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An analytic formula for the density of states of Wako-Saito-Muñoz-Eaton model, for simple classes
of β-hairpins, is obtained. Under certain simplifying assumptions on the structure of the turn region
and the values of local entropy, the partition function zeros are also obtained in analytic forms.
The zeros are uniformly distributed on a circle, exhibiting a first-order-like nature of the folding
transition. After introducing a hydrophobic core at the central region of the hairpin, the zeros are
shown to distribute uniformly on two concentric circles corresponding to the hydrophobic collapse
and the transition to the fully folded conformations. The dependence of the distribution of the
zeros on the position of the hydrophobic core, is shown to have a clear physical interpretation. The
exact partition function zeros for a hairpin with a more complex structure of native contacts, the
16 C-terminal residues of streptococcal protein G B1, are also numerically computed, and their loci
are also shown to be closely approximated by concentric circles.

PACS numbers: 87.15.ad, 87.15.hp, 87.15.Cc, 64.60.De

Theoretical studies on protein folding has often been
performed with simple models incorporating informa-
tion on the native structure[1–12]. Wako-Saito-Muñoz-
Eaton(WSME) model is one such example[1–4], de-
scribed by Ising-like binary variables with long-range in-
teraction on a one-dimensional lattice. The transfer ma-
trix formalism was developed so that the exact partition
function can be computed for any given temperature[9].
Since partition function contains all the information on
thermodynamics, various quantities relevant for confor-
mational transition of a protein can be calculated. How-
ever, analysis of partition function zeros[13–25] in the
complex temperature plane, one of the most power-
ful tools for studying phase transitions, has never been
performed for the WSME model. The native struc-
ture has to be specified to define the Hamiltonian in
the WSME model, and we concentrate on β-hairpins
in this Letter. Although a β-hairpin is a very sim-
ple structure, it captures nontrivial aspects of protein
folding because contacts are formed between residues
far away in sequence. Therefore, β-hairpins has been
the subject of extensive researches both by experiments
and computations[2–4, 26–33], including the study using
WKMS model[2, 3, 9]. Remarkably, we find that under
certain simplifying assumptions on the values of native
interactions, not only the partition function, but also the
partition function zeros themselves, can be obtained an-

alytically. The exact partition function zeros for more
complicated cases, which can still be obtained numeri-

cally, show similar qualitative behaviors as the analytic
solution.

The WSME model describes a peptide or protein of
length N + 1 by an Ising-type variable mi (i = 1 · · ·N),
which denotes the state of the i-th peptide bond connect-
ing i-th and i+ 1-th residues. The variable mi takes the
value 0 or 1 depending on whether the bond is in ordered

or disordered state. If the entropy of the ordered bond
relative to the disordered one is denoted as ∆si < 0, then
λi ≡ exp(−∆si) > 0 can be considered as the effective
number of microstates of a disordered bond. For a β-
hairpin, we assume that the local entropy cost for order-
ing a bond is same throughout the protein chain[2, 3, 9],
writing the effective number of disordered bond states as
λ = exp(−∆s). The number of conformations of an or-
dered bond is 1 by definition. Note that λ does not have
to be an integer in general. The Hamiltonian of WSME
model is

H({mk}) =

N−1
∑

i=1

N
∑

j=i+1

ǫij∆ijΠ
j
k=imk (1)

where ǫij is the contact energy of i and j-th bond, ∆ij is
1 only if the bonds are in contact in the native structure
and 0 otherwise. Thus, the contact energy is assigned if
and only if the corresponding pair of bonds are in con-
tact in the native structure, and the stretch of sequence
between them are all in the ordered states. The contact
energy ǫij can either represent the backbone hydrogen
bond or hydrophobic interaction between the sidechains.
We concentrate on simplified classes of β-hairpins

