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Primitive path analyses of entanglements are performed over a wide range of chain lengths for both bead
spring and atomistic polyethylene polymer melts. Estimators for the entanglement lengthNe which operate
on results for a single chain lengthN are shown to produce systematicO(1/N) errors. The mathematical
roots of these errors are identified as (a) treating chain ends as entanglements and (b) neglecting non-Gaussian
corrections to chain and primitive path dimensions. The prefactors for theO(1/N) errors may be large; in
general their magnitude depends both on the polymer model and the method used to obtain primitive paths. We
propose, derive and test new estimators which eliminate these systematic errors using information obtainable
from the variation of entanglement characteristics with chain length. The new estimators produce accurate
results forNe from marginally entangled systems. Formulas based on direct enumeration of entanglements
appear to converge faster and are simpler to apply.
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Keywords: Lennard-Jones, FENE, multibead chains, polyethylene, tube diameter, tube model, reptation, shortest path, equi-
libration, entanglement crossover, characteristic molecular weight, wormlike chain, characteristic ratio, plateau modulus

I. INTRODUCTION

The features of polymer melt rheology are determined pri-
marily by the random-walk-like structure of the constituent
chains and the fact that chains cannot cross. The motion of
sufficiently long chains is limited by “entanglements” which
are topological constraints imposed by the other chains. These
become important and dramatically change many melt proper-
ties (e. g. diffusivity and viscosity) as the degree of polymer-
ization becomes larger than the “entanglement length”Ne.
The value ofNe is both a key quantity measured in mechan-
ical and rheological experiments and a key parameter in tube
theories of dense polymeric systems [1].

Ne is usually considered to be a number set by chemistry
and thermodynamic conditions (e. g. chain stiffness, concen-
tration, and temperature). It has been empirically relatedto a
“packing” length [2];Ne ∝ (ρb3)−2 [3], whereρ is monomer
number density andb2 = 〈R2

ee/(N − 1)〉 is the statistical seg-
ment length of chains with end-to-end distanceRee and mean
degree of polymerizationN . In terms of individual entan-
glements,Ne is defined as the ratio betweenN and the mean
number of entanglements per chain〈Z〉, in the limit of infinite
chain length,

Ne = lim
N→∞

N

〈Z〉 . (1)

We call a functionNe(N) anNe–estimate if it has the prop-
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erty

lim
N→∞

Ne(N) = Ne, (2)

whereNe is a system dependent butN -independent quan-
tity. Comparing Eq. (1) with (2) doesnot imply choosing
Ne(N) = N/〈Z〉. The typical experimentalNe–estimate
uses the plateau modulusG0

N [1]:

Ne(N) =
4mρkBT

5G0
N

, (3)

wherem is monomer mass,kB is the Boltzmann constant, and
T is temperature.

A closely related theoretical construct is the primitive path
(PP), defined by Edwards [4] as the shortest path a chain fixed
at its ends can follow without crossing any other chains. Ru-
binstein and Helfand [5] realized that the entanglement net-
work of a system could be obtained by reducing all chains
to their PPs simultaneously. Such a reduction process is an-
alytically intractable, but has recently been achieved by com-
puter simulations [6, 7, 8, 9, 10, 11, 12, 13] which generate
networks of PPs from model polymer melts, glasses, random
jammed packings and solutions. These simulations estimate
Ne either from the chain statistics of the PPs [6, 8, 9] or from
direct enumeration of entanglements (contacts between PPs)
[7, 10, 11, 12, 14, 15], which determines〈Z〉.

Chain-statistical and direct enumeration approaches pro-
duce different results forNe for the same atomistic configura-
tions, suggesting that “rheological” and “topological” entan-
glements are not equivalent [15]. This discrepancy has been
attributed to the fact that chemical distances between entan-
glements are not uniform, but rather are drawn from broad
distributions [7, 10, 14, 15, 16], even at equilibrium. Studies
of how entanglement properties change withN are therefore
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of obvious interest. Moreover, primitive path statistics enter
recently developed sliplink–based models [17].

In this paper we seek an “ideal”Ne-estimate which ap-
proachesNe at the smallest possibleN . There have been
several attempts in the literature, summarized below, to derive
Ne-estimates, but these have all exhibited poor convergence
(i. e. by approachingNe only at largeN ≫ Ne). Molecu-
lar dynamics simulation times increase with chain lengthN
approximately asN5 at largeN (relaxation timeτ ∝ N3.5

times system size∝ N3/2), so improvedNe–estimates have
obvious benefits for computationally efficient determination
of Ne. By analyzing a number of coarse-grained and atom-
istic systems, we find a rather general solution to this problem
of setting up aNe–estimator which allows to predictNe from
weakly entangled linear polymer melts.

The organization of this paper is as follows. Section II
presents the polymer models used here and the topological
analysis methods which provide us with the entanglement
network (primitive paths). Section III distinguishes between
valid and quickly converging (ideal)Ne–estimators, and dis-
cusses some model– and method–independent issues with ex-
isting estimators. Examples are given which highlight system-
atic errors caused by improper treatment of chain ends and of
the non-Gaussian statistics of chains and primitive paths.Sec-
tion IV derives two (potentially) near–ideal estimators which
extractNe from the variation of entanglement characteristics
with N . Section V presents and discusses numerical results
for these estimators for two very different model polymers.
We verify that they are basically ideal, explain why this is so,
and derive simplified forms which further illustrate the con-
nection ofNe to chain structure and entanglement statistics
and are also near-ideal. Section VI contains conclusions, and
two Appendices provide additional technical details.

II. POLYMER MODELS AND METHODS

A. Polymer model systems

We have created thoroughly equilibrated configurations for
two very different (but commonly used) model polymer melts;
monodisperse ‘Kremer–Grest’ bead–spring chains, and atom-
istic, polydisperse polyethylene. These two are chosen be-
cause they have similar values ofNe but very different chain
stiffness constantsC(∞). Polyethylene is much more “tightly
entangled” [18] in the sense of having a much lower value of
Ne/C(∞); cf. Tabs. II and III.

The bead spring model [19] captures the features of poly-
mers which are key to entanglement physics, most impor-
tantly chain connectivity/uncrossability. Each chain contains
N beads of massm. All beads interact via the truncated
and shifted Lennard-Jones potentialULJ(r) = 4ǫLJ[(σ/r)

12 −
(σ/r)6− (σ/rc)

12+(σ/rc)
6], whererc = 21/6σ is the cutoff

radius andULJ(r) = 0 for r > rc. Hereσ is the bead diam-
eter andǫLJ is the binding energy, which are both set to1; all
quantities will thus be dimensionless and given in the conven-
tional Lennard–Jones units. Covalent bonds between adjacent
monomers on a chain are modeled using the FENE potential

U(r) = − 1
2kR

2
0 ln[1− (r/R0)

2], with the canonical parame-
ter choicesR0 = 1.5 andk = 30 [19]. The equilibrium bond
length isl0 ≈ 0.96. This model is hereafter referred to as the
“LJ + FENE” model.

