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Primitive path analyses of entanglements are performed aweide range of chain lengths for both bead
spring and atomistic polyethylene polymer melts. Estimsafor the entanglement lengtN. which operate
on results for a single chain lengfi are shown to produce systema@X1/N) errors. The mathematical
roots of these errors are identified as (a) treating chais ascgentanglements and (b) neglecting non-Gaussian
corrections to chain and primitive path dimensions. Thdaoters for theO(1/N) errors may be large; in
general their magnitude depends both on the polymer modethenmethod used to obtain primitive paths. We
propose, derive and test new estimators which eliminatgetisgstematic errors using information obtainable
from the variation of entanglement characteristics withioHength. The new estimators produce accurate

results for N. from marginally entangled systems. Formulas based ontdamemeration of entanglements

appear to converge faster and are simpler to apply.
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I.  INTRODUCTION

erty
lim N, (N) = N, @)

The features of polymer melt rheology are determined pri- N—oo

marily by the random-walk-like structure of the constituen

chains and the fact that chains cannot cross. The motion q

sufficiently long chains is limited by “entanglements” whic
are topological constraints imposed by the other chaingsgh
become important and dramatically change many melt prope
ties (e. g. diffusivity and viscosity) as the degree of podym
ization becomes larger than the “entanglement length’
The value ofN, is both a key quantity measured in mechan-

here N, is a system dependent bdi-independent quan-
ty. Comparing Eq.[{1) with[{2) doesot imply choosing

N.(N) = N/{(Z). The typical experimentaN.—estimate

uses the plateau modula®, [1]:

_ 4mpkgT

Ne(N)_ Wv (3)

ical and rheological experiments and a key parameter in tub&herem is monomer masg; is the Boltzmann constant, and

theories of dense polymeric systems [1].

T is temperature.

Ne is usua”y considered to be a number set by Chem|stry A C|Ose|y related theoretical construct is the prlmltlvef'pa
and thermodynamic conditions (e. g. chain stifiness, conce (PP), defined by Edwards [4] as the shortest path a chain fixed

tration, and temperature). It has been empirically relabeal
“packing” length [2]; N,  (pb®)~2 [3], wherep is monomer
number density antf = (R2.,/(N — 1)) is the statistical seg-
ment length of chains with end-to-end distaritg and mean
degree of polymerizatiodv. In terms of individual entan-
glementsV. is defined as the ratio betwe@hand the mean
number of entanglements per chéif), in the limit of infinite
chain length,

. N
Ne= i T 2

We call a functionV, (V) an N.—estimate if it has the prop-
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at its ends can follow without crossing any other chains. Ru-
binstein and Helfano_[5] realized that the entanglement net
work of a system could be obtained by reducing all chains
to their PPs simultaneously. Such a reduction process is an-
alytically intractable, but has recently been achieveddm<c
puter simulations [6,]7, 8, 9, 10,/11,/12/ 13] which generate
networks of PPs from model polymer melts, glasses, random
jammed packings and solutions. These simulations estimate
N, either from the chain statistics of the PPs/[6,/8, 9] or from
direct enumeration of entanglements (contacts betweeh PPs
[7,120,(11] 1P, 14, 15], which determinés).

Chain-statistical and direct enumeration approaches pro-
duce different results fai, for the same atomistic configura-
tions, suggesting that “rheological” and “topological'ten-
glements are not equivalent [15]. This discrepancy has been
attributed to the fact that chemical distances betweementa
glements are not uniform, but rather are drawn from broad
distributions|[7 10, 14, 15, 16], even at equilibrium. Sasd
of how entanglement properties change withare therefore
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of obvious interest. Moreover, primitive path statisticgez ~ U(r) = —1kR2 In[1 — (r/Ro)?], with the canonical parame-
recently developed sliplink—based models [17]. ter choicesRy = 1.5 andk = 30 [19]. The equilibrium bond

In this paper we seek an “idealV.-estimate which ap- lengthisly ~ 0.96. This model is hereafter referred to as the
proachesN, at the smallest possibla’. There have been *“LJ+ FENE” model.
several attempts in the literature, summarized below, tivele Values of the density and temperature & 0.85 and
N.-estimates, but these have all exhibited poor convergencE = 1.0) are those typically used for melt simulations
(i. e. by approachingv. only at largeN > N.). Molecu- [6,19,[19]. All systems contain 280,000 total beads. While al
lar dynamics simulation times increase with chain lendth are monodisperse, we employ a wide range of chain lengths,
approximately asV® at largeN (relaxation timer o« N3% 4 < N < 3500. Those withN > 100 are equilibrated
times system sizec N3/2), so improvedV.—estimates have using the “double-bridging hybrid” (DBH) algorithm_[20].
obvious benefits for computationally efficient determioati DBH uses molecular dynamics to update monomer positions
of N.. By analyzing a number of coarse-grained and atomand Monte Carlo chain-topology-altering moves [21] to ever
istic systems, we find a rather general solution to this mobl come the slow diffusive dynamias [1] of entangled chaing. Al
of setting up aV.—estimator which allows to prediéf. from  equilibration simulations were performed using the LAMMPS
weakly entangled linear polymer melts. [22] molecular dynamics code. Ref. [19] predict®d ~ 35

The organization of this paper is as follows. Secfidn Ilat the above—mentioned state point using various “rheolog-
presents the polymer models used here and the topologicalal” measures applied to systems with < 400, while a
analysis methods which provide us with the entanglemensimilar analysis inl[23] predictety, ~ 75.
network (primitive paths). Sectidnlll distinguishes beem In all simulations of the atomistic polyethylene (PE) melt,
valid and quickly converging (idealy.—estimators, and dis- the united atom (UA) representation is adopted. Accorging|
cusses some model- and method—independentissues with @arbon atoms along with their bonded hydrogens are lumped
isting estimators. Examples are given which highlightsyst  into single spherical interacting sites. There is no dtiom
atic errors caused by improper treatment of chain ends and dfetween methyl and methylene units in the interaction poten
the non-Gaussian statistics of chains and primitive p&ks:  tials. All bond lengths are kept constait & 1.54 A), while
tion[[V]derives two (potentially) near—ideal estimatorsigth  bending and torsion angles are respectively governed by har
extractN, from the variation of entanglement characteristicsmonic and sum-of-cosines potentigls|[24, 25]. Pair interac
with N. Sectior Y presents and discusses numerical resultions between all intermolecular neighbors, and intramole
for these estimators for two very different model polymers.ular neighbors separated by more than three bonds, are de-
We verify that they are basically ideal, explain why thisdas s scribed by the 2—6 Lennard-Jones potential. The parameters
and derive simplified forms which further illustrate the eon of the mathematical formulas for the bonded and non-bonded
nection of NV, to chain structure and entanglement statisticsinteractions are given in Refs, [10,/21/ 24| 25]. These inter
and are also near-ideal. Sectfod VI contains conclusiors, a action potentials yield accurate predictions of the voltring
two Appendices provide additional technical details. structural and conformational properties of PE melts over a

wide range of chain lengths and temperatures|[21, 24].
All atomistic PE systems were equilibrated through

