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Rotational properties of ferromagnetic nanoparticles driven by a precessing
magnetic field in a viscous fluid
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We study the deterministic and stochastic rotational dynamics of ferromagnetic nanoparticles in a precessing
magnetic field. Our approach is based on the system of effective Langevin equations and on the corresponding
Fokker-Planck equation. Two key characteristics of the rotational dynamics, namely the average angular frequency
of precession of nanoparticles and their average magnetization, are of interest. Using the Langevin and Fokker-
Planck equations, we calculate both analytically and numerically these characteristics in the deterministic and
stochastic cases, determine their dependence on the model parameters, and analyze in detail the role of thermal

fluctuations.
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I. INTRODUCTION

Ferromagnetic single-domain nanoparticles possess a num-
ber of unique properties, such as, for example, superparam-
agnetism [1-3], giant magnetoresistance [4,5], and quantum
tunneling of magnetization [6-8]. These and other properties
provide a basis for numerous current and potential applications
of magnetic nanoparticles in data storage [9—11], spintronics
[12,13], drug delivery [14—16], and hyperthermia [17-20], to
name only a few. Magnetization dynamics plays a central role
in most of these applications, and its characteristics depend
strongly on whether the nanoparticles move or not. In the
latter case, the time evolution of magnetization can often
be described phenomenologically by the Landau-Lifshitz or
Landau-Lifshitz-Gilbert equation [21,22]. By adding thermal
torque [3] and spin-transfer torque [23,24] to these equations,
they can also be used to study thermal and spin-transfer
effects. Within this framework, a wide variety of phenomena,
including precessional switching, self-oscillations, and ther-
mal relaxation of nanoparticle magnetization, have already
been investigated (for a review, see Ref. [25] and references
therein).

Although there is experimental evidence that ferromagnetic
nanoparticles can freely rotate even in a solid matrix [26],
it is more obvious that the former case occurs for nanopar-
ticles suspended in a fluid. These systems, also known as
ferrofluids, exhibit a number of unique properties [27,28]. In
dilute suspensions, some of these properties are completely
determined by the magnetic and mechanical dynamics of
independent nanoparticles. Remarkably, in the case of high-
anisotropy nanoparticles, the magnetization motion describes
nanoparticle rotation as well. Because of its simplicity and
efficiency, this approach is very useful for investigating thermal
effects in these systems (see, e.g., Refs. [29,30]). In particular,
it has been used to predict and study the thermal ratchet effects
in ferrofluids subjected to a linearly polarized magnetic field
[31,32], and to determine the specific absorption rates [33,34].
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In this work, we present a detailed study of the rotational
dynamics of highly anisotropic nanoparticles in a precessing
magnetic field. We focus on the average angular frequency
of nanoparticle rotation and on the average nanoparticle
magnetization. The dependences of these quantities on the
model parameters, especially those that exhibit qualitatively
different behavior with and without thermal fluctuations, are
our main interest here.

The paper is organized as follows. In Sec. II, we describe the
model and main approximations and write the basic system of
Langevin equations governing the rotational dynamics of fer-
romagnetic nanoparticles. The corresponding Fokker-Planck
equation and the system of effective Langevin equations,
which is more convenient than the basic one, are obtained
in Sec. III. In the same section, we show that the interpretation
of multiplicative Gaussian white noises in effective Langevin
equations does not influence the statistical properties of their
solution. Section IV is devoted to the computation of the
average angular frequency of precession of nanoparticles and
their average magnetization in the deterministic case. The
effects of thermal fluctuations are considered in Sec. V. Here,
we confirm the validity of the system of effective Langevin
equations, use it for calculating the above-mentioned average
characteristics, and discuss the role of thermal fluctuations.
Finally, our main conclusions are summarized in Sec. VI.

II. MODEL AND BASIC EQUATIONS

We consider a spherical ferromagnetic particle of radius a,
which rotates in a viscous fluid under a uniform magnetic field
H = H(¢). In our study, we use the following assumptions.
First, the exchange interaction between magnetic atoms is
assumed to be so large that the magnitude |M| = M of the
particle magnetization M can be considered as a constant
parameter. Second, the particle radius is assumed to be so
small (less than a few tens of nanometers) that the nonuniform
distribution of magnetization becomes energetically unfavor-
able, i.e., a single-domain state with M = M(z) is realized. And
third, the magnetic anisotropy field is assumed to be so strong
that the magnetization is directed along this field, implying that
M is frozen into the particle body. With these assumptions, the
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rotational dynamics of a ferromagnetic particle is governed by
a pair of coupled equations,

M=wxM,
Jo=VMxH-6nVe.

(2.1a)
(2.1b)

Here, ® = w(¢) is the angular velocity of the particle, the
overdot denotes the time derivative, J = (2/5)pVa? is the
moment of inertia of the particle, p is the particle density,
V= (4/3)7m3 is the particle volume (we associate the
hydrodynamic volume of the particle with its own volume),
n is the dynamic viscosity of the fluid, and the multiplication
symbol denotes the vector product.