Values of the density and temperature (ρ = 0.85 and
T = 1.0) are those typically used for melt simulations
[6, 9, 19]. All systems contain 280,000 total beads. While all
are monodisperse, we employ a wide range of chain lengths,
4 ≤ N ≤ 3500. Those withN ≥ 100 are equilibrated
using the “double-bridging hybrid” (DBH) algorithm [20].
DBH uses molecular dynamics to update monomer positions
and Monte Carlo chain-topology-altering moves [21] to over-
come the slow diffusive dynamics [1] of entangled chains. All
equilibration simulations were performed using the LAMMPS
[22] molecular dynamics code. Ref. [19] predictedNe ≈ 35
at the above–mentioned state point using various “rheolog-
ical” measures applied to systems withN ≤ 400, while a
similar analysis in [23] predictedNe ≈ 75.

In all simulations of the atomistic polyethylene (PE) melt,
the united atom (UA) representation is adopted. Accordingly,
carbon atoms along with their bonded hydrogens are lumped
into single spherical interacting sites. There is no distinction
between methyl and methylene units in the interaction poten-
tials. All bond lengths are kept constant (l0 = 1.54 Å), while
bending and torsion angles are respectively governed by har-
monic and sum-of-cosines potentials [24, 25]. Pair interac-
tions between all intermolecular neighbors, and intramolec-
ular neighbors separated by more than three bonds, are de-
scribed by the12–6 Lennard-Jones potential. The parameters
of the mathematical formulas for the bonded and non-bonded
interactions are given in Refs. [10, 21, 24, 25]. These inter-
action potentials yield accurate predictions of the volumetric,
structural and conformational properties of PE melts over a
wide range of chain lengths and temperatures [21, 24].

All atomistic PE systems were equilibrated through
Monte Carlo (MC) simulations based on advanced chain-
connectivity-altering algorithms: the end-bridging [26]and
double bridging [21, 25] moves along with their intramolecu-
lar variants. The simulated systems are characterized by av-
erage chain lengths fromN = 24 up toN = 1000, with a
small degree of polydispersity. Chain lengths are uniformly
distributed over the interval[(1−△)N, (1 +△)N ]. Here△,
the half width of the uniform chain length distribution reduced
byN , is0.5 and0.4 for 24 ≤ N ≤ 224 and270 ≤ N ≤ 1000,
respectively. More details about the MC scheme, including a
full list of moves, attempt probabilities and acceptance rates,
can be found elsewhere [24]. Equilibration at all length scales,
which is essential to obtaining meaningful results from en-
tanglement analyses [27], was verified using several metrics
[24]. In this study, results are presented forT = 400 K and
T = 450 K, both forP = 1 atm.

B. Entanglement network and primitive paths

For the melt configurations the reduction to primitive paths
was performed using two methods, PPA and Z, using the pro-
cedures described in Refs. [6, 7, 9, 14]. PPA simulations used
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N 〈R2

ee〉 〈Lpp〉
2

PPA 〈L2

pp〉PPA 〈Lpp〉
2

Z1 〈L2

pp〉Z1 〈Z〉Z1

20 29.24 33.18 37.56 28.21 32.16 0.127

28 42.85 51.86 58.66 44.03 50.32 0.287

35 54.69 71.01 79.85 60.52 69.00 0.462

50 80.30 116.2 129.8 100.2 113.9 0.823

70 114.9 193.3 213.4 169.7 190.7 1.337

100 169.1 343.0 373.3 301.8 334.8 1.995

125 215.2 483.7 522.1 431.9 475.4 2.514

140 233.0 593.5 633.2 528.1 576.6 2.876

175 289.5 847.9 900.2 766.5 831.1 3.541

250 421.9 1646 1716 1481 1577 5.089

350 609.4 3143 3245 2764 2907 7.168

500 831.0 6050 6188 5527 5738 10.261

700 1203 1.170 × 104 1.189 × 104 1.057 × 104 1.084 × 104 14.343

875 1521 1.757 × 104 1.779 × 104 1.624 × 104 1.659 × 104 17.793

1750 3003 6.769 × 104 6.806 × 104 6.215 × 104 6.294 × 104 35.204

3500 6157 2.591 × 105 2.599 × 105 2.441 × 105 2.457 × 105 70.444

TABLE I: Chain and Primitive Path dimensions for PPA and Z1 aswell as number of kinks〈Z〉 for Z1 for the LJ + FENE polymer melt. All
quantities given in reduced LJ units. It is remarkable that values obtained via Z1 and PPA are very comparable, suggesting that chain thickness
and slippage effects seem to cancel as discussed in [14].

LAMMPS and Z simulations used the Z1 code [28]. Both
PPA and Z1 analyses are performed for the LJ+FENE model,
while only Z1 analysis is performed for PE. In both meth-
ods, all chain ends are fixed in space. Intrachain excluded
volume interactions are disabled while chain uncrossability
is retained. Both classical PPA [6] and geometrical meth-
ods (Z1 [7, 14] or CReTA [11, 15]) provide the configura-
tion of the entanglement network and the contour lengthsLpp

of each primitive path. In PPA, disabling intrachain excluded
volume produces a tensile force [29] in chains which reduces
the contour lengths. In Z1, contour lengths are monotonically
reduced through geometrical moves in the limit of zero prim-
itive chain thickness. In addition toLpp and the configuration
of the entanglement network,Z1 analysis also yields the num-
ber of interior “kinks” [7],Z, in the three-dimensional prim-
itive path of each chain.〈Z〉 is considered to be proportional
to the number of entanglements, regardless of the details of
the definition used to define an entanglement.

Runs end when the mean length of the primitive paths,
〈Lpp〉, and/or the mean number of interior kinks per chain,
〈Z〉, converge. Self entanglements are neglected, but their
number is inconsequential for the systems considered here
[9]. The CReTA method works similarly, and the conclusions
reached here for Z1 analysis should apply similarly to CReTA
results [14, 15].

Table I summarizes chain and primitive path dimensions
as well as〈Z〉 for LJ+FENE chains with20 ≤ N ≤ 3500.
Statistically independent initial states were used so thatthe
random error on all quantities is. 2.5%. It is remarkable
that PPA and Z1 data for〈Lpp〉 and also〈L2

pp〉 are so sim-
ilar, considering the differences between the contour length
reduction methods. Relative to Z1 results, PPA values of
〈Lpp〉 are increased by finite chain thickness effects [11, 30]

and decreased by chain end slipoff [14]. Both these ef-
fects should decrease in strength asN increases, and indeed
〈L2

pp〉PPA/〈L2
pp〉Z1 decreases from∼ 1.17 to ∼ 1.06 over the

range20 ≤ N ≤ 3500. A very comparable trend is offered
by 〈Lpp〉2PPA/〈Lpp〉2Z1.

PPA results for the shortest chains(N < 20) are not pre-
sented. Standard PPA is unreliable for very short chains be-
cause the presence of a high concentration of fixed chain ends
combined with the finite bead diameter effectively inhibitsre-
laxation [11, 30]. These problems are even worse for topo-
logical analysis of lattice polymer systems, see e. g. Ref. [12].
In the following, where (as will be shown) accurate data from
very short chains is important, we focus on Z1 results.