Il. POLYMER MODELS AND METHODS Monte Carlo (MC) simulations based on advanced chain-
connectivity-altering algorithms: the end-bridging |[2&hd
A. Polymer model systems double bridging|[21, 25] moves along with their intramolecu

lar variants. The simulated systems are characterized by av

We have created thoroughly equilibrated configurationsfoferage chain lengths fr_orN ~ 24 up t.ON = 1000, With a
two very different (but commonly used) model polymer me|.[S.small degree of polydispersity. Chain lengths are unifgrml

monodisperse ‘Kremer—Grest' bead—spring chains, and-atonfliStributed over the intervall — A) N, (1 + A)N]. HereA,

- : he half width of the uniform chain length distribution rexhal
lyethylene. Th t h be-
istic, polydisperse polyethylene ese two are chosen YN is0.5and0.4for24 < N < 224and270 < N < 1000,

cause they have similar values 8f but very different chain : . } .
stiffness constantS(co). Polyethylene is much more “tightly respectwely. More details about t.h? MC scheme, including a
1fuII list of moves, attempt probabilities and acceptandesa

entangled”i[18] in the sense of having a much lower value 0can be found elsewhere [24]. Equilibration at all lengtHesa

. ; cf. Tab I Lo , 1 X
Ne/C(oo); cf. Tabs[D) and Il which is essential to obtaining meaningful results from en-

The bead spring model [19] captures the features of pol tanglement analyses [27], was verified using several nsetric
mers which are key to entanglement physics, most Imloor[24-]. In this study, results are presented for= 400 K and

tantly chain connectivity/uncrossability. Each chain teams

N beads of massu. All beads interact via the truncated £ — 450 K. both for P =1 atm.

and shifted Lennard-Jones potentiah(r) = 4e[(c/7)'? —

(/1) —(0/r)' 2+ (0/r:)%], wherer, = 2'/64 is the cutoff o

radius andJy(r) = 0 for r > r.. Hereo is the bead diam- B. Entanglement network and primitive paths

eter ande ; is the binding energy, which are both setitall

guantities will thus be dimensionless and given in the canve  For the melt configurations the reduction to primitive paths
tional Lennard—Jones units. Covalent bonds between attjacewas performed using two methods, PPA and Z, using the pro-
monomers on a chain are modeled using the FENE potentigledures described in Refs. [6, 7] 9, 14]. PPA simulationd use



N (RZ) (Lpp)Ppa (Lgp)pra (Lpp)2s (Lpp)za (Z)z1
20 29.24 33.18 37.56 28.21 32.16 0.127
28 42.85 51.86 58.66 44.03 50.32 0.287
35 54.69 71.01 79.85 60.52 69.00 0.462
50 80.30 116.2 129.8 100.2 113.9 0.823
70 114.9 193.3 213.4 169.7 190.7 1.337
100 169.1 343.0 373.3 301.8 334.8 1.995
125 215.2 483.7 522.1 431.9 475.4 2.514
140 233.0 593.5 633.2 528.1 576.6 2.876
175 289.5 847.9 900.2 766.5 831.1 3.541
250 421.9 1646 1716 1481 1577 5.089
350 609.4 3143 3245 2764 2907 7.168
500 831.0 6050 6188 5527 5738 10.261
700 1203 1.170 x 10* 1.189 x 10* 1.057 x 10* 1.084 x 10* 14.343
875 1521 1.757 x 10* 1.779 x 10* 1.624 x 10* 1.659 x 10* 17.793
1750 3003 6.769 x 10* 6.806 x 10* 6.215 x 10* 6.294 x 10* 35.204
3500 6157 2.591 x 10° 2.599 x 10° 2.441 x 10° 2.457 x 10° 70.444

TABLE I: Chain and Primitive Path dimensions for PPA and ZIvadl as number of kinkgZ) for Z1 for the LJ + FENE polymer melt. All
quantities given in reduced LJ units. It is remarkable tizdti@s obtained via Z1 and PPA are very comparable, suggekanchain thickness
and slippage effects seem to cancel as discussed|in [14].

LAMMPS and Z simulations used the Z1 code![28]. Bothand decreased by chain end slipoffi[14]. Both these ef-
PPA and Z1 analyses are performed for the LJ+FENE modefects should decrease in strengthMsncreases, and indeed
while only Z1 analysis is performed for PE. In both meth- <L§p>ppA/<Lgp>zl decreases from 1.17 to ~ 1.06 over the
ods, all chain ends are fixed in space. Intrachain excludethnge20 < N < 3500. A very comparable trend is offered
volume interactions are disabled while chain uncrosggbili by (Lpp)3pa/(Lpp)31-

is retained. Both classical PPAI[6] and geometrical meth- PPA results for the shortest chaif < 20) are not pre-
ods (Z1 [7,.14] or CReTAL[11, 15]) provide the configura- sented. Standard PPA is unreliable for very short chains be-
tion of the entanglement network and the contour lendifys  cause the presence of a high concentration of fixed chain ends
of each primitive path. In PPA, disabling intrachain exdldd combined with the finite bead diameter effectively inhiloés
volume produces a tensile force [29] in chains which reducetaxation [11, 30]. These problems are even worse for topo-
the contour lengths. In Z1, contour lengths are monotolyical logical analysis of lattice polymer systems, see e. g. Réfl. [
reduced through geometrical moves in the limit of zero prim-In the following, where (as will be shown) accurate data from
itive chain thickness. In addition tb,, and the configuration very short chains is important, we focus on Z1 results.

of the entanglement network,1 analysis also yields the num-

ber of interior “kinks” [7], Z, in the three-dimensional prim-

itive path of each chain(Z) is considered to be proportional Ill. TOWARDS VALID ESTIMATORS
to the number of entanglements, regardless of the details of
the definition used to define an entanglement. A basic task of topological analysis is to calculafg from

Runs end when the mean length of the primitive pathsihe full microscopic configuration of the entanglement net-
(Lpp), and/or the mean number of interior kinks per chain,york. The simplest approaches employ only the mean square
(Z), converge. Self entanglements are neglected, but thefind_to—end distance of chain&z2,) and either the mean
number is inconsequential for the systems considered he'léngth of the primitive paths|Ly,) or the mean number of
[9]. The CReTA method works similarly, and the conclusionsinks, (Z). Notice that(Z) is not an integer, but semiposi-
reached here for Z1 analysis should apply similarly to CReTAyjye (Z) > 0. In order to estimaté/, from weakly entangled

resultsi[14, 15]. _ o . ~ systems one of course needs physical insight; when this is
Table[] summarizes chain and primitive path dimensiongimited, a goodV,—estimator can only be guessed.
as well as(Z) for LJ+FENE chains witt20 < N < 3500. Some restrictions arise from a purely mathematical view-

