→X (n+ 1) + tY →X (n+ 1)] , (36)

where ∆S in Eq. (36) equals ∆S(X, Y ). Equation (36) is the analog of Eqs. (9) and (21) within the Liang-Kleeman

and Horowitz-Esposito approaches, respectively. We remark that while these analogies are quite illuminating from

a thermodynamic standpoint, they must be taken cum grano salis. For instance, unlike the information flow dtI =

İX + İY in Eq. (19), transfer entropy as defined by Schreiber in Eq. (28) is not a flow since it does not add up

additively to time derivative of any global quantity. Furthermore, unlike the information flow, transfer entropy is

always non-negative. For a recent and detailed information-theoretic analysis on the use of transfer entropy rate and

information flow to bound the extracted work during a thermodynamic process with feedback, we refer to [35].

Despite formal mathematical and trivial notational differences, we have provided here a novel quantitative re-

examination leading to the essential thermodynamical and physical similarities among the Liang-Kleeman [6], the

Horowitz-Esposito [2], and the Schreiber [1] works.

IV. CONCLUSIONS

The stochastic thermodynamical approach to information flows in dynamical systems as presented by Horowitz

and Esposito [2] explains that while the second law of thermodynamics is satisfied by the joint system, the entropic

balance for the subsystems is adjusted by a term related to the mutual information rate between the two subsystems.
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We have conveniently recast the Horowitz-Esposito formalism in Eq. (21) as,

dtS
X + dtS

Y = dtS
XY +

[

İX + İY
]

. (37)

In this article, starting from the conservation of probability and the continuity equation (see Eqs. (1), (3), and

(13)), we presented a quantitative discussion on the physical link between the Horowitz-Esposito analysis [2] and the

Liang-Kleeman work on information transfer between dynamical system components [6]. In particular, the entropic

balance arguments employed in the two approaches were compared. Notwithstanding all differences between the two

formalisms, our work strengthens the Liang-Kleeman heuristic balance reasoning by showing its formal analogy with

the Horowitz-Esposito thermodynamic balance arguments. We showed that Eqs. (3), (9), and (25) within the Liang-

Kleeman approach correspond to Eqs. (13), (21), and (19) within the Horowitz-Esposito approach, respectively. In

particular, we have conveniently recast the Liang-Kleeman formalism in Eq. (9),

dH1

dt
+

dH2

dt
=

dH

dt
+ [T1→2 + T2→1] , (38)

and underlined that the sum T1→2 + T2→1 is a flow dtI in Eq. (25) that adds up additively to the time derivative of

mutual information as given in Eq. (22). Finally, we have compared the thermodynamical interpretation of Schreiber’s

transfer entropy as provided by Prokopenko et al. in [25] to both the Liang-Kleeman and the Horowitz-Esposito works.

We have conveniently recast the Prokopenko et al. formalism in Eq. (36),

σX + σY = ∆S + [tY→X (n+ 1) + tY →X (n+ 1)] . (39)

We provided here a quantitative reexamination leading to the essential thermodynamical similarities among the Liang-

Kleeman [6], the Horowitz-Esposito [2], and the Schreiber [1] works. Analogies are summarized in Eqs. (37), (38),

and (39).

In synthesis, the main results of our scientific effort can be outlined as follows:

• We established a novel link between the Liang-Kleeman analysis [6] and the Horowitz-Esposito analysis [2]

concerning entropic balance arguments in the study of information transfer in complex dynamical systems.

• We strengthened the heuristic Liang-Kleeman information flow analysis [6] with the support of fundamental

thermodynamical arguments borrowed from the Horowitz-Esposito work [2].

• We deepened our comprehension of the connection between the (newly thermodynamically grounded) Liang-

Kleeman information flow [6] and the thermodynamical analog of Schreiber’s transfer entropy [1] as presented

by Propokenko et al. in [25].
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In conclusion, we think that our effort to emphasize such a unifying theoretical picture of thermodynamical nature

more or less explicit in different works is extremely important for describing and, most of all, understanding information

flows between components of complex systems of arbitrary nature from a foundational point of view.
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