III. TOWARDS VALID ESTIMATORS

A basic task of topological analysis is to calculateNe from
the full microscopic configuration of the entanglement net-
work. The simplest approaches employ only the mean square
end–to–end distance of chains,〈R2

ee〉 and either the mean
length of the primitive paths,〈Lpp〉 or the mean number of
kinks, 〈Z〉. Notice that〈Z〉 is not an integer, but semiposi-
tive, 〈Z〉 ≥ 0. In order to estimateNe from weakly entangled
systems one of course needs physical insight; when this is
limited, a goodNe–estimator can only be guessed.

Some restrictions arise from a purely mathematical view-
point. A valid estimatorNe(N) has the following properties.
It

(i) obeys Eq. (2) and uses information from polymer con-
figurations whose mean chain length does not exceed
N ;
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(ii) either yieldsNe(N) ≥ N or leavesNe(N) undefined
for a system of completely unentangled (〈Z〉 = 0)
chains.

An “ideal” estimator we define to

(iii) correctly predictNe for all N exceedingNe, or for all
〈Z〉 exceeding unity.

Accordingly, for an ideal estimator, the following weaker con-
ditions hold. An ideal estimator

(iv) diverges for a system of rodlike chains possessingNe =
∞, and

(v) exhibitsNe(N) ≤ N when each chain has in average
more than a single entanglement,〈Z〉 > 1.

The following two subsections repeat earlier approaches to
estimateNe. Basic considerations of finite chain length ef-
fects, errors from improper treatment of non-Gaussian struc-
ture, and the general behavior of quantities enteringNe are
discussed. These subsections are meant to prepare the reader
for the ideal estimators to be presented in Sec. IV. They re-
flect the chronology of our search for better estimators and
help the reader to understand the magnitude of improvements
presented in Section V. The arguments given here ultimately
point the way to construct ideal estimators.

A. Non-Ideal Estimators

Modelling primitive paths as random walks, Everaerset. al.
[6] developed an estimator (which we denote as ”classical S–
coil”) which operates on results for configurations (”coils”) of
a single (S) chain length,

Ne(N) = (N − 1)
〈R2

ee〉
〈Lpp〉2

. (4)

The classical S–coil estimate (4) is useful because (for long
chains) it relates changes in chain structure to rheological
trends [6, 18]. However, while it fulfills basic requirements
(i) and (ii) (both unentangled and rodlike chains haveRee =
Lpp), it lacks properties (iii) and (iv). As the exact relaction
of 〈R2

ee〉/〈Lpp〉2 and 〈Z〉 is unknown, it isa priori unclear
wether it has property (v).

The corresponding estimator operating on the number of
kinks, 〈Z〉, and originally employed in [7], denoted here as
“classical S–kink”, is

Ne(N) =
N(N − 1)

〈Z〉(N − 1) +N
, (5)

which fulfills the basic requirements (i) and (ii), and also (v),
but lacks (iii) according to Ref. [10] and (iv) by definition.The
presence of bothN−1 andN in Eqs. (4), (5), and subsequent
estimators reflects the fact that it is the existence of a bond
rather than a bead which is responsible for the presence or
absence of an entanglement between two chain contours.

0 50 100 150 200
0

10

20

30

40

50

60

70

80

 

 

LJ + FENE
polyethylene 450 K

cl
as

si
ca

lS
-e

st
im

at
or

sN
e
(N

)

N

FIG. 1: (color online) Performance of classicalNe–estimators
Ne(N) based on coils (4) (upper two curves) and kinks (5). Data is
shown for the two model polymer melts studied in this manuscript.
The trends withN is in agreement with published results for other
systems [7, 10, 11, 14, 31, 32, 33]. The convergence behavioris poor,
asNe ≡ limN→∞ Ne(N) obviously cannot be extrapolated study-
ing chains withN < 100, whileNe turns out to stay well below100
for both systems. An ”ideal estimator”, as defined in Sec. III, would
converge whenN exceedsNe or earlier.

The performance of the two classical estimators (4) and
(5) for the two polymer models considered here is illustrated
in Fig. 1. Values ofNe(N) converge very slowly with in-
creasingN . As expected from their form, but contrary to
both rheological intuition and condition (ii) , values ofNe(N)
drop strongly with decreasingN . For marginally entangled
chains (whereN is just large enough so that〈Z〉 is small but
nonzero), both classical estimators yieldNe(N) ≤ N−1. For
example, forN = 20, they both predictNe(N) = 17, which
is close to the (improper) upper boundN − 1 = 19. This pre-
diction obviously has no connection to the actual topology of
the system.

Thus Eqs. (4) and (5) always underestimate, but never over-
estimateNe. This feature of the two estimators in the limit of
unentangled chains is particularly (if retrospectively) disap-
pointing, as it is incompatible with goal (iii). Similar behav-
ior was reported (but not analyzed as in this paper) in Refs.
[31, 32, 33].

Other previously publishedNe–estimators [9, 11, 16, 34]
also have some, but not all, of properties (i)-(v). One of the
most promising was proposed in Ref. [9]. It estimatesNe

from theinternal statistics of primitive paths, for a singleN .
The squared Euclidean distances〈R2(n)〉 between monomers
separated by chemical distancen ≤ N − 1 after topological
analysis (i. e., the chain statistics of the primitive paths) were
fit [9] to those of a freely rotating chain with fixed bond length
fixed bending angle.Ne was then identified with the chain
stiffness constantC(∞) of the freely rotating chain [35]. This
estimator does notobviouslyfail to meet any of conditions
(i)-(v). In Ref. [9] it gave values ofNe(N) which decreased
more slowly than Eq. (4) asN decreased. Unfortunately, its
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predictions agree with Eq. (4) at moderateN & 100 and thus
it fails condition (iii).

New S-estimators based on modifications to Eqs. (4) and (5)
may be proposed. During the course of developing ideal esti-
mators (to be introduced in Sec. IV), we developed two mod-
ified single chain length estimators which tend to approach
Ne from above rather from below. These are the ”modified
S–kink” estimator

Ne(N) =
N

〈Z〉 , (6)

and the mathematically similar ”modified S–coil” estimator

Ne(N) = (N − 1)

(

〈L2
pp〉

〈R2
ee〉

− 1

)−1

. (7)

A motivation for the use of〈L2
pp〉 rather than〈Lpp〉2 in Eq. (7)

appears in Appendix A. Fig. 2 shows results for Eqs. (6) and
(7) for the same systems analyzed in Fig. 1. Both modified
single–chain estimators giveNe(N) = ∞ for unentangled
chains, thus fulfilling criterion (iv) in addition to (i) and(ii),
but they still fail to fulfill goal (iii) since they tend to overesti-
mateNe for weakly entangled chains.

B. Errors from improper treatment of non-Gaussian structur e
and chain ends

Critically, none of the above-mentioned estimators seem to
be able to predictNe(N) = Ne for weakly entangled systems
with a slightly positive〈Z〉 . 1. All above–cited previous
works as well as Eq. (7) have only produced convergence for
N ≫ Ne, and we are not aware of any studies where conver-
gence has been achieved atN ≈ Ne, i. e., we are not aware
of the former existence of any idealNe–estimator. However,
the failure of so many previous attempts both makes it worth
examining the common reasons why they have failed, and in
fact points the way to creating idealNe–estimators.