The former equation in (2.1) is a special case of the
kinematic relation a = @ x a, which holds for an arbitrary
frozen vector a of a fixed length, and the latter is Newton’s
second law for rotational motion. The first and second
terms on the right-hand side of Eq. (2.1b) are the torques
generated by the external magnetic field and viscous fluid at
small Reynolds number (<2x 10%), respectively. Because the
particle size is sufficiently small, the left-hand side of this
equation, i.e., the rate of angular momentum J, can safely
be neglected in a wide frequency domain. Using this massless
approximation and assuming that a random torque & = &(¢),
which is generated by the thermal motion of fluid molecules,
is also applied to a nanoparticle, we obtain

1 1
o=—MxH+ —E¢&.

2.2
61 6nV 2.2

With this result, Eq. (2.1a) reduces to the equation (see, e.g.,
Ref. [30])

: 1 1
M=-—MxMxH - _—Mx§ (23
o x (M x H) 6V x&  (23)

which describes the stochastic rotation of ferromagnetic
nanoparticles in a viscous fluid. Note that, in spite of the
similarity in appearance, Eq. (2.3) strongly differs from the
stochastic Landau-Lifshitz equation describing the magneti-
zation dynamics of fixed nanoparticles. The main difference
leading to a qualitatively different behavior of M is that
Eq. (2.3) does not contain the gyromagnetic term in the
deterministic limit. In particular, it is this term that is
responsible for the magnetization of nanoparticle systems in a
rotating magnetic field [35].

Since the nanoparticle magnetization M does not depend
on time, it is convenient to rewrite Eq. (2.3) in spherical coor-
dinates. Toward that end, we first represent the magnetization
vector as M = Mm with

m = sinf(cosp e, + singe,) + cosb e, 2.4)

where 6 = 6(¢) and ¢ = ¢(t) are the polar and azimuthal
angles of the nanoparticle magnetization, respectively, and e,
ey, and e are the unit vectors along the corresponding axes of
the Cartesian coordinate system xyz, whose origin is located at
the nanoparticle center. Then, introducing the rescaled random

torque as
1 1/2
=(— , 25
d (12ndBT) § 2-5)
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where kp is the Boltzmann constant and 7 is the absolute
temperature, from Eq. (2.3) one can obtain the following basic
system of stochastic Langevin equations:

p 1 dw 2( . )
=——— — [ —((ySImy — ¢, COSQ),
Tl 20 T é‘ ¢ é'y ¢

. 1 ow 2 .
O =— Sn26 99 T—z[(g“xcos<p+§ysm<p)cot0—{Z].
(2.6)

Here, w = W/Mz, W = —M - H is the Zeeman energy den-
sity, the dot denotes the scalar product, and

61 6nV
= —, T — ——
M2 T kT

are the time scales characterizing the nanoparticle rotation
induced by the external magnetic field and thermal torque,
respectively (1,/2 is also called the Brownian relaxation time).
The Cartesian components ¢, (v = x,y,z) of ¢ are assumed
to be independent Gaussian white noises with zero mean,
(¢,) = 0, and correlation function (¢,(#)¢, (")) = AS(t — 1),
where (-) denotes averaging over all realizations of Wiener
processes W, (¢) producing noises ¢, (for more details, see the
next section), A is the dimensionless noise intensity, and 5(z)
is the Dirac § function.

Finally, we choose the external magnetic field in the form

(2.8)

T 2.7

H = H[cos(wt)e, + sin(wt)e,] + H.e,,

where H and w are the amplitude and angular frequency
of the circularly polarized (rotating) component of H, and
H.e, is the constant component of H (see Fig. 1). In this
so-called precessing magnetic field, the reduced energy density
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FIG. 1. (Color online) Schematic representation of the model. A
nanoparticle of radius a with frozen magnetization M rotates about
the origin of the Cartesian coordinate system in a viscous fluid under
the action of a precessing magnetic field H.
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w = —m - h (h = H/M) is written as

w = —hsin6 cos(wt — @) — h, cosb 2.9)

withh = H/M > 0and h. = H./M >0

III. FOKKER-PLANCK EQUATION

An important feature of the Langevin equations (2.6) is
that the noises ¢, are multiplicative, i.e., they are multiplied
by functions of the angles 6 and ¢. It is well known (see, e.g.,
Refs. [36,37]) that the statistical properties of one-dimensional
systems described by Langevin equations with multiplicative
noises depend on the interpretation of the noises. In contrast,
the statistical properties of some multidimensional systems do
not depend on how the multiplicative noises are interpreted
[38]. Therefore, to determine if the interpretation of the noises
influences the statistical properties of 6 and ¢ and to find the
Fokker-Planck equation for the probability density of these
angles, Egs. (2.6) must be specified more precisely.