where the i-th bond form native contact only with the
N − i + 1-th bond, the one at the opposite side of the
hairpin. The native structures of these hairpins for even
and odd values of N are displayed in Fig.1(a) and (b),
where the contacts are denoted by thin lines. The model
with odd N (Fig.1(b)) is more realistic in that there is an
additional bond in the turn region, but the model with
even N (Fig.1(a)) has an advantage that an analytic for-
mula exists for partition function zeros themselves, in the
limit large λ. These models have simplifying character-
istics that the lines of contacts do not cross each other.
When they do, as in Fig.1(c), the analytic formula for
the density of states becomes more complicated and con-
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FIG. 1: Native conformations of simple models of β-hairpins,
where the number of bonds N is (a) even and (b) odd. The
density of states can be obtained analytically, and the zeros
themselves can also be obtained in analytic forms for an even
value of N in the limit of large λ. (c) An example of a more
complex hairpin model with the lines of native contacts cross-
ing each other. The exact density of states can be computed
numerically using transfer matrix.

sequently less useful. However, one can easily compute
the exact density of states and partition function zeros
for a given set of parameters, using a transfer matrix[9].
We will restrict ourselves to an even value of N without
lines of native contacts crossing each other (Fig.1 (a)),
unless stated otherwise.
Let us call the contact between the i-th andN−i+1-th

bonds as the i-th contact, and rewrite the corresponding
energy as ǫi ≡ ǫi,N−i+1 (i = 1, · · · , N/2) for simplicity
of notation. It is clear that the broken native contacts
can appear only as a sequential stretch in the tip region,
due to the restriction that the native contacts can form
only when all the intervening bonds are ordered. Let
us suppose that i-th native contacts with i ≤ j are all
broken and the rest are intact. The corresponding energy
value is

Ej =

N/2
∑

i=j+1

ǫi = EN −

j
∑

i=1

ǫi (0 ≤ j ≤ N/2) (2)

where EN ≡
∑N/2

i=1 ǫi is the energy value of the fully
folded conformation. Since at least one of the bonds
forming the j-th contact has to be disordered, they can-
not be both in the ordered states. Therefore, the total
number of states these pairs can be in is (λ+1)2− 1. All
the other bonds with broken native contacts can be in
any of the λ+1 states, whereas those forming the native
contact is in the ordered states whose number is 1 by def-
inition. The total number of conformations for a given
value of j is thus obtained by multiplying these numbers
of bond states:

Ω(Ej ;λ) =

{

1 (j = 0),
(

(λ+ 1)2 − 1
)

(λ+ 1)2j−2 (1 ≤ j ≤ N/2)
(3)

where j = 0 corresponds to the fully folded conformation.
If all the native contacts are due to hydrogen bonds, we
may assign equal energy value ǫi = ǫ < 0 to each con-
tact, and the partition function for an even value of N
is obtained in analytic form from Eq.(3) as a function of
z ≡ eβǫ:

Z = z−N/2 λ
2 + 2λ

(λ + 1)2





(λ+ 1)2

λ2 + 2λ
+

N/2
∑

j=1

(

(λ+ 1)2z
)j



(4)

When λ is large enough so that

λ2 + 2λ+ 1

λ2 + 2λ
≃ 1, (5)

we may approximate the partition function as

Z ≃ z−N/2 λ
2 + 2λ

(λ + 1)2





N/2
∑

j=0

(

(λ+ 1)2z
)j



 , (6)

so that the solution to the equation Z(z) = 0 is obtained
analytically as

zj =
1

(λ+ 1)2
exp

(

2πij

N/2 + 1

)

(j = 1 · · ·N/2). (7)

That is, the zeros are uniformly distributed along the cir-
cle of radius 1/(λ+1)2 except for the point on the positive
real axis. Since the physical region is 0 < z < 1, we see
the folding transition exists as long as λ > 0, accord-
ing to Eq.(7), with corresponding folding temperature at
Tf = −ǫ/(2kB ln(λ + 1)). The folding temperature de-
creases as λ increases, since the unfolded conformation
becomes more favored entropically. As is well known,
the uniform distribution of zeros on a circle leads to a
first-order transition in the limit of infinite N [13].
Although the approximation Eq.(5) is better for larger