To leading order inǫ ≡ (N −1)−1 (i. e. the inverse number
of bonds), data for a wide variety of model polymers (see e. g.
Refs. [20, 24, 31]), as well as the data obtained in this study
(see Fig. 3a) are consistent with

〈R2
ee〉(ǫ) = D/ǫ− Y, (8)

where the relative magnitudes of the constant coefficientsY
andD depend on factors such as chain stiffness, molecular
details and thermodynamic conditions.

Also, orientations of successive PP segments are correlated
[11], so〈Lpp〉2 should not be simply quadratic in chain length.
The expected leading order behavior of〈Lpp〉2 is

〈Lpp〉2(ǫ) = A/ǫ2 +B/ǫ, (9)

whereB contains contributions from non-Gaussian statistics
and contour length fluctuations [1]. Relationships (8) and (9)
are consistent with data reported elsewhere (e. g. Refs. [24,
32]) as well with our own data, as shown in Fig. 3.
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FIG. 2: (color online) (a) Performance of modified S–kink estima-
tor (6) (lower two curves) and the modified S–coil (7) (upper two
curves). which approachNe from above. Data are for the same sys-
tems analyzed in Fig. 1. The single-configuration estimatorfor kinks
exhibits an improved convergence behavior compared with (5). Un-
der circumstances discussed in Sec. V, application of both modified
and original classical estimators allows one to obtain lower and up-
per bounds onNe which tighten with increasingN . (b) Shown are
the relative differences (“gap [%]”) betweenNe(N) values shown in
Fig. 1 and the ones plotted in part (a) of the current graph. Differ-
ences are smaller forNe estimated from kinks (lower two curves).

At this point it is worthwhile to mention that we are going
to make use of (9), which is able to capture our results for
〈L2

pp〉 down to chain lengthsN small compared withNe, to
devise an ideal estimator in Sec. IV. Relationship (8) however,
as we will see, willnot be required to hold to devise an ideal
estimator.

Inserting Eqs. (8) and (9) into the classical and modified S–
coil Eqs. (4) and (7) respectively give, to leading order inǫ,

Ne(N)
(4)
=

D

A
− AY +BD

A2
ǫ+O(ǫ2), (10a)

Ne(N)
(7)
=

D

A
+

D2 −AY −BD

A2
ǫ+O(ǫ2), (10b)

Thus non-Gaussian structure of both chains and primitive
paths naturally lead to systematicO(ǫ) ≃ O(1/N) errors in
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earlier estimators forNe [36].
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FIG. 3: (a) Testing the applicability of Eq. (8) which predicts linear
behavior (slope∝ D, offset∝ Y ) in this representation. We obtain
C(∞) ≈ 1.85 andC(∞) ≈ 8.3 for the LJ+FENE and PE models,
respectively (cf. Tab. II). (b) Testing the validity of Eq. (9) for both
types of melts (slope∝ A, offset∝ B). The linear relationship is
employed to derive estimator (15) in Sec. IV B. (a+b) Data forlarger
N are not shown but also agree to all displayed fit lines, to within
statistical errors.

Similarly, 〈Z〉 necessarily scales asǫ−1 in the N → ∞
limit. In the same spirit as the above analysis, and noting the
failure (Fig. 2) of Eqs. (5) and (6) to meet condition (iii), let us
hypothesize that finite chain length leads to the leading order
behavior

〈Z〉(ǫ) = G/ǫ−H, (11)

whereG andH are both positive. This assumption is actually
consistent with the data in Tab. I and previous works [24]; see
also Sec. IV. The classical and modified S–kink Eqs. (5) and
(6) then become

Ne(N)
(11) in (5)

=
1

G
− 1−G−H

G2
ǫ+O(ǫ2), (12a)

Ne(N)
(11) in (6)

=
1

G
+

G+H

G2
ǫ+O(ǫ2). (12b)

Again, systematicO(ǫ) errors are predicted. In this case, how-

ever, the source is chains being too short to be in the asymp-
totic entangled limit defined by Eq. (1).

A key to understanding the failure of previousNe–
estimators is thatdifferencesin the prefactors of theO(ǫ)
errors [Eqs. (10) and (12)] arise from different treatment of
chain ends. The classical S–kink equation (5) underestimates
Ne as long asG+H < 1, and the modified S–kink equation
(6) strictly overestimatesNe, since bothG andH are positive.
Similarly, the prefactor(AY +BD−D2)/A2 (Eq. 10b) of the
systematicO(ǫ) error in the modified S–coil equation (7) con-
tains two contributions of different origins.(AY + BD)/A2

arises from the Gaussian-chain approximation used, while
−D2/A2 arises from the attempt to correct for chain ends ef-
fects (i. e. the “-1”).

We have determined the coefficientsA, B, D, G, H , and
Y using all available data from our simulations; their values
for both polymer models are shown in Tab. II. Coinciden-
tally, for LJ+FENE chains,(AY + BD)/A2 ≃ 5 × 103 and
D2/A2 ≃ 7 × 103. The systematicO(ǫ) error for the mod-
ified S–coil (7) is actually small for LJ+FENE systems due
to the near-cancellation of its contributing terms. There is no
reason to believe this behavior is general, and tests on addi-
tional polymer models would be necessary [36] to better char-
acterize how rapidly the modified S–coil typically converges.
However, it is reasonable to expect it typically converges more
rapidly than the classical S–coil (4).

Before turning to ideal estimators, we mention that the
modified S–kink (6) can be regarded as corrected version of
classical S–kink (5), as it eliminates anO(ǫ) error from the
latter, and thus converges faster.

IV. IDEAL ESTIMATORS

Given the prevalence of subtle systematicO(ǫ) errors in
non-idealNe–estimators, it is reasonable to suppose that in
developing an ideal estimator, one has the freedom to intro-
duce system-dependent (butN–independent) coefficients, e.
g., c, c′, andZ0, in equations for a validNe(N) such as
N/〈Z〉 + c ǫ, N(1 − c′ǫ)/〈Z〉, or N/(〈Z〉 + Z0). These
formulae are all potentially valid estimators because theyful-
fill the basic requirement (Eq. 2). The coefficients are some-
what related to each other, but have slightly different physical
meanings. They fulfill conditions (i) and (ii) for arbitraryc
andc′, but only if Z0 ≤ 1. Note that finding an idealNe–
estimator neither depends on the interpretation of〈Z〉 or re-
quiresa priori knowledge of the numerical values of the coef-
ficients. However, these numerical values are required to turn
the above three expressions intoNe–estimates before they can
be applied. As these numerical values are certainly sensitive
to system features like chain thickness and stiffness, it isim-
possible to determine them from a single set of〈Lpp〉, 〈R2

ee〉,
and〈Z〉 values.