For this purpose, it is convenient to rewrite the system of
stochastic equations (2.6) in the form

3
= fiw) + Y gy 3.0

j=1
Here, u; (i = 1,2) are the elements of the 2x1 matrix [two-
component column vector u = u(z)] (u;) = (j}) with u; =0
and u, = ¢, the drift terms f;(u,#) are the elements of the 2x 1

matrix
1 ow/duy
(f) = ——( )
sin~2 u, ow/duy

with w taken from Eq. (2.9) in which the angles 6 and ¢ are
replaced by the variables u; and u,, respectively, ¢; = £, (f),
& = &y(t), &3 = &(), and the functions g;;(u) are the elements
of the 2x3 matrix

(e) = — 2 sin u,
8ij) = 7, \COt U1 COS U

Then, to specify Eq. (3.1), we first assume that the
increments du; = u;(t + t) — u;(t) of the variables u; at
T < min{t, 1} are given by

3.2)

— COS Uy 0
cotuy sinus —l)' 3.3)

3
Su; = fiwt)yr + Y gijlu(t + 1, T)I8W;,
j=1

(3.4)

where A ; € [0,1] are the parameters characterizing the action
of white noises ¢;, and §W; = W;(t + 1) — W;(t) are the
increments of Wiener processes W;(f) generating ¢;. Because
these noises are assumed to be independent and statistically
equivalent, the increments § W; can be completely character-
ized by two conditions,
(W;) =0, (§W;6W;) = AdjitT (3.5)
with § j; being the Kronecker delta. Finally, taking into account
that ug(r + A7) ~ ur(t) + A;0u; and expanding the last term
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in Eq. (3.4) to linear order in 7, we obtain

3
Sui = fiwnT + Y gy(WsW;

j=1

2 3
9gij(w)
+3 30, g’ S (WSWiSW;.

k=1 ji=1

(3.6)

Thus, the stochastic equations (3.1) are specified by the
difference scheme (3.6) in which the action of the noises is
accounted for not only through the increments 6 W; of Wiener
processes generating ¢ ;, but also by the parameters A ; realizing
an addition connection of the system with these white noises.
Since the last term on the right-hand side of Eq. (3.6) is
of the order of t [cf. Eq. (3.5)], this connection is able to
strongly modify the statistical characteristics of u;. Although
the cases with A ; = 0, 1/2, and 1 that correspond to the It6 [39],
Stratonovich [40], and Klimontovich [41] interpretations of
Langevin equations, respectively, are usually considered, any
other values of A; are allowed from a mathematical point of
view. Therefore, the choice of the parameters A ; for Egs. (2.6)
can only be made on physical grounds (see below).

Now, using Egs. (3.5) and (3.6) and the two-stage procedure
of averaging [42], we can derive the Fokker-Planck equation
that corresponds to the Langevin equations (3.1). Introducing
the probability density P = P(U,¢) that u(r) =U as P =
(§(u(?) — U)), where U is a constant column vector with
components U; and U,, the straightforward calculations [38]
lead to the following Fokker-Planck equation:

P+ Z —(ﬁ(U 0+ fi(U)P

Ao 02
—— ij(U U)P =0, 3.7
> 2 2 55,90, 81 W) (3.7)

where

- 2 &, 0gi(U)
f =433 3= =2

k=1 j=1

(3.8)

are the additional noise-induced drift terms that depend on the
interpretation (i.e., values of the parameters A ;) of stochastic
equations (3.1). It should be noted, however, that since the
noise ¢3 is additive and therefore dg;3(U)/dU; = 0, these
terms and, as a consequence, the probability density P do
not depend on A3.

If the reduced magnetic energy w does not depend on
time, then f;(U,t) = f;(U), and P tends to the equilibrium
probability density Py = Po(U) as ¢t — oo. In this limit,
Eq. (3.7) for P, reads

2

0 ~
> 57, SO+ SiU)Py

i=1

2

2
A
2 byl aU;dUy

It is natural to assume that the solution of this equation is the
Boltzmann probability density, which for 4 = 0 can be written
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in the well-known form

1 kh,
" 4 sinh(kh,)

ih, cos Uj

sin U; e ) (3.10)

where k = 1,/7; = M?*V /(kgT). Substituting Eq. (3.10) into
Eq. (3.9) and using the definitions (3.2) and (3.3), we
straightforwardly obtain

h
Al +A2—1+%[2+A(A1+A2—3)]COSU1

4
— (A = Al)cos(2U2)< — -+ kh;cosU; — 1)
sin- U,

2
(Kh) —(A — l)sm U, =0.

(3.1D)
This condition holds for all possible values of the variables U,
and U, (0 < Uy < 7,0 < U, < 2m) and parameter kh, (0 <
kh, < 00),1.e., Eq. (3.10) is the solution of the Fokker-Planck
equation (3.9) only if
A=1, M=hl=j. (3.12)

Thus, if Egs. (2.6) with Gaussian white noises of unit intensity
are interpreted in the Stratonovich sense, the random rotations
of nanoparticles are characterized by Boltzmann statistics at
long times.

Now, using the conditions (3.12) and introducing the vari-
ables ® = U; and & = U,, the Fokker-Planck equation (3.7)
can be rewritten in the form

P 1 9 [ow 1 1 9 [ow
— = ——|=—=—-—-cot® |P - ————| —P
ar 1, 00\00 « 7, 5in2© 9D \ 9D
1/ 9 L] 2 \p_o
L \902  sin2@9d2 ) T

We assume that the solution P = P(®,®,t) of this equation
is properly normalized, i.e.,

b4 2
/ d@/ dd P(®,0,t) =1,
0 0

and satisfies the initial condition P(®,W¥,0) = §(O® — ©))
8(P — dy) with @y = 6(0) and &y = ¢(0).

