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Memristive model of amoeba’s learning
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Recently, it was shown that the amoeba-like cell Physarum polycephalum when exposed to a
pattern of periodic environmental changes learns and adapts its behavior in anticipation of the
next stimulus to come. Here we show that such behavior can be mapped into the response of a
simple electronic circuit consisting of an LC contour and a memory-resistor (a memristor) to a
train of voltage pulses that mimic environment changes. We also identify a possible biological origin
of the memristive behavior in the cell. These biological memory features are likely to occur in
other unicellular as well as multicellular organisms, albeit in different forms. Therefore, the above
memristive circuit model, which has learning properties, is useful to better understand the origins
of primitive intelligence.

PACS numbers: 87.17.Aa, 87.18.Hf

I. INTRODUCTION

Although it is a unicellular organism, Physarum poly-

cephalum displays remarkably intelligent abilities: it is
able to solve mazes1 and geometrical puzzles2, control
robots3, and may even be able to learn and recall past
events4. According to Ref. 4, when exposed to three
spikes of cold temperature and low humidity, set at spe-
cific lengths of time and given at regular intervals, the
Physarum decreased its movement speed at the same
time as the shocks. However, after the spikes had
stopped, the Physarum still decreased its speed at the
times when the spikes would have occurred, effectively
predicting the time of the spikes from the pattern it
had been given. These ”memory patterns” dissipate over
time, but a single spike in temperature can trigger the
oscillations again, provided it is within a certain time
frame. This shows the amoeba “learned” that a single
temperature spike can be followed by others at the given
period.
At this point, the question may arise as to whether it

is at all appropriate to use the term “learning” to de-
scribe the amoeba’s response. Usually, when we discuss
about learning in the animal world, that term refers to
a more complex behavior (for example, classical condi-
tioning and associative memory5,6) which is observed in
higher developed species such as mammals. In amoebas,
this type of classical conditioning has not been observed
yet, and their “learning” is rather primitive. Irrespective,
the adaptive behavior of amoebas is astonishing, with di-
rect experimental evidence that amoebas can memorize
sequences of periodic environmental changes and recall
past events. Therefore, in this paper we will use the term
“learning” only in the context of recent experiments on
this system4.
A partial model to describe this behavior has been ad-

vanced in Ref. 4 in terms of the ubiquitous biological
oscillators. According to this model, these internal oscil-
lators have a natural frequency, and may possibly devi-
ate from that frequency so that multiple oscillators can

respond to the same frequency. The frequency of natu-
ral shocks excites one or more of these oscillators, which
could be the source of Physarum’s ability to recognize
patterns and predict events. The model, however, does
not fully explain the memory response of the amoeba
and does not take into account the fact that, at a mi-

FIG. 1: (Color online) View of Physarum during movement.
(a) Physarum moves via shuttle streaming, a process of pe-
riodic flow of the ectoplasm and endoplasm, with a greater
net flow towards the direction of movement, or the anterior
end. The ectoplasm contains radial and longitudinal actin-
myosin fibers whose oscillating contractions help produce the
pressure gradient which drives shuttle streaming7. (b) Dur-
ing movement, the anterior of Physarum may develop a sheet
of gel that inhibits streaming. However, when the pressure
gradient builds to a certain threshold, the gel can break down
allowing for the formation of new channels of flow. These
channels may become new permanent veins for streaming.
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Component Amoeba Electronic circuit
Control parameter Temperature and Applied voltage

humidity
Output signal Velocity Voltage
Oscillator Biochemical oscillators LC contour

Memory element Gel/sol interactions Memristor
Parameter con- Veins and low- Resistance of

taining information viscosity channels memristor

TABLE I: Possible correspondence between learning of an
amoeba and an electronic circuit.

croscopic level, other changes in the physiology of the
organism may occur in addition to the biological oscil-
lators. These changes also occur over a finite period of
time and must be dependent on the state of the system
at previous times.
This last point is particularly important: it is in fact

this state-dependent feature which is likely to produce
memory effects rather than the excitation of biological
oscillators. Instead, the latter ones seem to control the
rhythmical flow of the endoplasm through protoplasmic
veins7 shown schematically in Fig. 1(a). As of now, it
is not yet known how the memory in amoebas is actu-
ally realized. However, we identify a possible mechanism
of amoeba’s memory as described below. Irrespective
of whether this is the only mechanism leading to the
observed response, our model is in excellent agreement
with the recent experimental observations4 and can be
used, in the form of differential equations, to describe
the amoeba’s response to a changing environment.