The best possible estimator givesNe(N) = Ne for 〈Z〉 ≪
1, but such an estimator would have to rely on incomplete
information, some model assumptions, or make use of some
‘universal’ features of entangled systems such as those sug-
gested by Refs. [10, 11]. We make use of two such findings
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l0 C(∞) D Y A B G H

system cf. Eq. (8) cf. Eq. (9) cf. Eq. (11)

LJ + FENE 0.964 1.852 1.72 3.55 0.020 1.04 0.020 0.12

polyethylene 450 K 1.54 Å 8.318 19.7 Å2 131.4 Å2 0.22 Å2 8.58 Å2 0.023 0.20

polyethylene 400 K 1.54 Å 8.535 20.2 Å2 85.3 Å2 0.24 Å2 9.37 Å2 0.025 0.19

TABLE II: Data obtained via Z1. The coefficientsD, Y , A, andB have been obtained from a least square fit to the available data (covering
N ≫ Ne) for 〈R2

ee〉 and〈Lpp〉, according to Eqs. (8) and (9). Similarly, coefficientsG andH derive from the measured〈Z〉 via (11).

(Sec. III): for the polymer models considered here, both〈Z〉
and〈Lpp〉2/(N − 1) are linear inN above certain characteris-
tic thresholds. Further supporting data for atomistic polyethy-
lene have been reported recently by some of us [24].

For both models considered here, the ‘characteristic thresh-
olds’ are located at〈Z〉 < 1 andN < Ne, allowing us to make
use of the ‘linearities’ to construct idealNe–estimators. We
now derive two near-idealNe–estimators, for kinks and coils
respectively. These estimators operate on multiple (M) sys-
tems with different chain lengths, rather than on a single con-
figuration, and will be denoted as M-coil and M-kink in order
to clearly distinguish between S– and M–estimators. Careful
empirical tests of the new estimators’ validity is quite essen-
tial, and will be given in Sec. V.

Below, the idea behind the different roles of Eqs. (8), (9),
and (11) is that the statistics of the entanglement network
can be expected to be decoupled from the fractal dimen-
sion of the atomistic chain, because entanglements arise from
inter–chain rather than intra–chain configurational properties.
The estimator we develop in the following section will, in
fact, potentially be applicable to non-Gaussian chains where
〈R2

ee〉 ∝ ǫ−µ (with 1 ≤ µ ≤ 2), as well as less-flexible poly-
mers (like actin [37] or dendronized polymers [38]) for which
Ne is [18] of the order of a “persistence length” of the atom-
istic chain.

A. The M–kink estimator

Beyond some a priori unknown chain lengthN1, we know
that〈Z〉 (as determined via Z1 or CReTA) varies linearly with
N , i. e.〈Z〉 = GN+Z0 (with G > 0, andZ0 ≡ −(G+H) >
−1 in the notation of Eq. 11). We recall that an idealNe–
estimator implies, according to condition (iii), that

(vi) dNe(N)/dN = 0 for N ≥ N1, and

(vii) N1 < Ne

are necessary to produceNe = Ne(N1). Uniquely,Ne =
1/G andNe(N) = Ne for all N > N1. Using the lin-
ear relationship between〈Z〉 and N we thus propose (a)
Ne(N) = N/(〈Z〉 − Z0), whereZ0 = Z0(N) is the coef-
ficient determined from data collected up to chain lengthN .
Note that (a) is identical with theNe–estimator suggested on
mathematical grounds at the beginning of this section.

However,Ne(N) = 1/G can be equivalently obtained
from (b)Ne(N) = dN/d〈Z〉. This is an estimator, denoted

as “M-kink”, of extraordinary simplicity:

1

Ne(N)
=

d〈Z〉
dN

. (13)

M-kink is strictly an ideal estimator (i. e. it satisfies all five
conditions proposed in Section III) providedN1 < Ne. It
eliminates the unknown coefficient in the linear relationship,
and identifiesNe to be responsible for the ultimateslopeof
〈Z〉(N). This is analogous with measurements of diffusion
coefficients, where one eliminates ballistic and other contribu-
tions by taking a derivative. Application of Eq. (13) requires
studying more than a single chain length, which renders our
M-kink estimator qualitatively different from the S-kink esti-
mators. Data for〈Z〉(N) for both polymer models, shown in
Fig. 4, demonstrates that〈Z〉 in fact becomes linear inN for
〈Z〉 below unity [24, 39], thus confirmingN1 < Ne. This
suggests thatNe can be estimated using data for〈Z〉 from
chains of lengths even belowNe.

The occurrence of a nonvanishingN1 is rooted in the fact
that a minimum polymeric contour length (of the order of2πℓ
with polymer thicknessℓ, subsequently corrected by chemical
details) is needed for geometrical reasons to form an entan-
glement (or tight knot) [40]. This length (ℓ) increases with the
persistence length of the atomistic contour, and vanishes in the
limit of infinitely thin polymers. This implies that determin-
ing Ne from the slope we correct for a thickness effect, and
N1 is proportional to the thickness of the atomistic polymer.

B. The M–coil estimator

Next, we motivate and derive a near–ideal estimator for
use with coil-properties〈R2

ee〉 and〈Lpp〉 (obtained via PPA,
CReTA or Z1). Flory’s characteristic ratioC(N) is defined
through the identity [41, 42]

〈R2
ee〉 ≡ (N − 1)l20C(N). (14)

Equation (14) is exact by construction; theN–dependence of
C(N) characterizes the (non)-Gaussian structure of chains.
In general,C(N) ≥ 1 if N > 1. For (mathematically) ideal
chains,C(N) is related to the persistence lengthlp [35]. This
allows the chain stiffness constantC(∞) ≡ limN→∞ C(N)
to be calculated from short chains for any sort of ideal chain,
including random walks, freely rotating chains, wormlike
chains, etc. Simulations on dense chain packings show [43]
that the value ofC(∞) = 1.48 is a universal lower limit for
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excluded volume, flexible chain molecules. For real chains
like polyethylene, chains much longer thanlp need to be stud-
ied to characterizeC(N), cf. Ref. [24]. We assume knowl-
edge ofC(N) as function ofN from the atomistic configura-
tions.

To proceed, we make use of our finding that〈Lpp〉2/(N −
1) is linear inN above a certain characteristicN0, before
〈Z〉(N) has reached unity, i.e., we assumeN0 ≤ Ne to de-
rive an ideal estimator (15). The linear relationship clearly
holds for both polymer models considered here (Ref. [24], Ta-
ble I, Figs. 3b and 4), and has already been formulated in Eq.
(9). Next we relate〈Lpp〉 and 〈Z〉 for largeN ≫ Ne by
a simple argument: the length of the primitive path,Lpp, is
[18] the number of “entanglement nodes”,N/Ne, times the
meanEuclideandistanceℓe between such nodes. This dis-
tance (ℓe) equals the mean end–to–end distance of the atom-
istic chain withNe monomers. We thus expect that up to
a factor of order unity (related to fluctuations inle [35]),
limN→∞〈Lpp〉2 = (N/Ne)

2(Ne − 1)l20C(Ne).
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−
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FIG. 4: Z1 results for the two model polymer melts. Testing the
applicability of Eq. (11) which predicts linear behavior inthis repre-
sentation (slopeG, offsetH). Clearly〈Z〉(N) becomes linear at an
N for which 〈Z〉 < 1. This impliesN1 < Ne and that Eq. (13) can
be an ideal estimator. An interpretation forN1 is given in Sec. IV A.
Data for largerN is not shown here, but the sloped〈Z〉/dN does
not significantly change with increasingN .