(3.13)

(3.14)

Effective Langevin equations

According to the above results, the basic Langevin
equations (2.6) should be interpreted in the Stratonovich sense.
Due to this fact, and because the system of two equations (2.6)
contains three Gaussian white noises, the study of the rotational
dynamics of nanoparticles by the numerical solution of these
equations is not quite practical. Therefore, it is convenient
to use, instead of Egs. (2.6), a system of effective Langevin
equations satisfying the following requirements. First, the
statistical properties of solutions of the basic and effective
equations must be the same and, second, the effective equations
must be interpreted in the Ito sense and contain two rather than
three independent Gaussian white noises. It has been shown
[43] that the corresponding system of effective Langevin
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equations can be written as

. 1 0w 1 /2
= ———+ —cotd ,
o 90 + CO + ,u1

¢: _M27

3.15
7] sm29 8<p 75 sin 6 (315)

where ©; = w;(t) (i = 1,2) are independent Gaussian white
noises with zero means, (u;(t)) = 0, and § correlation func-
tions, {(u;(t)u;(t")) = 8(t — ¢’). Note that the similar system
of effective Langevin equations, which corresponds to the
Landau-Lifshitz-Gilbert equation describing the stochastic
dynamics of magnetization in single-domain ferromagnetic
nanoparticles embedded into a solid matrix, has been proposed
in Ref. [44].

According to the results of Ref. [43], the probability density
of the solution of Egs. (3.15) satisfies the Fokker-Planck
equation (3.13). As a consequence, the rotational properties
of ferromagnetic nanoparticles can be described either by
Eqgs. (2.6) interpreted in the Stratonovich sense or, equivalently,
by Egs. (3.15) interpreted in the Ito sense. A remarkable
feature of the latter equations is that, independent of their
interpretation, the corresponding Fokker-Planck equation is
given by Eq. (3.13). Indeed, rewriting Eqs. (3.15) in the form

2
i = Fi(wn)+ Y Giwy,, (3.16)
j=1
where
1 (0w/du; — (1/k)cotu;
(F) = ——< D) (3.17)
7] in~"uy ow/dus
and
[2 (1 0
one can straightforwardly verify that the condition
2
9G;;
3 M 6w =0 (3.19)

ou
k=1 k

holds for all i and j. This means [38] [see also Eqs. (3.7)
and (3.8)] that the Fokker-Planck equation associated with
Egs. (3.15), i.e., Eq. (3.13), does not depend on the param-
eters A; providing a quantitative interpretation of stochastic
equations (3.15). While this conclusion is obvious for A;
(because the noise w; is additive), the independence of
Eq. (3.13) on X, is rather surprising (because the noise
is multiplicative). We note in this context that, in contrast to
the univariate case, there always exists a class of multivariate
Langevin equations with multiplicative Gaussian white noises
whose interpretation does not influence the corresponding
Fokker-Planck equations [38]. The above results show that
Egs. (3.15) belong to this unique class of Langevin equations.

IV. NOISELESS CASE

Before proceeding with the study of thermal effects, we first
briefly discuss the deterministic (noiseless) case. In this case,
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taking the limit 7, — oo and using Eq. (2.9), from Eqgs. (2.6)
we obtain the following system of deterministic equations:

710 = hcos@ cosy — h. sinb,
sin Y

Q—h——
fﬂﬁ sinf’

“4.1)
where ¥ = wt — ¢ is the lag angle and Q2 = wt; is the
dimensionless frequency of the rotating component of the
magnetic field (2.8). Assuming that 6 — 6., = const and
Y — Y = constast — 00, the above differential equations
in the long-time limit are reduced to a set of trigonometric
equations,

h €08 Oy COS Yoo — h, SiNOs, = 0,

Qsinby, — hsin iy, = 0. “4.2)
Because the solutions of these equations in the cases with
h, > 0 and h, = 0 can be quite different, we consider them
separately.

A. h; >0

Using Egs. (4.2) and the condition %, > 0, it can easily
be shown that the stationary solution of the deterministic

equations (4.1) is given by
1/Q
2j,2
—4Q2%h (1/h)] (4.3)

(3“) = arcsin |: \'/1"2

(I'? = Q% 4+ h? + h?). It can also be proven that this solution
is stable with respect to small perturbations of angles 6 and .
Therefore, the solution of Eqgs. (4.1) at &, > 0 always tends
to the stationary solution (4.3) as + — oo. In particular, the z
component of the reduced nanoparticle magnetization in the
long-time limit, m, = cos 6, can always be represented in
the form

m, = 202 — T2 4+ /T4 —4Q2K2.  (4.4)
V2 Q\/

In general, m, as a function of the parameters €2, &, and &,
exhibits the expected limiting behavior: m, — h;/\/h* + h?
as Q—>0;,m,—>1a Q—o00, h >0, or h, > 00; and
m, — 0 as h — oo. But the dependence of m, on 2 and h
under the condition that &, — 0 is not so obvious. Indeed,
from Eq. (4.4) one obtains