Statistically independent initial states were used so @t point. A valid estimatonV, (V) has the following properties.
random error on all quantities iS 2.5%. It is remarkable |

that PPA and Z1 data fofL,) and also(Lp,) are so sim-

ilar, considering the differences between the contourtleng (i) obeys Eq.[(R) and uses information from polymer con-
reduction methods. Relative to Z1 results, PPA values of figurations whose mean chain length does not exceed
(Lpp) are increased by finite chain thickness effects [11, 30] N;



(ii) either yieldsN.(N) > N or leavesN. (V) undefined 80 ‘
for a system of completely unentangletZ{ = 0) {'};il;effy’l“;e 450 K
chains. = or
An “ideal” estimator we define to ?:
o
(iii) correctly predictV, for all N exceedingV,, or for all
(Z) exceeding unity. g
[}
Accordingly, for an ideal estimator, the following weakene &)")
ditions hold. An ideal estimator =
(&)
(iv) diverges for a system of rodlike chains possesaing- @
oo, and ‘_05
(v) exhibitsV,(N) < N when each chain has in average % 50 100 150 200
more than a single entangleme(#,) > 1. N

The following two subsections repeat earlier approaches t@|G. 1: (color online) Performance of classical.—estimators
estimateN,.. Basic considerations of finite chain length ef- A7, (V) based on coil{{4) (upper two curves) and kifis (5). Data is
fects, errors from improper treatment of non-Gaussiarcstru shown for the two model polymer melts studied in this maripscr
ture, and the general behavior of quantities entefiigare  The trends withV is in agreement with published results for other
discussed. These subsections are meant to prepare the reagkstems [7. 10. 11, 14./31,/32) 33]. The convergence behiayoor,
for the ideal estimators to be presented in $et. IV. They re@SNe = limy o Ne(N) obviously cannot be extrapolated study-
flect the chronology of our search for better estimators and/'d chains withV < 100, while N turns out to stay well below00
help the reader to understand the magnitude of improvemen Qr both systems. An "ideal estimator’, as defined in Setwtuld

. . . - converge wherV exceedsV, or earlier.
presented in SectidnlV. The arguments given here ultimately
point the way to construct ideal estimators.

The performance of the two classical estimatdis (4) and
(®) for the two polymer models considered here is illusttate
in Fig.[. Values of\.(N) converge very slowly with in-
creasingN. As expected from their form, but contrary to
both rheological intuition and condition (i) , values®f (V)
drop strongly with decreasiny. For marginally entangled
chains (wheréV is just large enough so thaf) is small but
nonzero), both classical estimators yiald( V) < N—1. For
example, forN' = 20, they both predictV, (V) = 17, which

A. Non-ldeal Estimators

Modelling primitive paths as random walks, Everaetrsal.
[6] developed an estimator (which we denote as "classical S
coil”) which operates on results for configurations ("ctjilsf
a single (S) chain length,

2
Ne(N)=(N—-1) <Re%. (4) isclose to the (improper) upper bound— 1 = 19. This pre-
{Lpp) diction obviously has no connection to the actual topolofgy o
the system.

The classical S—coil estimatel (4) is useful because (fog lon i
chains) it relates changes in chain structure to rheolbgica | NUS Eas.[(#) and(5) always underestimate, but never over-
trends [6/ 18]. However, while it fulfills basic requirement estimateN,. This feature of the two estimators in the limit of

(i) and (ii) (both unentangled and rodlike chains hdtg — unentangled chains is particularly (if retrospectiveligagh-

Lep). it lacks properties (iii) and (iv). As the exact relaction PINting, as it is incompatible with goal (iii). Similar bay-

of (R2)/(Lep)? and (Z) is unknown, it isa priori unclear ior was reported (but not analyzed as in this paper) in Refs.
33l
wether it has property (v). [31,132,33]. . ) ) .
The corresponding estimator operating on the number of Other previously publishedV.—estimatorsl[9, 11, 16, B4]

kinks, (Z), and originally employed in [7], denoted here as also have some, but not all, of properties (i)-(v). One of the
“classical S—kink”, is most promising was proposed in Refl [9]. It estimafés

from theinternal statistics of primitive paths, for a singlé.
N(N -1) 5 The squared Euclidean distandé® (n)) between monomers
m’ (5) separated by chemical distanece< N — 1 after topological
analysis (i. e., the chain statistics of the primitive patlisre
which fulfills the basic requirements (i) and (ii), and als, (  fit [9] to those of a freely rotating chain with fixed bond lehgt
but lacks (iii) according to Ref. [10] and (iv) by definitiohhe  fixed bending angle.N. was then identified with the chain
presence of bottV — 1 and N in Egs. [4), [(5), and subsequent stiffness constan®(oco) of the freely rotating chain [35]. This
estimators reflects the fact that it is the existence of a bondstimator does nabdbviouslyfail to meet any of conditions
rather than a bead which is responsible for the presence ¢i)-(v). In Ref. [9] it gave values ofV. (V) which decreased
absence of an entanglement between two chain contours. more slowly than Eq[{4) a& decreased. Unfortunately, its

Ne(N) =



predictions agree with Eq.](4) at moderafe> 100 and thus

160 W T
it fails condition (iii). (a)m Y O Pyt 450 K |
New S-estimators based on modificationsto Eds. (4)[dnd (5) ~—~ ‘
may be proposed. During the course of developing ideal esti- 5\) 120t
mators (to be introduced in Séc.]JIV), we developed two mod- g 100l
ified single chain length estimators which tend to approach 8
N, from above rather from below. These are the "modified g 8o}
S—kink” estimator 5
ql_) 60
N n
NelN) = 7 ® 5 “
. . o . . 5
and the mathematically similar "modified S—coil” estimator g ‘
00 50 100 150 200
No(N)= (N -1 (Lop) 1 1 7 N
(V) = ( ) (RZo) ' ) (b)40 o ‘ W LI+ FENE
351 [ —O—polyethylene 450 K |

A motivation for the use ofLy,,) rather than Lyp)* in Eq. (7)
appears in Append[xJA. Fifl]2 shows results for EQk. (6) and
(@) for the same systems analyzed in [Eig. 1. Both modified 25,

301

single—chain estimators giws,(N) = oo for unentangled g sl
chains, thus fulfilling criterion (iv) in addition to (i) ani), o
but they still fail to fulfill goal (iii) since they tend to ovesti- S 1
mateN, for weakly entangled chains. ol
sl
B. Errors from improper treatment of non-Gaussian structur e
and chain ends Oo 50 160 1:50 200

N

Critically, none of the above-mentioned estimators seem to

be able to predlwe (N) — Ne for Weakly entangled Systems FIG. 2: (COlOI’ Online) (a) Performance Of modified S—kinkirast
with a slightly positive(Z) < 1. All above—cited previous t©oF ) (lower two curves) and the modified S—c@ll (7) (uppeot

works as well as Eq[{7) have only produced convergence fot;.urves). which approacV. from above. Data are for the same sys-

. tems analyzed in Fi] 1. The single-configuration estimaokinks
N > N, and we are_ not aware of a_ny studies where COnveréxhibits an improved convergence behavior compared Mthus-
gence has been achievedit~ N,, i. e., we are not aware

] . ! der circumstances discussed in $ec. V, application of battiified
of the former existence of any ideal.—estimator. However, anq original classical estimators allows one to obtain foare up-

the failure of so many previous attempts both makes it worthper bounds oriV. which tighten with increasingv. (b) Shown are

examining the common reasons why they have failed, and ithe relative differences (“gap [%]") betwegi. (V) values shown in

fact points the way to creating ide&l.—estimators. Fig.[D and the ones plotted in part (a) of the current graptifeDi
To leading order in = (N —1)~! (i. e. the inverse number ences are smaller fav. estimated from kinks (lower two curves).

of bonds), data for a wide variety of model polymers (see e. g.