λ, the locations of zeros fit quite well with the analytic
solution Eq.(7) also for small values of λ, even for the ex-
treme case λ = 1 (∆s = 0), as can be seen in Fig.2 [34].
In the figure, the partition function zeros for N = 14,
obtained by solving the polynomical equation Z(z)=0 by
MATHEMATICA, are plotted on the complex plane of
(λ + 1)2z for several integer values of λ. The straight
lines at angular interval of π/4 intersecting are also drawn
along with the unic circle, so that their intersection are
are the analytic solutions Eq.(7), except for the one on
the positive real axis. We see the distances of the zeros
from the origin are slightly larger than the radius of the
circle, because the entropic cost of the fully folded state
is overestimated in the approximation Eq.(5). Note how-
ever that the deviation is visible only near the negative
real axis, and almost negligible near the positive real axis
which is the physically meaningful region.
For odd values of N , the density of states is almost

the same as that of the even N with the same number
of native contacts, except that the number of the fully
unfolded states is larger,

Ω(E(N−1)/2) =
(

(λ + 1)3 − 1
)

(λ + 1)N−3, (8)

due to the contribution of the extra bond at the turn
which is liberated. The zeros for N = 15, corresponding
to the same number of native contacts as N = 14, are
also plotted in Fig.(2). As can be seen from the figure,
they are located inside the circle, due to the fact that now
the fully unfolded structure is more favorable compared
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FIG. 2: The partition function zeros of WSME model of β
hairpin models with 7 native contacts and uniform interac-
tion strengths, in the complex plane of (λ+1)2z. The analytic
solution Eq.(7) lies on the intersection of the circle and the
straight lines, which fits quite well with the numerical solu-
tions for even chain length N = 14. The zeros for odd chain
length N = 15 are also plotted.

(a) (b) (c)

FIG. 3: Intermediate conformation where a hydrophobic core
(double line) is formed but the tip region is unfolded. The
dashed lines denote broken native contacts. (a) When a hy-
drophobic core exists near the tip of the hairpin, it can be
formed only in the fully folded conformation. (b) When the
hydrophobic core is near the turn, the intermediate conforma-
tion is almost indistinguishable from unfolded conformation
in terms of energy and entropy. (c) Nontrivial folding inter-
mediates can be formed when the hydrophobic core is located
near the middle of the hairpin.

to that of even N , because of additional entropic contri-
bution from the extra bond at the turn. The deviation
from the even length chains increases as λ increases, as
to be expected.

By introducing hydrophobic interaction in addition to
the hydrogen bond, we can observe the collapse transi-
tion to an intermediate where the hydrophobic core is
formed but the tip region is unfolded(Fig.3(c)). Again,
the partition function zeros can be obtained analytically
for a special case. Consider the case where N is even,
n ≡ N/2 is odd and the hydrophobic core consists of a
single additional interaction at h ≡ (n+1)/2, with (free)

energy ∆GSC = qǫ < 0 with some integer q. Also, we
assume that each hydrogen bond contributes the energy
∆Hhb = pǫ < 0 where p is also an integer. The partition
function can then be factorized as

Z = z−pn−q λ
2 + 2λ

(λ+ 1)2
[
λ2 + 2λ+ 1

λ2 + 2λ
+

h−1
∑

j=1

(λ + 1)2jzpj

+

n
∑

j=h

(λ+ 1)2jzpj+q]

≃ z−pn−q





h−1
∑

j=0

(

(λ+ 1)2zp
)j





×
[

1 + (λ+ 1)2hzhp+q
]

(9)

where the approximation (5) is used as before. The first
and the second factors give two concentric circles for ze-
ros:

zj =
1

(λ+ 1)2/p
exp(

2πij

hp
) (j = 1, · · · , hp− 1)

z̃j =
exp( (2j+1)πi

hp+q )