0, Q/h <1,

4.5)
1—(h/Q?2, Q/h>1

= lim m
= h,—0

i.e., the nanoparticle magnetization u depends only on the
ratio 2/h and, more importantly, the behavior of @ in the
regions 2/h <1 and Q/h > 1 is qualitative different. As
illustrated in Fig. 2, the numerical solution of Egs. (4.1)
obtained by the fourth-order Runge-Kutta method confirms
this theoretical result. Here and in the following, the numerical
calculations are carried out for maghemite (y-Fe,O3) nanopar-
ticles in water. In this case, the saturation magnetization of
nanoparticles, the dynamic viscosity of water, and the charac-
teristic time 7; at room temperature 7 = 298 K are given by

PHYSICAL REVIEW E 92, 042312 (2015)

1.0 *
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0.0} - . . L f
0.0 0.5 1.0 1.5 2.0 30 Q/h
FIG. 2. (Color online) Nanoparticle magnetization pn and

nanoparticle angular frequency x as functions of the reduced
magnetic field frequency €2/h. The solid curves represent the
analytical results (4.5) and (4.7), and the symbols indicate the
numerical results obtained at = 1071, by solving Egs. (4.1) for
maghemite nanoparticles in water. The numerical values of © and
X, which are calculated at h. = 10~ and &, = 0, respectively, do
not depend on the initial values 6(0) and v(0) of the polar and lag
angles.

47 M = 3.89x10° G, n=8.90x 1073 P, and 1,=5.56x 107
respectively.

B. h,=0

Equation (4.5) shows that the case with 4, = 0 is special.
If Q/h < 1, then Egs. (4.2) or Eq. (4.3) yields

T . Q
—, Voo = arcsin <Z)

and, as in the previous case, this solution is stable. In contrast,
if Q/h > 1, then the steady-state solution of Egs. (4.1) is
periodic in time with period fy = 71| /+/ Q2 — h? (periodic
regime of rotation) [45]. More precisely, in this case the angles
0(t) and () are changed in such a way that 6(¢ + 5) = 6(¢)
and ¥ (¢t + ty) = m + ¥ (¢). Using these results, it is possible
to determine the reduced angular frequency of nanoparticles,
which is defined as x = (1/w)lim,_, o ¢(¢)/t. Indeed, since

0o = (4.6)

\S}

o(t) = wt — (), from this definition one gets y =1 for
Q/h<land x =1 —n/(wty) for 2/h > 1, 1i.e,
1, Q/h <1,

= 4.7
X 1—JT=—h/Q2, Q/h>1. @D

This dependence of x on €2/ h is also in excellent agreement
with the numerical results, as shown in Fig. 2.

Comparing Eq. (4.7) with Eq. (4.5), we can see that the
nanoparticle magnetization p and the nanoparticle angular
frequency yx are connected in a remarkably simple way:
u + x = 1. It should be noted that, although the steady-state
dynamics of the unit magnetization vector m at 7, = 0 and
Q/h > 1 may depend strongly on the initial direction of this
vector (see Fig. 3 for illustration), there is no initial-state
dependence for . Thus, the condition u + x = 1 is universal
in the sense that it holds for all possible values of the reduced
magnetic field frequency €2/h and does not depend on the
initial values 6(0) and v(0) of the polar and lag angles.
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P . .
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L i
2
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0 1 1
0 /2 (V]

FIG. 3. (Color online) Examples of steady-state trajectories of
the rotational motion of nanoparticles illustrating their dependence
on the initial polar angle 6(0). The trajectories are obtained from
the numerical solution of Egs. (4.1) for  =2.5, h =1, h, =0,
¥(0) =0, and 6(0) = 0.4 (a); 6(0) = /2 (b); and 6(0) = 2.7 (c).
In this figure, the angles are measured in radians, the lag angle v (¢)
is reduced to the interval [0,7r], the arrows indicate the direction of
time evolution, and the degenerate trajectory b corresponds to the
nanoparticle rotation in the xy plane [i.e., 8(t) = 7/2].

To avoid confusion in interpreting the above condition,
we first recall that at s, > O the stationary solution (4.3) of
Egs. (4.1) is stable for all values of the ratio ©2/h. In this
case, m, is given by Eq. (4.4), x = 1, and, in addition, m,
can be approximated by Eq. (4.5) if &, is small but nonzero.
In contrast, since at 4, = 0 the stationary solution (4.6) of
Egs. (4.1) is stable only if 2/h < 1 and these equations at
/h > 1 have a periodic steady-state solution, in this case
the nanoparticle angular frequency is given by Eq. (4.7) and
the nanoparticle magnetization equals zero: © = 0. The last
result following from the definition u = (1/#) fots‘ dt cos0(1),
which accounts for the existence of a periodic solution of
Egs. (4.1) at Q2/h > 1, shows that the rotating magnetic field
(when h, = 0) does not magnetize the reference systems.
Thus, the condition i« + x = 1 holds if w is associated with m,
ath, < 1 (notat h, = 0) and y is taken at 7, = 0. We note in
this context that the rotational regime of nanoparticles, which
exists at infinitesimally small /4, is completely destroyed by
thermal fluctuations (see below).