Refs. [20, 24} 31]), as well as the data obtained in this study

(see Fig[Ba) are consistent with At this point it is worthwhile to mention that we are going
to make use of[{9), which is able to capture our results for
(R2)(e) = D/e—Y, (8)  (L2,) down to chain length®’ small compared withV., to

_ . o devise an ideal estimator in SEC] IV. Relationshlp (8) havev
where the relative magnitudes of the constant coefficignts as we will see, willnot be required to hold to devise an ideal

and D depend on factors such as chain stiffness, moleculagstimator.
details and thermodynamic conditions. Inserting Eqs[{8) and]9) into the classical and modified S—

Also, orientations of successive PP segments are comelateoil Egs. [4) and[{[7) respectively give, to leading ordet,in
[11], so{Lpp)* should not be simply quadratic in chain length.

The expected leading order behavior(6f,)? is

@ D AY +BD )
(Lop)(c) = A/ + B/e, ©) N(N) = 2= =—5—e+0(),  (109)
. I , - @ D D?—-AY —BD
where B contains contributions from non-Gaussian statistics Ne(N) = 1 + — e+ O(€*), (10b)

and contour length fluctuations [1]. Relationshigs (8) 4@jd (
are consistent with data reported elsewhere (e. g. Refs. [2&4hus non-Gaussian structure of both chains and primitive
32]) as well with our own data, as shown in Hig. 3. paths naturally lead to systematife) ~ O(1/N) errors in



earlier estimators folV, [3€]. ever, the source is chains being too short to be in the asymp-
totic entangled limit defined by Ed.](1).

= e FEnE A key to understanding the failure of previous.—

(a) 90} ~O- polyethylene 450 K estimators is thadifferencesin the prefactors of the)(e)

4 errors [Egs.[(1I0) and(12)] arise from different treatmeint o
chain ends. The classical S—kink equatidn (5) underestsnat
N, as long as7 + H < 1, and the modified S—kink equation
(@) strictly overestimated/,, since both andH are positive.
Similarly, the prefactofAY + BD — D?)/A? (Eq.[10b) of the
systemati©(¢) error in the modified S—coil equatidd (7) con-
tains two contributions of different origin§AY + BD)/A?
arises from the Gaussian-chain approximation used, while
—D?/A? arises from the attempt to correct for chain ends ef-

10’.‘- - ] fects (i. e. the “-17).
% 50 2 o v 00 We have determined the coefficieds B, D, G, H, and
lle=N—-1 Y using all available data from our simulations; their values

for both polymer models are shown in Tal. Il. Coinciden-
tally, for LJ+FENE chains(AY + BD)/A? ~ 5 x 103 and
D?/A? ~ 7 x 103, The systemati©(e) error for the mod-
ified S—coil [7) is actually small for LJ+FENE systems due
to the near-cancellation of its contributing terms. Theraa
reason to believe this behavior is general, and tests on addi
tional polymer models would be necessary [36] to better-char
acterize how rapidly the modified S—coil typically convesge
However, it is reasonable to expect it typically convergesam

] rapidly than the classical S—cdill (4).

ar e 1 Before turning to ideal estimators, we mention that the
- 1 modified S—kink[(B) can be regarded as corrected version of
classical S—kink[{5), as it eliminates @h¢) error from the

0 50 100 150 200 latter, and thus converges faster.
l/e=N-1

b 20 T
& LJ+FENE

18+ —O—polyethylene 450 K

161

14+

12

101

e (Lpp)*/15

FIG. 3: (a) Testing the applicability of Eq.](8) which predidinear IV. IDEAL ESTIMATORS
behavior (slopex D, offsetx Y) in this representation. We obtain
C(o0) =~ 1.85 andC(c0) =~ 8.3 for the LJI+FENE and PE models,
respectively (cf. Talgdl). (b) Testing the validity of E)(for both Given the prevalence of subtle systemati¢c) errors in
types of melts (slopex A, offsetoc B). The linear relationship is  nhon-ideal N.—estimators, it is reasonable to suppose that in
employed to derive estimatdr({15) in SEC.TV B. (a+b) Datddeger ~ developing an ideal estimator, one has the freedom to intro-
N are not shown but also agree to all displayed fit lines, toiwith duce system-dependent (ht-independent) coefficients, e.
statistical errors. g., ¢, ¢, and Zy, in equations for a validV,(N) such as
N/{Z) + ce, N(1 — c€)/{Z), or N/({Z) + Zy). These
Similarly, (Z) necessarily scales as' inthe N — oo formulae are all potentially valid estimators because fey
limit. In the same spirit as the above analysis, and notieg thfill the basic requirement (E] 2). The coefficients are some-
failure (Fig[2) of Eqs[(5) and{6) to meet condition (iigfus  what related to each other, but have slightly different ptals
hypothesize that finite chain length leads to the leadingord meanings. They fulfill conditions (i) and (ii) for arbitrary
behavior andc/, but only if Z, < 1. Note that finding an ideaVN,.—
estimator neither depends on the interpretatiogf or re-
{(Z)(e) = G/e - H, (11) quiresa priori knowledge of the numerical values of the coef-

whereG andH are both positive. This assumption is actually I;::lenl;s. H(t)r\]/vever, these_num;?cal \{[gluets aLe ]Eequ;;]edto W
consistent with the data in Tdb. | and previous works [24; se € above [ree expressions IMo-estimates betore ey can

v - i L e applied. As these numerical values are certainly seesiti
?E)ls?hse(ra\ bec&)r-:—:ee classical and modified S-kink Eg5. (5) an#’o system features like chain thickness and stiffness,iftis

possible to determine them from a single setbfp), (R2.),
an® 1 1-G-H and(Z) values.

Ne(N) ¢~ °f O(*), (12) The best possible estimator giva$(N) = N, for (Z) <
. 1 G+ H 1, but such an estimator would have to rely on incomplete
Ne(N) Idn@ el ki O(é?). (12b)  information, some model assumptions, or make use of some

‘universal’ features of entangled systems such as those sug
Again, systemati©(e) errors are predicted. In this case, how- gested by Refs| [10, 11]. We make use of two such findings



lo C(o0) D Y A B G H

system cf. Eq. [8) cf. Eq.[(D) cf. Eql{11)
LJ + FENE 0.964 1.852 1.72 3.55 0.020 1.04 0.020 0.12
polyethylene 450 K 1.54 A 8.318 19.7 A2 131.4 A? 0.22 A? 8.58 A2 0.023 0.20
polyethylene 400 K 1.54 A 8.535 20.2 A2 85.3 A2 0.24 A2 9.37 A2 0.025 0.19

TABLE II: Data obtained via Z1. The coefficienf3, Y, A, and B have been obtained from a least square fit to the availabée(davering
N > N.) for (R2,) and(Lpp), according to Eqs[{8) and](9). Similarly, coefficiettsand H derive from the measure@) via {I1).