By following the procedure of Section IV A, we arrive at
anNe–estimator, denoted as “M–coil”, using coil properties
alone:

(

C(x)

x

)

x=Ne(N)

=
d

dN

( 〈Lpp〉2
R2

RW

)

, (15)

whereR2
RW ≡ (N − 1)l20, andC(x) is the characteristic ra-

tio for a chain withNe(N) monomers. This estimator fulfills
all conditions from our above definition of an ideal estimator.
As for M–kink, the derivative in the M–coil Eq. (15) signals
that we have to measure〈Lpp〉 as function ofN rather than a
single value to estimateNe. The convergence properties are
not as cleara priori as they are for the M-kink estimator Eq.

(13), as this derivation required an approximation. In prac-
tice, one must simulate systems with increasingN until the
M–coil converges. There is no apparent way to come up with
anNe–estimator fromcoil quantities which converges before
N reachesNe. This is a noticeable difference between the es-
timators from coils and kinks (M–kink). Technical considera-
tions in the application of Eq. (15) are discussed in Appendix
B.

V. NUMERICAL RESULTS AND DISCUSSION

The data in Tab. I and a similar set for atomistic polyethy-
lene (configurations from Ref. [24]), will now be used to test
the M–estimators. Figure 5 shows results for the M-kink es-
timator (Eq. 13) and M-coil estimator (Eq. 15) for the same
systems analyzed in Figs. 1 and 2. Comparison of these fig-
ures shows that the M– estimators indeed converge faster than
the S– estimators (Eqs. 4–7). Moreover, comparison to Fig.
4 shows that the M– estimators converge for marginally en-
tangled systems; values ofNe(N) approachNe before〈Z〉
far exceeds unity. These show that Eqs. (13) and (15) are es-
sentially “ideal”, meeting all of conditions (i)-(v). The kink
estimator performs slightly better, presumably because ofthe
approximations made in deriving Eq. (15).

ForN < 50, values ofNe(N) from M–kink (13) increase
with decreasingN . As shown in Fig. 5,Ne(N) appears to
be diverging asN → 0. The precise nature of the divergence
is unimportant. For example,N = 20 chains have〈Z〉 =
0.127, and the vast majority have zero entanglements, so the
predictionNe(20) = 192 ≫ 20 of modified S–kink (6) just
signals that we are deep in the unentangled regime, whereNe

cannot yet be estimated.
The fast convergence of the M-kink estimator can be better

understood by plugging Eq. (11) into M–kink (13). This pro-
duces a special case of the M–kink estimator, which is only
asymptotically correct, and can be used when (11) holds. We
refer to it as the “approximate M–kink” estimator:

Ne(N) ≈ 1

G
. (16)

Here,G is the coefficient in the linear relationship between
〈Z〉 andN obtained from data collected up to chain lengthN ,
and thusNe(N) depends onN . Note that the derivative with
respect toN in Eq. (13) removes theO(ǫ) errors! This is a
major difference with respect to all S–estimators (the estima-
tor used in [9] can be considered as intermediate between S–
and M–estimators).

In a similar attempt to rationalize the fast convergence of
the M–coil estimator, we insert Eqs. (8) and (9) into Eq. (15).
This yields, accordingly, the ”approximate M–coil” estimator,

Ne(N) ≈ 1 +
D +

√
D2 − 4AY

2A
. (17)

Like Eq. (16), Eq. (17) has noO(ǫ) corrections. Again, this
arises from the “M” approach of taking derivatives with re-
spect toN . In both cases, the use of the derivatives re-
moves undesirable effects related to proper treatment of chain
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Ne Ne(Ne) Ne Ne(Ne) Ne Ne(Ne) Ne Ne(Ne) Ne Ne(Ne)

M–coil approximate M–coil simplified M–coil M–kink approximate M–kink

system Eq. (15) Eq. (17) Eq. (18) Eq. (13) Eq. (16)

LJ + FENE 86.1 87.8 85.1 89.6 86.2 90.1 48.9 46.3 48.5 55.7

polyethylene 450 K 84.0 83.4 84.4 84.5 90.6 90.1 44.2 42.2 43.3 38.8

polyethylene 400 K 82.3 80.1 80.5 77.8 83.9 84.1 41.5 38.5 40.1 36.3

TABLE III: Data obtained via Z1. Selected results forNe(N) for all near-ideal M–coil and M–kink estimators defined in this manuscript.
For each estimator, two characteristic values are shown:Ne uses all availableN (up toN = 3500 andN = 1000 for the LJ+FENE and
PE models, respectively), andNe(Ne) uses only data from short chains withN ≤ Ne (cf. Tab. I). Values ofNe(Ne) are thus obtained at
moderate computational cost, and are all in overall agreement with Ne. Approximate M–coil (M–kink) results should coincide withM–coil
(M–kink) results, if the relationships (8), (9) and (11), respectively, accurately hold. The simplified M–coil does nottake into account the effect
of C(N). M–coil (M–kink) is the estimator with the least assumptions involved, ifNe needs to be estimated from coil (kink) information
(see also Appendix B). The fact that for all these estimatorsNe(Ne) ≈ Ne gives sufficient evidence that these are in fact ideal estimators, in
sharp contrast to most S–estimators, quantitatively discussed in Tab. IV. Note that the very similar values ofNe reported for LJ+FENE and
PE systems are a pure coincidence arising from their similarvalues ofD/A (Tab. II; cf. Eq. 18)

Ne Ne(Ne) Ne Ne(Ne) Ne Ne(Ne) Ne Ne(Ne)

classical S–coil modified S–coil classical S–kink modified S–kink

system Eq. (4) Eq. (7) Eq. (5) Eq. (6)

LJ + FENE 86.1 40.0 86.1 129.7 48.9 31.7 48.9 51.2

polyethylene 450 K 84.0 39.7 84.0 192.8 44.2 30.4 44.2 48.3

polyethylene 400 K 82.3 37.3 82.3 191.8 41.5 28.8 41.5 44.9

TABLE IV: Data obtained via Z1. For comparison with Tab. III.Performance of previous S–coil and S–kink estimators. AccurateNe–values
have been overtaken from M–coil and M–kink in Tab. III. Obviously,Ne(Ne) is far from being close toNe in all cases, while the deviations
are strongest for theNe–estimates based on coils; the two kink measures seem to at least bracket the trueNe (for the deeper reason thatZ0,
introduced in Sec. IV A, must obeyZ0 ∈ [−1, 0]).

ends. The approximate M–coil estimator is related only to
the (in general, non-Gaussian) structure of chains and primi-
tive paths. Finally, if the assumptions which lead to Eq. (10)
hold, and in order to quantify the contributions to Eq. (17),the
above analysis combined with tube-theoretic considerations
suggests another estimator, which we refer to as “simplified
M–coil”:

Ne(N) ≈ D

A
. (18)

The only dependence onN of the approximate and simpli-
fied estimators, Eqs. (16)–(18), stems from the variation ofA,
D, G, andY with N ; these coefficients, which are obtained
by linear interpolation, must generally be assumed be consid-
ered to depend on the available range of studied chain lengths.
When the variation of the coefficients is large, these three es-
timators should not be used.