V. EFFECTS OF THERMAL FLUCTUATIONS

Next, to study thermal effects in the rotational dynamics
of ferromagnetic nanoparticles with frozen magnetization,
we solve analytically the Fokker-Planck equation (3.13) and
numerically the system of effective Langevin equations (3.15).

A. Steady-state solution of the Fokker-Planck equation

The results obtained for the noiseless case suggest that,
depending on the model parameters, the steady-state solution
Py of the Fokker-Planck equation (3.13) at t — oo can be
represented as a function of two variables ® and ¥ = wt — P,
i.e., Py = Py(®,W). Using the relation 0 Py /0t = @wd Py /oW
and Eq. (3.13), we can find the equation for the steady-state
probability density Py directly from Eq. (3.13). For brevity, it
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is convenient to write this equation in the operator form,
d Py
oW’

where the Fokker-Planck operator L is defined as
ip d ow (©) P + K 0 (Jdw P
= — | x—= —cotG —— | —
YT e\ 00 T sineow \gw

+ i + : ” P, (5.2)
302 ' sin2@ow?) " '
with w = w(®,¥) = —hsin®cos ¥ — &, cos ©. In particu-
lar, if Q = 0, then Py is reduced to the equilibrium Boltzmann
probability density

LPy=kQ 5.1

Py = Py(®,¥) = %sin(ae*w(‘”) (5.3)
(Z=[ydo fozn dW sin ©® ¢ **(©-¥)) which is the normal-
ized solution of the equation L Py = 0.

Assuming that k 2 < 1, the steady-state probability density
Py can be expanded in a power series of x€2. In the linear
approximation in « €2, this expansion yields

Py =((14+«QF)Py, 54

where, according to Eq. (5.1), F = F(®,W) is the solution of
the following equation:

L(PyF) = %.
ow
Since the probability densities Py and P, are normalized, the
function F must also satisfy the condition

(5.5)

b4 2
/ d@f dVF(©,¥)Py(®,¥) = 0. (5.6)
0 0

In what follows, we restrict ourselves to the case when
h, =0 and «h < 1. Then, using Egs. (5.3) and (5.5), it is
not difficult to show that in the main approximation in k& the
function F is determined by the equation

1 9 (. 9F 1 8%F . .
- —| sin®— |+ ————= = —«hsin®Osin V.
sin® 9@ 00 sin? @ W2

(5.7)

The solution of this equation, which vanishes as kh — 0, has

the form
F = %Kh sin ® sin W. (5.8)

Therefore, taking into account that, up to quadratic order in
kh, Z = 4 (1 + k>h?/6) and

in® 2h2
Po="22 1 khsin®cos W — " (1—3sin® © cos> W),
4 6
(5.9)

from Eq. (5.4) one immediately gets

1
Py = Py + 8—K2hsz sin? © sin . (5.10)
T
To avoid any confusion, we emphasize that this result is
obtained under the assumption that Py = Py(®,V), h, =0,
and x max (2,h) < 1.
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B. Simulation results

Introducing the dimensionless time 7 = ¢/7; and using
Eq. (2.9), the system of effective Langevin equations (3.15)
in the rotating frame can be written as

do

1 /2
— = hcosfcosy — h,sinf + —cotf + ,/ —fiq,
dt K K

dy q_ s1n1/f [
di — sm@ Kk siné Az,

where fi; = fi;(f) = /71 n:(fr1) (i = 1,2) are dimensionless
Gaussian white noises with (fi;(f)) = 0 and (f;(F)ji;(f')) =
8(f — 1'). Tt is this system of equations that we used in our
simulations.

To verify if thermal fluctuations are properly taken into
account in the effective Langevin equations (5.11), we solved
these equations by the Runge-Kutta method and calculated the
quantity

(5.11)

8

o= 2h2 —5 Py —
According to Eq. (5.10), this quantity characterizes the
difference between the steady-state (when 2 # 0) and equi-
librium (when 2 = 0) probability densities at ¥ = 7/2 and
is expressed as o = (2/h) sin?> ©. The numerical results for
o as a function of ® are obtained by solving Eqgs. (5.11) for
71 =5.56x1077 s, k = 8, h, = 0, and different values of &
and 2. The solutions of these equations, i.e., the pairs of angles
0, = 0(f,) and ¥, = ¥ (f,), are determined at the moments of
time 7, = 10° + nAf (this choice of the initial time guarantees
that the transient processes are completed) with n = 1,N,
N = 10'!, and A7 = 1072, Finally, the numerical values of the
probability densities Py|y—z/2 and Py|y—r/2 are calculated as
Nulazo/(A®AWN) and Ny, |o—o/(A®AWN), respectively.
Here, N,, is the number of pairs (among the total N pairs)
satisfying the conditions 6, € [nA® — A®,mA®]and ¥, €
[7/2 — AV /2,wr/2 + AV/2), in which the parameters m,
A®, and AW are chosentobe m = 1,155 and A® = AV =
/155 (note also that ), N,, = N).