(Sec[Ill): for the polymer models considered here, bgth  as “M-kink”, of extraordinary simplicity:
and(Lpp)?/(N —1) are linear inV above certain characteris-
tic thresholds. Further supporting data for atomistic ptiy- o @ (13)
lene have been reported recently by some of us [24]. N.(N) dN "~
For both models considered here, the ‘characteristiclhres o ) ) ) ) ) o ]
olds’ are located atZ) < 1andN < N., allowingustomake M-kink is strictly an ideal estimator (i. e. it satisfies ali
use of the ‘linearities’ to construct ideal,—estimators. We ~conditions proposed in Sectiénllll) provided, < N.. It
now derive two near-ideaV,—estimators, for kinks and coils €liminates the unknown coefficient in the linear relatiapsh
respectively. These estimators operate on multiple (M) sys2nd identifiesV. to be responsible for the ultimasiopeof
tems with different chain lengths, rather than on a singre co (#)(V). This is analogous with measurements of diffusion
figuration, and will be denoted as M-coil and M-kink in order co€fficients, where one eliminates ballistic and othercomt
to clearly distinguish between S— and M—estimators. Carefufions by taking a derivative. Application of Eq. (13) recpsr
empirical tests of the new estimators’ validity is quiteesss ~ Studying more than a single chain length, which renders our
tial, and will be given in Se¢.V. M-kink estimator qualitatively different from the S-kinlsi-
Below, the idea behind the different roles of EGg. (B), (9),mators. Data forZ) () for both polymer models, shown in
and [11) is that the statistics of the entanglement networki9-[4, demonstrates thak) in fact becomes linear itV for
can be expected to be decoupled from the fractal dimentZ) below unity [24, 39], thus confirmingV, < N.. This
sion of the atomistic chain, because entanglements adge fr Suggests thalV. can be estimated using data f@¥) from
inter—chain rather than intra—chain configurational prope. ~ chains of lengths even belaW.. _
The estimator we develop in the following section will, in  1he occurrence of a nonvanishifg is rooted in the fact
fact, potentially be applicable to non-Gaussian chainsreshe thata minimum polymeric contour length (of the ordeeat
(R2) o e~# (with 1 < p < 2), as well as less-flexible poly- with _polymerthlcknesﬁ, subseq_uently corrected by chemical
mers (like actin([37] or dendronized polymelrs|[38]) for winic details) is needed for geometrical reasons to form an entan-

N, is [18] of the order of a “persistence length” of the atom- 9lement (or tight knot) [40]. This lengtt)increases with the
istic chain. persistence length of the atomistic contour, and vanishiei

limit of infinitely thin polymers. This implies that determi
ing N, from the slope we correct for a thickness effect, and
A The M—kink estimator N7 is proportional to the thickness of the atomistic polymer.

Beyond some a priori unknown chain length, we know
that(Z) (as determined via Z1 or CReTA) varies linearly with
N,i.e(Z) =GN+Zy(withG > 0,andZ, = —(G+H . . . .
_1in t§1e>notatiorJ1r ofoéqull) >We recaﬁ that(anJridé‘)é; Next, we motivate and derive a near—ideal estimator for
estimator implies, according to condition (iii), that use with coil-properties??,) and <.LPP> (o_btame(_j via .PPA'

CReTA or Z1). Flory’s characteristic ratid'(N) is defined

B. The M—coil estimator

(Vi) dN.(N)/dN = 0for N > Ny, and through the identity [41, 42]
(vii) N1 < N, (R2) = (N — 1)I2C(N). (14)
are necessary to produéé = N_(Ny). Uniquely, N, = Equation[(1}) is exact by construction; the-dependence of

1/G and N.(N) = N, forall N > N;. Using the lin- C(N) characterizes the (non)-Gaussian structure of chains.
ear relationship betweefZ) and N we thus propose (a) IngeneralC(N) > 1if N > 1. For (mathematically) ideal
Ne(N) = N/((Z) — Zo), whereZy = Zy(N) is the coef-  chains,C(N) is related to the persistence lengH35]. This
ficient determined from data collected up to chain leniyth  allows the chain stiffness constafifco) = limy o0 C(N)
Note that (a) is identical with th&/.—estimator suggested on to be calculated from short chains for any sort of ideal chain
mathematical grounds at the beginning of this section. including random walks, freely rotating chains, wormlike
However, N.(N) = 1/G can be equivalently obtained chains, etc. Simulations on dense chain packings show [43]
from (b) V.(N) = dN/d(Z). This is an estimator, denoted that the value of”(cc) = 1.48 is a universal lower limit for



8

excluded volume, flexible chain molecules. For real chaing13), as this derivation required an approximation. In prac

like polyethylene, chains much longer thigmeed to be stud- tice, one must simulate systems with increasiauntil the

ied to characteriz€'(N), cf. Ref. [24]. We assume knowl- M-—coil converges. There is no apparent way to come up with

edge ofC(N) as function ofV from the atomistic configura- an N.—estimator froncoil quantities which converges before

tions. N reachesV,. This is a noticeable difference between the es-
To proceed, we make use of our finding thiap,)2/(N —  timators from coils and kinks (M—kink). Technical consider

1) is linear in N above a certain characteristi¢y, before tions in the application of EqL{15) are discussed in Appendi

(Z)(N) has reached unity, i.e., we assuiNg < N, to de- [Bl

rive an ideal estimatof (15). The linear relationship diear

holds for both polymer models considered here (Ref. [24], Ta

blell, Figs[3b anfl4), and has already been formulated in Eq. V. NUMERICAL RESULTS AND DISCUSSION

(9). Next we relate{Lpp) and (Z) for large N > N, by

a simple argument: the length of the primitive patly, is The data in Tali] | and a similar set for atomistic polyethy-

[1€] the number of “entanglement nodesV,/N,, times the  lene (configurations from Ref. [24]), will now be used to test

meanEuclideandistancel, between such nodes. This dis- the M—estimators. Figufd 5 shows results for the M-kink es-

tance (.) equals the mean end-to—end distance of the atonmtimator (Eq[IB) and M-coil estimator (EG.]15) for the same

istic chain with N. monomers. We thus expect that up to systems analyzed in Fids. 1 dnd 2. Comparison of these fig-

a factor of order unity (related to fluctuations ip [35]),  ures shows that the M— estimators indeed converge faster tha

limy 00 (Lpp)? = (N/Ne)*(Ne — 1)IZC(N). the S— estimators (EqsL[@-7). Moreover, comparison to Fig.
shows that the M— estimators converge for marginally en-
100 ‘ ‘ ‘ = tangled systems; values &f.(N) approachV, before(Z)