Note that the simplified M-coil does not agree with M-coil
if C(Ne) has not reachedC(∞); though it may converge
quickly, it cannot be ideal. For the systems under study,Ne is
large enough such thatC(Ne) is quite close toC(∞) [44].
The simplified M-coil has a simple connection to polymer
structure and the tube model [1].D = C(∞)l20 = l0lK ,
wherelK is the Kuhn length [35]. The tube diameterdT is
given byd2T = l0lKNe, and henceA = (dT /Ne)

2.
Table III quantifies the performance of the new M–

estimators. The two presented values for each estimator
Ne(N) are the finalNe, obtained by analyzing all available
chain lengths, together with the value predicted by the estima-
tor atN = Ne (i. e. at the border between unentangled and
entangled regimes, using only chains of length up to∼ Ne).
For an ideal M–estimator these two numbers should be the
same within statistical errors, here∼ 2.5%, andNe should
coincide withlimN→∞ N/〈Z〉. All four M–estimators con-
sidered here, the complete ones (Eqs. 13, 15) as well as their
approximate versions (Eq. 16, 17) satisfy these criteria. The
simplified M–coil (18) is seen to converge quickly as well,
but it does converge to anNe which is above the one ob-
tained via M–coil, becauseY is positive (Y vanishes for an
ideal random walk). Table IV shows corresponding results for
the S–estimators, which all (as discussed above) are generally
non-ideal. Still, the modified S–kink turns out to perform very
well, simply becauseG +H ≪ 1 for our model systems, cf.
Tab. II.

For the LJ+FENE model, while the classical S–coil estima-
tor (Eq. 4) produces values ofNe consistent with published [9]
results, i. e.Ne ≃ 70 for N = 350 and500, values for these
estimates based on the near–ideal M–estimators (cf. Tab. III)
and also the modified S–coil (7) rise above80 for the longest
chains considered here. The M–estimators based on chain and
(Z1) primitive path dimensions converge to the valueNe ≃ 85
in the mostly unentangled regime, cf. Tab. III. Thus all data
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FIG. 5: (color online) (a) Performance of proposed estimators M–
kink (13) (lower two curves with large symbols) and M–coil (15)
(upper two curves with large symbols); see also Appendix B. Data
is for the same systems analyzed in Figs. 1 and 2. Clearly,Ne(N)
has converged forN ≪ 100, and as shown by comparison to Fig. 4,
Ne(N) approachesNe before〈Z〉 exceeds unity. This allows us to
estimateNe from mostly unentangled systems. (b) Same data as in
(a) vs.log

10
N , which allows the full range ofN to be presented. For

comparison, blue broken and red dashed lines for PE and LJ+FENE,
respectively, show reference data for S–estimators, already presented
in Figs. 1 and 2.

suggest that the “best” estimate of the entanglement length
for flexible chains is well above the previously reported value.
This is significant e. g, for quantifying the ratioNe/Nc, where
Nc is the rheological crossover chain length where zero shear
viscosity changes its scaling behavior from Rouse to reptation,
and has been estimated asNc ≈ 100 [3, 45].

One could imagine fitting the squared contour length
〈L2

pp(n)〉 of primitive path subsections [46] to〈L2
pp(n)〉 =

An2 + Cn. and attempting to calculateNe(N) = D/A by
also fitting to〈R2(n)〉 = Dn − Y , or developing other im-
proved estimators forNe based on〈R2

ee(n)〉 and 〈L2
pp(n)〉.

However, analysis along these lines failed to produce any es-
timators better than those described above. In particular,no
improvement over the method of Ref. [9] was found.

It is important to notice that our Eq. (15) isnot compati-
ble with some earlier definitions of〈Z〉 from coil quantities,

because of the prefactorC(∞)/C(Ne). This prefactor had
usually been omitted or not mentioned, since random walk
statistics were clearly a convincing starting point. Assuming
Gaussian statistics (constantC(N) for all N ) hence under-
estimates values ofNe calculated from coil properties. This
issue is also one of the reasons why theNe estimates between
PPA and geometrical approaches differ. Another reason is
given in [29]. Ratios between 1.3 and 2.5 betweenNe calcu-
lated from kinks and coils have been reported in the literature
[7, 10, 11, 15]. The presented data exhibits ratios between 1.6
and 2. A third reason that they differ is rooted in the fact that
〈Z〉 is not [7] uniquely defined from a given shortest, piece-
wise straight path, as it is returned by Z1 or CReTA. This
additional discrepancy can only be resolved by matching re-
sults forNe from kinks and coils, and by comparison with
experiments.

The classical S–kink (5) strictly underestimatesNe and the
modified S–kink (6) strictly overestimatesNe (since bothG
andH are positive, andG+H < 1).

VI. CONCLUSIONS

Very significantly improved, near–ideal, and apparently
polymer–model–independent estimators forNe were derived
in this paper, M–coil (Eq. 15, to be used with PPA, Z1 or
CReTA) and M–kink (Eq. 13, Z1 and CReTA only). They
reduce, under further assumptions which seem valid for the
model systems studied here, to approximate M–coil (Eq. 17),
simplified M–coil (Eq, 18), and approximate M–kink (Eq. 16).
These estimators require simulation of multiple chain lengths,
but have eliminated systematicO(ǫ) errors present in previous
methods. This is important for the design of efficient simula-
tion methods in the field of multiscale modeling of polymer
melts.

Furthermore, we have proposed variants of the original esti-
mators. The two main problems with existing estimators were
identified as: i) improper treatment of chain ends, and ii) non-
treatment of the non-Gaussian statistics of chains and primi-
tive paths [36]. Improper handling of thermal fluctuations was
an additional problem relevant to very short chains. Issuesi)
and ii) lead to separate, independentO(ǫ) errors. Estimators
based on direct enumeration of entanglements lack issue ii),
and so arefundamentallyadvantageous for estimation ofNe.
The new “M” estimators proposed here formally correct for
the errors arising from effects i) and ii). The values of the M–
coil and M–kink–estimators can be taken as “best estimates”
for Ne when results are available for multiple chain lengths.
The best estimator when only a single chain length is available
is the modified S–kink, Eq. (6).

We have shown thatǫ〈Lpp〉2, 〈Z〉, and also〈R2
ee〉 are all

linear in1/ǫ (thus linear inN ) down to the mostly unentan-
gled regime, and have used this information to derive the M–
estimators and to improve the earlier ones. All coefficients
in these linear relationships have been evaluated and listed
in Tab. II. The prefactors for the above mentionedO(ǫ) er-
rors can be large, and depend both on the polymer model
and method of topological analysis. These errors can produce
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large changes in estimates ofNe for values ofN typically
considered in previous studies (e. g. Refs. [6, 12, 33]). This is
significant in light of attempts to compare PPA results forNe

to values obtained by other methods [6, 23, 33, 47] such as
direct rheological measurement of the plateau modulusG0

N ,
evolution of the time-dependent structure factorS(~q, t), and
estimation of the disentanglement timeτd ∝ (N/Ne)

3 [1].
Some conclusions of those studies may need to be reevaluated
in light of the new data.