(λ+ 1)2h/(hp+q)
(j = 0, · · · , hp+ q − 1), (10)

again showing the first-order-like nature of the transition.
It is easy to see from the analytic solution of the loci (10),
that the folding and collapse transition occurs at Tf =
−ǫp/[2kB ln(λ+1)] and Tc = −ǫ(hp+q)/[2kBh ln(λ+1)].
As to be expected, larger value of ∆Hhb corresponds
to higher value of Tc and denser distribution of zeros
on the outer locus signifying sharper collapse transition.
Also, for q = 0 the two circles collapse to one circle cor-
responding to the folding transition, Eq.(7), by setting
p = 1 without loss of generality. The exact partition
function zeros for n = 9, p = 1, q = 2, and λ = 2,
with an extra hydrophobic interaction at the k-th con-
tact, are plotted on complex z-plane, in Fig.4, along
with the circles at radii 1/(λ + 1)2/p = 1/9 ≃ 0.111
and 1/(λ + 1)2h/(hp+q) = 1/95/7 ≃ 0.208. We see that
the zeros for k = 5 are extremely well described by the
analytic solution (10), being distributed on inner and
outer circles at angular interval of 2π/hp = 2π/5 and
2π/(hp + q) = 2π/7 respectively. We see that as the
position of the hydrophobic core is moved toward the
tip, the radius of the outer locus decreases since the in-
termediate becomes unfavorable entropically. Also, the
density of zeros of the inner locus decreases, due to the
fact that the intermediate and the fully folded conforma-
tion becomes less distinguishable(Fig.3(a)). Eventually,
at k = 1 the zeros form one locus corresponding to the
folding transition. On the other hand, as the hydropho-
bic core moves toward the turn, the radius of the outer
locus increases and its density decreases, because the en-
tropy of the intermediate increases and it becomes less
distinguishable from the unfolded state(Fig.3(b)).
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FIG. 4: Partition function zeros of WSME model of β hairpin
models with a hydrophobic core. There are three additional
zeros for k = 9 outside the range of the plot, at z = −0.45
and z = 0.28± 0.41i.

So far we have concentrated on general class of sim-
plified hairpin models. Real β-hairpin, 16 C-terminal
residues of streptococcal protein G B1 (GB1), was also
studied with WSME model[9], which includes crossed
lines of native contacts (Fig.1(c)). The density of states
was calculated using the transfer matrix formalism[9],
where the native contacts are given in ref.[3]. The hy-
drogen bond and hydrophobic interaction energies are
∆Hhb = −1.1 kcal/mol, ∆GSC = −2.0 kcal/mol, and the
local entropic cost of folding is ∆s = −3.12 cal/Kmol,
which corresponds to p = 11, q = 20 with ǫ =
−0.1 kcal/mol, and λ = 4.80. The zeros are obtained
as solutions of a 137-th order polynomial equation, which
are plotted in the plane of eβǫ in Fig.(5). We see that the
loci of zeros also form concentric circles with radii 0.727
and 0.845 corresponding to temperatures T = 158 K and
T = 299 K. Note however, that the angular distribution
of inner circle is not uniform. The transition tempera-
ture T = 299 K is quite consistent with 297 K defined
in terms of kinetic rates and free energy in refs.[2, 9].
A two state transition behavior at this temperature was
reported experimentally[2], and also confirmed by the-
oretical study using WSME model[9]. In fact, since the
distribution of the zeros on the inner locus is very sparse,
especially near the positive real axis, any possible transi-
tion from hydrophobically collapsed intermediate to the
fully folded state near T ∼ 158 K might be quite smooth,
making it hard to be observed as a meaningful conforma-
tional transition.

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

FIG. 5: The partition function zeros of WSME model of β
hairpin, 16 C-terminal residues of streptococcal protein G B1.

Partition function zeros of protein models with com-
plex structure of inter-residue contacts can also be stud-
ied using the transfer matrix formalism, which is left for
future study.
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