‘A far exceeds unity. These show that Es] (13) (15) are es-
sentially “ideal”, meeting all of conditions (i)-(v). Theark
estimator performs slightly better, presumably becaugbhef
approximations made in deriving EQ. {15).
For N < 50, values of\ (N) from M—kink (I3) increase
with decreasingV. As shown in Fig[BN.(N) appears to
be diverging asV — 0. The precise nature of the divergence
is unimportant. For exampléy = 20 chains haveZ) =
0.127, and the vast majority have zero entanglements, so the
prediction\;(20) = 192 > 20 of modified S—kink[(B) just
N | signals that we are deep in the unentangled regime, wkigre
108 - LJ +FENE 1 cannot yet be estimated.
Oi O~ polyethylene 450 Kk ‘ The fast convergence of the M-kink estimator can be better
05 1 15 2 understood by plugging Eq.({11) into M—kirdk{13). This pro-
(Z) duces a special case of the M—kink estimator, which is only
asymptotically correct, and can be used whemn (11) holds. We

FIG. 4: Z1 results for the two model polymer melts. Testing th refer to it as the “approximate M—kink” estimator:
applicability of Eq. [T1) which predicts linear behaviorthis repre-

sentation (slopé&-, offset ). Clearly(Z)(/N) becomes linear at an No(N) =~ 1 (16)
N for which (Z) < 1. This impliesN; < N. and that Eq.[(113) can ¢ -

ek
be an ideal estimator. An interpretation f¥5 is given in Sed IV A. . . . . . .
Data for largerN is not shown here, but the slopéZ)/dN does Here, G is the coefficient in the linear relationship between

not significantly change with increasing. (Z) and N obtained from data collected up to chain length

and thus\, (V) depends orV. Note that the derivative with
respect taV in Eq. (I3) removes thé&(e) errors! This is a
major difference with respect to all S—estimators (theneesti

tor used inl[9] can be considered as intermediate between S—

90r

801 unentangled
701

60F

N -1

501

401 entangled

1/e

301

20r m’

o

By following the procedure of Sectidn TVIA, we arrive at
an N.—estimator, denoted as “M—coil”, using coil properties

alone: .
and M—estimators).
C(x) d [ {(Lpp)? In a similar attempt to rationalize the fast convergence of
T ) v 4N RZ, )’ (15) the M—coil estimator, we insert EqE]_(S) ahd (9) into E_E] (15)
¢ This yields, accordingly, the "approximate M—coil” estitog
whereR3,, = (N — 1)I2, andC(x) is the characteristic ra- D+ VD? — 1AV
tio for a chain with\V, (V) monomers. This estimator fulfills Ne(N) =~ 1+ + . a7)

all conditions from our above definition of an ideal estinmato 24
As for M—kink, the derivative in the M—coil Eq_(15) signals Like Eq. (16), Eq.[(1l7) has n@(¢) corrections. Again, this
that we have to measuté,,) as function ofN rather than a arises from the “M” approach of taking derivatives with re-
single value to estimat&,. The convergence properties are spect toN. In both cases, the use of the derivatives re-
not as clear priori as they are for the M-kink estimator Eq. moves undesirable effects related to proper treatmentaifich



Ne  NoN.) N Ne(Ne) Ne  N(N.)  Ne  No(N.) N Ne(Ne)
M—coil approximate M—coil simplified M—coil M—-kink appraxiate M—kink
system Eq.[(15) Eq(7) Ed.(18) E0.113) Hq.l(16)
LJ + FENE 86.1 87.8 85.1 89.6 86.2 90.1 48.9 46.3 48.5 55.7
polyethylene 450 K 84.0 83.4 84.4 84.5 90.6 90.1 44.2 42.2 43.3 38.8
polyethylene 400 K 82.3 80.1 80.5 77.8 83.9 84.1 41.5 38.5 40.1 36.3

TABLE llI: Data obtained via Z1. Selected results fof (IV) for all near-ideal M—coil and M—kink estimators defined ifmstmanuscript.
For each estimator, two characteristic values are shaWinuses all availabléV (up to N = 3500 and N = 1000 for the LJ+FENE and
PE models, respectively), and. (N.) uses only data from short chains with < N. (cf. Tab.[l). Values of\.(N.) are thus obtained at

moderate computational cost, and are all in overall agreemih N..

Approximate M—coil (M—kink) results should coincide with—coil

(M—kink) results, if the relationshipEl(8[LI(9) alid{11)spectively, accurately hold. The simplified M—coil doestad into account the effect
of C(N). M—coil (M—kink) is the estimator with the least assumpsanvolved, if N. needs to be estimated from coil (kink) information
(see also AppendixIB). The fact that for all these estimatdr&V. ) =~ N. gives sufficient evidence that these are in fact ideal estiraain
sharp contrast to most S—estimators, quantitatively disedi in Tald._TV. Note that the very similar valuesNaf reported for LJ+FENE and
PE systems are a pure coincidence arising from their sivdllmes of D /A (Tab[l; cf. Eq[18)

Ne Ne(Ne) N. Ne(Ne) N. Ne(Ne) N. Ne(Ne)
classical S—coil modified S—coil classical S—kink modifiedkiBk
system Eql(4) Eqd7) Ed.I(5) E§l(6)
LJ + FENE 86.1 40.0 86.1 129.7 48.9 31.7 48.9 51.2
polyethylene 450 K 84.0 39.7 84.0 192.8 44.2 30.4 44.2 48.3
polyethylene 400 K 82.3 37.3 82.3 191.8 41.5 28.8 41.5 44.9

TABLE IV: Data obtained via Z1. For comparison with Tabl IRerformance of previous S—coil and S—kink estimators. AateuV.—values
have been overtaken from M—coil and M—kink in Tabl Ill. Ohwsty, . (IV.) is far from being close tdV. in all cases, while the deviations
are strongest for th&/.—estimates based on coils; the two kink measures seem tasatlecket the tru&/. (for the deeper reason that,

introduced in Se¢. TV A, must obe¥, € [—1,0]).

ends. The approximate M—coil estimator is related only toestimators.