The proposed M–estimators are to our knowledge the first
estimators which exhibit all features required for an idealesti-
mator (a term which we made precise in Sec. II), and they have
been physically motivated. They converge toNe for weakly
entangled systems (N ≤ Ne). They leaveNe either undefined
or infinite for rodlike chains (becauseC(N) = N for a rod).
They predictNe(N) ≥ N for a completely unentangled sys-
tem, which is characterized by〈Z〉 = 0 andLpp = Ree in
accord with the definition of the primitive path which we have
adopted in this work (see [29]). The appearance of the coef-
ficientN1 suggests that there might be a minimum amount of
material,N1, needed to form a single entanglement (as ob-
served for phantom chains [7]). If so, it can be expected to
depend on the thickness of the atomistic chain and its stiff-
ness as well as particle density. We expect our findings to be
universal in the sense that they should apply to all sorts of real
linear polymer chains in the melt state, and we have verified
the assumptions underlying the M–estimators by direct com-
parison with both atomistic semiflexible and coarse-grained
flexible polymer melts.

Refs. [11, 15] pointed out that primitive paths are not ran-
dom walks, and that there appears to be more than one “topo-
logical” entanglement per “rheological” entanglement; thus it
is unsurprising thatNe from coils is significantly larger than
Ne from kinks (for details see Ref. [18]). The utility of any
topological analysis of chains shorter thanNe remains highly
questionable, because the chains’ dynamics are well described
by the Rouse model [1, 19] and so they cannot be considered
“fully entangled” in any meaningful way. However, it seems
that the M–estimators developed in this work have the ability
to extract information from a partial or even marginal degree
of entanglement.

The M–estimators could be applied in a post-processing
step on existing configurations. For example, it should be of
interest to study the effect of flow and deformation on entan-
glement network characteristics in order to establish equations
of motion for relevant coarse-grained variables characterizing
the polymer melt. Shear and elongational flows have been
studied for both polymer models considered here, but either
Z1 was not yet available at the time of these studies [48], or
the chains were [49, 50] “too short”, i. e. had〈Z〉 ≪ 1.

The apparent ability to accurately estimateNe even for
weakly entangled systems may be useful for atomistic mod-
els whose computational cost prohibits equilibrating large-N
systems, such as polymers containing bulky side groups. The
procedure for removal of theO(ǫ) systematic errors, while
clearly described here, requires performing analyses on a lim-
ited number of configurations on a range of chain lengths,
which is most easily undertaken for systems composed of

“short, but not too short” chains.
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APPENDIX A: TREATMENT OF THERMAL
FLUCTUATIONS

Ref. [6] and other studies have typically used〈Lpp〉2 rather
than〈L2

pp〉 in estimators forNe, such as the analogue for the
modified S-coil (7) which reads

Ne(N) = (N − 1)

( 〈Lpp〉2
〈R2

ee〉
− 1

)−1

. (A1)

However, Eq. (A1) gives pathological results for short chains
due to existing thermal fluctuations ofLpp. Consider the un-
entangled limit, where the entanglement density (denoted as
ρe) vanishes. For an “ideal” topological analysis,Lpp → Ree

(from above) for each and every chain asρe → 0. How-
ever, chain dimensions fluctuate in thermodynamic equilib-
rium [1]. To leading order in the fluctuations,〈Lpp〉2 =
〈L2

pp〉 − (∆Lpp)
2 ≡ 〈R2

ee〉 − (∆Ree)
2, where∆ is “vari-

ance of”. So, even for anideal topological analysis proce-
dure, Eq. (A1) would predict anegativeNe(N) → −(N −
1)〈R2

ee〉/(∆Ree)
2 asρe → 0. NegativeNe(N) are of course

useless, but indeed, are predicted using our data in Tab. I. For
N = 20 (LJ+FENE melt), application of Eq. (A1) yields neg-
ativeNe(20). A term identical to the term in parenthesis in
Eq, A1 was found to be negative for short chains in Ref. [49],
but was not used to directly calculateNe(N) in their work, as
its negative value was considered to signal (and to only occur
in) the mostly unentangled regime.

The reason to fix chain ends during PPA or Z1 analysis is
the assumption, implicit in Edwards’ definition of the prim-
itive path [4], that chains are entangled. In this context itis
worthwhile mentioning that there are other definitions of PP’s,
for example one [51] where the length of the PP goes down to
zero for the unentangled chain, and where chain ends are not
fixed.
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APPENDIX B: TECHNICAL CONSIDERATIONS IN USE OF
THE M–COIL ESTIMATOR
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FIG. 6: The graph demonstrates on how to graphically evaluate
Ne(N) according to the M–coil estimator (15). Shown are both the
left hand side (lhs)C(N)/N , and right hand side (rhs) of Eq. (15) for
both types of polymer melts. The dotted red path makes an example
on how to obtainNe(N) ≈ 87 for givenN = 48. Obviously, this
value is quite identical with both,Ne andNe(Ne), cf. Tab. III. The
ratioC(N)/N (small points) monotonically decreases with increas-
ing N , while the rhs (large symbols) reaches a plateau at the time
N has approachedNe (at the crosspoint), which is a distinguished
feature of an ideal estimator.

While the M–kink estimator (Eq. 13) is explicitly evaluated
from the local derivatived〈Z〉/dN aroundN , our M–coil ex-

pression, Eq. (15), is only an implicit expression for the esti-
matorNe(N). Formally, we need the inverse ofC(N)/N to
calculateNe(N). In the following, we describe the procedure
in order to prevent any ambiguities upon applying M–coil in
practice. Fig. 6 shows both the left (lhs) and right hand (rhs)
sides of Eq. 13 versusN for our data. For any givenN (say,
N = 48 for the PE data, where the dotted red line starts in
Fig. 6), theNe(N) estimate is the value at the ordinate for
which the abscissa values for lhs and rhs coincide (end of the
red curve is atNe(48) ≈ 87). The same procedure is repeated
for all N to arrive at Fig. 5 and particular values collected in
the M–coil row of Tab. III. The difference between lhs and rhs
can be used to estimate the difference between the largestN
available andNe. If only short chains had been studied, only
a part of this plot could have been drawn.

Note that this procedure requiresC(N)/N to be monoton-
ically decreasing withN , and access toC(N) at sufficiently
largeN . While the former is essentially valid for all poly-
mer models, the latter may pose a problem. Without reliable
values forC(N) for N = Ne, there is no apparent way to
come up with an M–coil which converges beforeN reaches
Ne. However, sinceC(N)/N decreases with increasingN
and ultimately reachesC(∞)/N behavior, in practice (and
formally for ideal chains)C(N) can be estimated by extrapo-
lation, and the necessaryC(N)/N values could be added for
chain lengths exceeding those studied.

This issue disappears by construction when the largest sim-
ulatedN exceedNe(N), so that the conditions for an ideal
estimator are met in any case. Still, this is a noticeable and
principal difference between the estimators from coils (M–
coil) and kinks (M–kink).
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M. Kröger, W. Loose, and S. Hess, J. Rheol.37, 1057 (1993);
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