As is illustrated in Fig. 4, our simulation results for the
©® dependence of o are in very good agreement with the
theoretical prediction. This leads to the following conclusions.
First, the solution (5.10) of the Fokker-Planck equation (5.1)
correctly describes the long-time behavior of the rotational
motion of nanoparticles in a viscous fluid. Second, since
the difference (P — Po)lw=x,2 is of second order in «/, the
effective Langevin equations (5.11) can be used to predict and
study subtle rotational effects. And third, the representation
Py = Py(®,W¥), which is the key assumption in our analysis,
holds not only at 2/h < 1 (as could be expected from the
noiseless case), but also at &2/ > 1. The last means that the
periodic regime of rotation does not influence the steady-state
probability density Ps.

The numerical solution of Egs. (5.11) is then used to
determine the average values of the nanoparticle magne-
tization and nanoparticle angular frequency, (u) and (x).
They are calculated as () = (1/1) Zle cosf;and (x) =1—
(1/1) Yoty i/ (i), Whete 6; = 0;(Fim) and ¥; = v (Fim)
are the polar and lag angles in the i th run, 7, is the simulation

Po)lw=r2- (5.12)
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|
0 /4 /2 37/4 ©

FIG. 4. (Color online) Dependence of o on ® for 2/h = 0.5 (1)
and Q2/h = 1.5 (2). The solid curves correspond to the theoretical
result 0 = (Q2/h)sin’> ® and the symbols represent the numerical
values of o. The latter are obtained by solving Eqgs. (5.11) for
h=25x10"2, Q@ =1.25x1072 (1) and = 3.75x1072 (2); the
other parameters are given in the text.

time, and / is the total number of runs. In our simulations, we
set 7ym = 10° and I = 10°; the other parameters are the same
as in Fig. 2. It should be noticed that since %, is large enough,
the statistical properties of angles 6; and ; do not depend on
their initial values.

Using this approach, we observed that () = 0 for all finite
values of the inverse temperature parameter . At first glance,
this result is in disagreement with the behavior of & in the
noiseless case (when x = 00), see Fig. 2, because (u) at
large « should approach w. If w is numerically determined
for small but nonzero values of &, (e.g., h. = 1073 in Fig. 2),
then (u) at k > 1/h, indeed approaches w. However, since
 is mathematically defined as i, — 0, such an approach is
impossible for any finite «. In fact, the periodic regime of
nanoparticle rotation, which exists in the noiseless limit at
h; =0and Q/h > 1, is degenerate: lim;,__,o+ m,; = £u. The
thermal torque of arbitrary strength completely destroys this
regime, leading to (u) = 0.

The influence of thermal torque on the average angular
frequency of rotation of nanoparticles driven by a circularly
polarized magnetic field (when &z, = 0) is illustrated in Fig. 5.

XD =

0.5

0.0
0.0 0.5 1.0 15 2.0 2.5 Q

FIG. 5. (Color online) Average value of the reduced angular
frequency of nanoparticles, (x ), as a function of Q forh, =0,h =1
and different values of the parameter «. The solid curves show the
results obtained by numerical solution of Egs. (5.11), and the dashed
curve represents Eq. (4.7), which corresponds to the noiseless case

((X) |K:OO = X)
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FIG. 6. (Color online) Dependence of ¢ on €2 for different values
of k. The simulation parameters are chosen as in Fig. 5.

As seen, the average angular frequency () is strongly affected
by thermal torque (the lower the parameter «, the more the
torque strength), and it exhibits a remarkable dependence
on the driving field frequency €. Since (ii12(7)) =0, see
Egs. (5.11), the dependence of (x) on « and Q is a
purely nonlinear effect. Its most striking manifestation is
that thermal fluctuations can both increase and decrease
the angular frequency of nanoparticles as compared with
the deterministic case. Specifically, if €. is the solution of
the equation € = 0 (¢ = (X)|r=00 — (X)) With respect to €2,
then thermal fluctuations decrease the frequency of rotation
(¢ > 0) when Q < ., and increase it (¢ < 0) when Q > Q.
(see Fig. 6). Note that 2. grows and |min €| decreases as «
becomes smaller, and & approaches zero at large €.

By solving the effective Langevin equations (5.11) nu-
merically, we investigate the role of thermal torque in the
nanoparticle dynamics induced by the precessing magnetic
field (when h,; # 0). Before we proceed with the analysis
of thermal effects, we recall that in the noiseless case the
steady-state dynamics of nanoparticles has a precessional
character described by constant polar and lag angles (4.3). As
a consequence, in this case y = 1, i.e., the angular frequency
of precessional rotation of nanoparticles coincides with the
magnetic field frequency, and the z component of the reduced
nanoparticle magnetization is given by Eq. (4.4).