The two presented values for each estimator

the (in general, non-Gaussian) structure of chains andiprimA.(N) are the finalN,, obtained by analyzing all available
tive paths. Finally, if the assumptions which lead to [Eg) (10 chain lengths, together with the value predicted by theresti

hold, and in order to quantify the contributions to Eq] (1A

torat N = N, (i. e. at the border between unentangled and

above analysis combined with tube-theoretic considaratio entangled regimes, using only chains of length up-tdv.).
suggests another estimator, which we refer to as “simplified~or an ideal M—estimator these two numbers should be the

M—coil™:
(18)

The only dependence oN of the approximate and simpli-
fied estimators, Eq4. (I1L6]—=(18), stems from the variation,of

same within statistical errors, here 2.5%, and N, should
coincide withlimy _, .. N/(Z). All four M—estimators con-
sidered here, the complete ones (Eq$[ 18, 15) as well as their
approximate versions (EQ.J16.]17) satisfy these critertae T
simplified M—coil [18) is seen to converge quickly as well,
but it does converge to afv, which is above the one ob-

D, G, andY with N; these coefficients, which are obtained t&ined via M—coil, becaus¥ is positive ¢ vanishes for an
by linear interpolation, must generally be assumed be densi ideal random walk). Table IV shows corresponding results fo
ered to depend on the available range of studied chain Isngththe S—estimators, which all (as discussed above) are dgnera
When the variation of the coefficients is large, these theee e Non-ideal. Still, the modified S—kink turns out to performmye

timators should not be used.

well, simply becausé’ + H < 1 for our model systems, cf.

Note that the simplified M-coil does not agree with M-cail Tab Il

if C'(N.) has not reached’(co); though it may converge
quickly, it cannot be ideal. For the systems under sti\dyis
large enough such that(N,) is quite close taC(co) [44].

For the LIJ+FENE model, while the classical S—coil estima-
tor (Eq[4) produces values 6f. consistent with published![9]
results, i. e N, ~ 70 for N = 350 and500, values for these

The simplified M-coil has a simple connection to polymer estimates based on the near—ideal M—estimators (cf.CTRb. Il

structure and the tube model [1]D = C()iZ = lylk,
wherel is the Kuhn lengthi[35]. The tube diameiér is
given byd2 = lylx N., and hencel = (dr/N.)?.

Table Il quantifies the performance of the new M-

and also the modified S—cd[ll(7) rise ab@gefor the longest
chains considered here. The M—estimators based on chain and
(Z1) primitive path dimensions converge to the valie~ 85

in the mostly unentangled regime, cf. TaDI lll. Thus all data
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200

; because of the prefactd¥(oo)/C(N,). This prefactor had
(a)lgo, 1 usually been omitted or not mentioned, since random walk
w0l ® | statistics were clearly a convincing starting point. Asswgn

| Gaussian statistics (constafit V) for all N) hence under-
v ] estimates values a¥, calculated from coil properties. This
1 issue is also one of the reasons why Meestimates between
PPA and geometrical approaches differ. Another reason is
given in [29]. Ratios between 1.3 and 2.5 betwééncalcu-
lated from kinks and coils have been reported in the liteeatu
[7,110,11] 1B]. The presented data exhibits ratios betwegn 1
and 2. A third reason that they differ is rooted in the fact tha
20¢ ] (Z) is not [7] uniquely defined from a given shortest, piece-
0 : : : wise straight path, as it is returned by Z1 or CReTA. This
additional discrepancy can only be resolved by matching re-
0 ‘ ‘ ‘ sults for N, from kinks and coils, and by comparison with
(b) NN - L+ FENE experiments.
ol . N ~O-polyethylene 450 K ] The classical S—kink{5) strictly underestimabésand the
: modified S—kink[(B) strictly overestimaté$. (since bothG

andH are positive, ands + H < 1).

4 LJ + FENE
—O—polyethylene 450 K

M-estimators\; (N)

[N
o
o

T

’

VI. CONCLUSIONS

Very significantly improved, near—ideal, and apparently
polymer—-model-independent estimators Agrwere derived
in this paper, M—coil (Eq_15, to be used with PPA, Z1 or
9 ‘ ‘ ‘ CReTA) and M—kink (Eq[13, Z1 and CReTA only). They
' ' reduce, under further assumptions which seem valid for the
model systems studied here, to approximate M—coil [Eh. 17),
simplified M—coil (Eq[I8), and approximate M—kink (EEg] 16).
kink (I3) (lower two curves with large symbols) and M—cGBlL These estir_nqtors require simulation of multiple c_haintla_ag
(upper two curves with large symbols); see also Appehdix BtaD but have el'm,m"?‘tej'd systematitic) errors present.lrj previous
is for the same systems analyzed in Figs. 1@nd 2. Cleaglyy)  Methods. This is important for the design of efficient simula
has converged faN < 100, and as shown by comparison to FE@ 4, tion methods in the field of multiscale mOdeIlng of pOlymer
N.(N) approachesV. before(Z) exceeds unity. This allows us to melts.
estimateN, from mostly unentangled systems. (b) Same data as in Furthermore, we have proposed variants of the original esti
(a) vs.log,o IV, which allows the full range oV to be presented. For mators. The two main problems with existing estimators were
comparison, blue broken and red dashed lines for PE and INEFE gentified as: i) improper treatment of chain ends, and i)-no
respectively, show reference data for S-estimators,djmeeesented  ragtment of the non-Gaussian statistics of chains andiprim
in Figs[1 and. tive paths|[36]. Improper handling of thermal fluctuatioresw
an additional problem relevant to very short chains. Isg§ues
. and ii) lead to separate, independéxr) errors. Estimators
suggest that the “best” estimate of the entanglement lengthased on direct enumeration of entanglements lack issue ii)
for flexible chains is well above the previously reportedieal  gnq so ardundamentallyadvantageous for estimation df,.
This is significant e. g, for quantifying the rato, /N, where  The new “M” estimators proposed here formally correct for
N. is the rheological crossover chain length where zero sheghe errors arising from effects i) and ii). The values of the M
viscosity changes its scaling behavior from Rouse to reggtat i and M—kink—estimators can be taken as “best estimates”

M- versus S—estimators, (V)

FIG. 5: (color online) (a) Performance of proposed estimsatd—

and has been estimatedfsis ~ 100 [3, 43]. for N, when results are available for multiple chain lengths.
One could imagine fitting the squared contour lengthThe best estimator when only a single chain length is aviailab

(Lgp(n)) of primitive path subsections [46] toL5,(n)) = s the modified S—kink, ELI6).

An? + Cn. and attempting to calculat¥.(N) = D/A by We have shown that(Lpp)?, (Z), and also(RZ,) are all

also fitting to(R?*(n)) = Dn — Y, or developing other im- linear in1/e (thus linear inN) down to the mostly unentan-
proved estimators folV, based on(Rg,(n)) and (Lj,(n)).  gled regime, and have used this information to derive the M—
However, analysis along these lines failed to produce any esstimators and to improve the earlier ones. All coefficients
timators better than those described above. In particotar, in these linear relationships have been evaluated andi liste
improvement over the method of Refl. [9] was found. in Tab.[dl. The prefactors for the above mention@¢k) er-

It is important to notice that our Ed._(IL5) it compati- rors can be large, and depend both on the polymer model
ble with some earlier definitions dfZ) from coil quantities, and method of topological analysis. These errors can peduc
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large changes in estimates 0% for values of N typically  “short, but not too short” chains.
considered in previous studies (e. g. Refs. [6) 12, 33])s #hi

significant in light of attempts to compare PPA resultsfor

to values obtained by other methods|[6, 23, (33, 47] such as

direct rheological measurement of the plateau modais VIl. ACKNOWLEDGEMENTS
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They predict\. (N) > N for a completely unentangled sys- 20415, as well as through EU-NSF contract NMP3-CT-2005-
tem, which is characterized by?) = 0 andLpp = Reein 016375 and FP6-2004-NMP-TI-4 STRP 033339 of the Euro-
accord with the definition of the primitive path which we have pean Community. All atomistic simulations were conducted

adopted in this work (see [29]). The appearance of the coein the “magerit” supercomputer of CeSViMa (UPM, Spain).
ficient N; suggests that there might be a minimum amount of

material, N1, needed to form a single entanglement (as ob-

served for phantom chains [7]). If so, it can be expected to

depend on the thickness of the atomistic chain and its stiff- APPENDIX A: TREATMENT OF THERMAL
ness as well as particle density. We expect our findings to be FLUCTUATIONS

universal in the sense that they should apply to all sortealf r

linear polymer chains in the melt state, and we have verified = . . 5
the assumptions underlying the M—estimators by direct com; Ref. [6] and other studies have typically usdt)® rather

S ;
parison with both atomistic semiflexible and coarse-grl:hinethagl.if“%)> n e_s|t|mat%r_sr:orNed such as the analogue for the
flexible polymer melts. modified S-coil[{T) which reads

Refs. [11, 15] pointed out that primitive paths are not ran- ) 1
dom walks, and that there appears to be more than one “topo- No(N) = (N —1) <<Lpp> _ 1> ' (A1)
logical” entanglement per “rheological” entanglementiglit (R2o)
is unsurprising thatV, from coils is significantly larger than
N, from kinks (for details see Rel. [18]). The utility of any However, Eq.[[AlL) gives pathological results for short clsai
topological analysis of chains shorter th&p remains highly  due to existing thermal fluctuations &f,,. Consider the un-
guestionable, because the chains’ dynamics are well éestri entangled limit, where the entanglement density (denosed a
by the Rouse model[[1. 19] and so they cannot be consideregl) vanishes. For an “ideal” topological analysig,, — Ree
“fully entangled” in any meaningful way. However, it seems (from above) for each and every chain as — 0. How-
that the M—estimators developed in this work have the gbilit ever, chain dimensions fluctuate in thermodynamic equilib-
to extract information from a partial or even marginal degre rium [1]. To leading order in the fluctuationg/yp)? =
of entanglement. (Lyp) — (ALpp)? = (RZ) — (ARee)®, WhereA is “vari-

The M—estimators could be applied in a post-processingaince of”. So, even for aideal topological analysis proce-
step on existing configurations. For example, it should be oflure, Eq.[(Al) would predict aegativeN.(N) — —(N —
interest to study the effect of flow and deformation on entand)(R2,)/(ARee)? asp. — 0. Negative\, (N) are of course
glement network characteristics in order to establishegos ~ useless, but indeed, are predicted using our data iriITabr . F
of motion for relevant coarse-grained variables charaitgy N = 20 (LJ+FENE melt), application of Eq._(A1) yields neg-
the polymer melt. Shear and elongational flows have beeative A (20). A term identical to the term in parenthesis in
studied for both polymer models considered here, but eithefeq,[AT was found to be negative for short chains in Ref. [49],
Z1 was not yet available at the time of these studies [48], obut was not used to directly calculat& (V) in their work, as
the chains were [49, 50] “too short”, i. e. had) < 1. its negative value was considered to signal (and to onlymoccu

The apparent ability to accurately estimate even for  in) the mostly unentangled regime.
weakly entangled systems may be useful for atomistic mod- The reason to fix chain ends during PPA or Z1 analysis is
els whose computational cost prohibits equilibratingéaly  the assumption, implicit in Edwards’ definition of the prim-
systems, such as polymers containing bulky side groups. Thive path [4], that chains are entangled. In this contexs it
procedure for removal of th&(e) systematic errors, while worthwhile mentioning that there are other definitions o5PP
clearly described here, requires performing analyses mn-a | for example one [51] where the length of the PP goes down to
ited number of configurations on a range of chain lengthszero for the unentangled chain, and where chain ends are not
which is most easily undertaken for systems composed dixed.




APPENDIX B: TECHNICAL CONSIDERATIONS IN USE OF
THE M-COIL ESTIMATOR

12

pression, Eq[{15), is only an implicit expression for thé-es
mator\.(N). Formally, we need the inverse 6fV)/N to
calculateN.(N). In the following, we describe the procedure
in order to prevent any ambiguities upon applying M—coil in
practice. Fig[ b shows both the left (Ihs) and right hand)(rhs

™ gm:ig:: ;22 E;JEZSE(')\‘E)) | sides of Eq[_II3 versu¥ for our data. For any giveiv (say,
< —+—M-coil Ihs (LJ+FENE) N = 48 for the PE data, where the dotted red line starts in
“ o = M-coil lhs (PE 450 K) | Fig.[8), theN. () estimate is the value at the ordinate for
“SE which the abscissa values for Ihs and rhs coincide (end of the
Sk red curve is afV, (48) ~ 87). The same procedure is repeated
~|Z L L for all NV to arrive at Fig[b and particular values collected in
. T T T the M—coil row of Tab1ll. The difference between Ihs and rhs
© S can be used to estimate the difference between the lahgest
@ O o- . available andV.,. If only short chains had been studied, only
< O 5 a part of this plot could have been drawn.
—~ é TO-
5‘2 M\EFEZD Note that this procedure requir€§N)/N to be monoton-
© 0 ‘ - A — ically decreasing withV, and access t6'(IV) at sufficiently
0 0 100 ;?O 200 20 300 large N. While the former is essentially valid for all poly-

FIG. 6: The graph demonstrates on how to graphically evaluat
N.(N) according to the M—coil estimatdr (15). Shown are both the
left hand side (Ihs{’'(N) /N, and right hand side (rhs) of Eq._{15) for
both types of polymer melts. The dotted red path makes an gheam

on how to obtain\V, (V) ~ 87 for given N = 48. Obviously, this

value is quite identical with bothy,

andA.(Ne), cf. Tab[dl. The

mer models, the latter may pose a problem. Without reliable
values forC(N) for N = N,, there is no apparent way to
come up with an M—coil which converges befaxereaches
N.. However, since”(N)/N decreases with increasing

and ultimately reache€'(co)/N behavior, in practice (and
formally for ideal chainsy{’ (V) can be estimated by extrapo-
lation, and the necessafy(V)/N values could be added for

ratio C(N)/N (small points) monotonically decreases with increas-chain lengths exceeding those studied.
ing N, while the rhs (large symbols) reaches a plateau at the time

N has approached/. (at the crosspoint), which is a distinguished

feature of an ideal estimator.

This issue disappears by construction when the largest sim-
ulated N exceed\,(V), so that the conditions for an ideal
estimator are met in any case. Still, this is a noticeable and

While the M—kink estimator (E§.13) is explicitly evaluated principal difference between the estimators from coils (M-
from the local derivativel(Z) /dN aroundN, our M—coil ex-  coil) and kinks (M—kink).
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