Because Egs. (5.11) are nonlinear, the thermal torque
essentially influences the average characteristics of the pre-
cessional motion of nanoparticles. In particular, due to its

<X

0.5

0.0 1 ] ] | ]
0.0 0.5 1.0 1.5 2.0 2.5

FIG. 7. (Color online) Average value of the reduced angular
frequency of precession of nanoparticles as a function of Q2 fors =1,
k =5, and different values of the parameter /,.
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<X> T T T T T

0.8

0.6

0.4 1 1 1 1
0.0 1.0 2.0 3.0 4.0

1
5.0 h,

FIG. 8. (Color online) Average value of the reduced angular
frequency of precession of nanoparticles as a function of h, for
h =1, k =5 and two values of 2. In this case, the characteristic
frequency €2y that separates the regimes of monotonic (2 < £2) and
nonmonotonic (2 > €2) dependence of () on A, is equal to 0.78.

action, the average angular frequency of precession becomes
less than the magnetic field frequency, i.e., (x) < 1 for all
finite values of k. Moreover, the numerical simulations show
that (x) is a monotonically decreasing function of 1/« with
() 1/k=0 = 1 and (x)|1/c=o0 = 0. The average frequency (x)
also decreases monotonically with increasing 2 (see Fig. 7),
and (x) — 0 as 2 — oo for each finite k. An important
feature of these dependences is that they decrease more slowly
with increasing h.. This fact suggests the existence of the
characteristic frequency €2, which separates two qualitatively
different behaviors of (x) as a function of %,. Namely, if
Q < Qop, then (x) monotonically decreases as /, increases,
and (x) exhibits a nonmonotonic dependence on 4, if Q2 >
€, as shown in Fig. 8. It is important to emphasize that
all these remarkable properties of the average frequency of
precession of nanoparticles result from thermal fluctuations;
in the noiseless case, (x) = 1.

Finally, the dependence of the average reduced magnetiza-
tion (m;) on Q and « is illustrated in Fig. 9. As seen, (m,)
approaches the theoretical result (4.4) as k grows, and (m.)
almost does not depend on €2 at relatively small x. Since
the limit €2 — oo corresponds to the absence of the rotating
magnetic field, from Eq. (3.10) one obtains (m;)|g—co =
2 foﬂ cos O Py(0)dO = L(kh;),where L(x) = cothx — 1/x1is
the Langevin function. In particular, for curves 1, 2, and 3, the

<my, T T T T T —
-
0.5
0.0 ] ] ] | ]
0.0 0.5 1.0 1.5 2.0 2.5 Q

FIG. 9. (Color online) Frequency dependence of the average
reduced magnetization for i, = 0.3, h = 1, and different values of
the parameter «. The dashed curve represents the theoretical result
(4.4) for the noiseless case.

042312-8



ROTATIONAL PROPERTIES OF FERROMAGNETIC ...

function L(k k) approximately equals 0.778,0.438, and 0.099,
respectively.

VI. CONCLUSIONS

We have studied both analytically and numerically the
rotational properties of ferromagnetic nanoparticle in a viscous
fluid driven by a precessing magnetic field. Our approach is
based on the system of multiplicative Langevin equations
for the polar and azimuthal angles of the nanoparticle
magnetization frozen into the massless nanoparticle. From
these equations, approximating the Cartesian components of
the random torque by Gaussian white noises and interpreting
them in an arbitrary way, we have derived the corresponding
Fokker-Planck equation. By associating the stationary solution
of this equation with the Boltzmann probability density, we
have established that the basic system of Langevin equations
should be interpreted in the Stratonovich sense. Within this
framework, we have reproduced the known system of effective
Langevin equations, which is simpler than the basic one, and
we have shown that the statistical properties of its solution do
not depend on the interpretation of multiplicative white noises.

Using the system of effective Langevin equations and the
corresponding Fokker-Planck equation, we have calculated
the average angular frequency of precession of nanoparticles
and the average magnetization of nanoparticles in the z
direction, and we have analyzed their dependence on the
model parameters. In the noiseless limit, the dependence of
these quantities on the rotating field frequency and amplitude
is different whether a constant component of the magnetic
field is zero or not. In the former case, it has been shown
both analytically and numerically that the angular frequency
and magnetization depend only on the ratio of the rotating
field frequency to the rotating field amplitude, and, starting
from a certain value of this ratio, these dependencies become

PHYSICAL REVIEW E 92, 042312 (2015)

strongly nonlinear. The most remarkable property of the
above-mentioned quantities is that their sum is strictly equal
to 1 (in dimensionless units) for any rotating field. In the latter
case, when the steady-state rotation of nanoparticles has the
precessional character, we have derived a general expression
for nanoparticle magnetization, and we have observed that the
frequency of nanoparticle precession always coincides with
the rotating field frequency.

The influence of thermal fluctuations on the rotational
dynamics of nanoparticles is investigated by numerical integra-
tion of the system of effective Langevin equations. To verify
these equations, we first calculated the difference between
the steady-state and equilibrium probability densities of the
nanoparticle orientation, which arises from a slowly rotating
magnetic field of small amplitude. Then, by comparing the
numerical results for this difference with the results obtained
from the analytical solution of the Fokker-Planck equation, we
have confirmed the validity of effective Langevin equations.
Finally, using these equations, we have observed a number
of interesting thermal effects. In particular, it has turned out
that the deterministic regime of rotation of nanoparticles,
which exists when a constant magnetic field is infinitesimally
small and the rotating field frequency exceeds the critical
one, is completely destroyed by thermal fluctuations. But
the most important observation is that thermal fluctuations
can play a constructive role in the precessional dynamics
of nanoparticles. The nonmonotonic behavior of the average
angular frequency of nanoparticle rotation as a function of
constant magnetic field strength supports this statement.
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