Let us then consider mechanisms existing in amoebas
which depend on the state of the system and on its dy-
namical history thus potentially giving rise to the ob-
served memory response. These mechanisms are as fol-
lows. The Physarum contains in its interior a gel-sol
solution. The gel, present in the ectoplasm, is more
gelatinous than the less viscous sol, present in the en-
doplasm, and the sol flows through the gel almost in the
same way as water through a sponge. Now, the gel-sol
solution is thixotropic, meaning that the viscosity can
change as a function of pressure. When the amoeba is
moving, the actin-myosin fibers present in the ectoplasm
contract radially and longitudinally, creating a pressure
gradient pushing the endoplasm in the direction of mo-
tion. This gradient can increase to the point in which it
causes the gel to break down into sol so that new low-
viscosity channels form, which may even become perma-
nent pathways (see Fig. 1(b))8,9. Therefore, if the ex-
ternal temperature and humidity of the environment are
changed, the sol flow changes in a non-linear way. A
restoration of initial conditions upon change of the envi-
ronment thus requires time, and depends on the number
and shape of the formed low-viscosity channels. This
mechanism is similar to the one underlying the memory-
resistance (memristor) behaviour10,11,13,14,15,16,17 of cer-
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FIG. 2: (Color online) Electronic circuit that models
amoeba’s learning. (a) Schematic representation of the learn-
ing circuit made of four fundamental two-terminal circuit
elements: resistor R, inductor L, capacitor C and mem-
ristor M . (b) Sketch of the selected memristor function
f which depends on the voltage applied to the memris-
tor (more details are given in the text). It is defined as
f(V ) = −βV + 0.5(β − α) (|V + VT | − |V − VT |), where α
and β are positive constants and VT is a threshold voltage.

tain electronic devices13,14. In these, the variation of an
external parameter (e.g., the voltage) creates new, or
modifies existing conducting channels thus altering the
resistance in a non-linear way. Therefore, it is natural to
argue that in the very same way that a memristor has
its inherent memory, the Physarum acquires a memory
through the interactions of the gel-sol solution, specifi-
cally through the formation of new, low-viscosity chan-
nels, and perhaps by other related complex interactions.
We now show this possible connection more clearly by

presenting a juxtaposition of the mechanisms behind the
movement process of Physarum with the operation of an
equivalent electrical circuit made of just the four basic
passive electrical elements: the resistor (R), capacitor
(C), inductor (L), and memristor10,18 (M). Indeed, we
show that, like the amoeba, this circuit can learn and pre-
dict subsequent signals. Due to the complexity of biolog-
ical systems, the present analogy will be a simplification
of what specifically happens during the learning process.
Nevertheless, it may be very useful in understanding the
origin of primitive intelligence in other organisms as well.

II. MEMRISTIVE CIRCUIT

Let us then start by identifying the relation between
the basic circuit elements and the biological processes in
the cell (see Table I). In this respect the biological os-
cillators can be simulated with the oscillations of an LC
contour. The resistance R describes the fact that there
must be some signal impedance and dissipation inside the
amoeba, or else signals would travel instantaneously and
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FIG. 3: (Color online) Simulations of the circuit response to applied pulse sequences. (a) Arbitrary pulse sequence. (b)
Learning pulse sequence. The calculations were made using the following system parameters: R = 1Ω, L = 2H, C = 1F,
M1 = 3Ω, M2 = 20Ω, α = 0.1Ω/(Vs), β = 100Ω/(Vs), and VT = 2.5V. The applied pulse sequence was selected in the form
V (t) = VF −Vp

P

i

(cos (2π (t− ti) /Wp)− 1) θ (t− ti) θ (ti +Wp − t) /2, where VF is the voltage corresponding to the standard

(favourable) conditions, Vp is the pulse amplitude, ti is the time of start and Wp is the pulse width. In the calculations, we
used VF = 0.1V, Vp = 2V, and Wp = 5s. The ti’s can be identified from the figure.

indefinitely. Finally the memristor M summarizes the
memory mechanisms we have described above, or any
other possible mechanism for memory. The temperature
and humidity that control the motion of the amoeba cor-
respond to the external voltage that controls the circuit.
The response, namely the amoeba’s velocity, is nothing
other than the voltage at the memristor.
The electronic scheme that accomplishes the learning

process in response to a train of voltage pulses is shown in
Fig. 2(a). The capacitor and memristor are connected in
parallel. The main idea behind functioning of this scheme
is to use the internal state of memristor in order to store
information about the past and control oscillations in the
LC contour. In particular, we use the model of a voltage-
controlled memristor, inspired by recent experiments14,
in which the resistance of memristor M can be changed
between two limiting values M1 and M2, M1 < M2. In
our scheme, M increases as a result of increased number
of periodic stimuli and thus as a result of learning.
The change ofM is described by the following equation

dM

dt
= f (VC) [θ (VC) θ (M −M1) + θ (−VC) θ (M2 −M)] ,

(1)
where f (VC) is a function describing the change of the
memristor state, VC is the voltage applied to the memris-

tor (equal to the voltage drop on the capacitor) and θ (...)
is a step function. The expression in square brackets
guarantees that M changes between M1 and M2. Here,
we assume that f (VC) consists of several linear segments
as shown in Fig. 2(b). This is the simplest memristor
model which takes into account the activation change
of the memristor state19. In other words, the memristor
learns faster when |VC | > VT and slower when |VC | < VT ,
where VT is a threshold voltage.

The response of the circuit shown in Fig. 2(a) is de-
scribed by the following equations:

VC + Lİ + IR = V (t), (2)

CV̇C +
VC

M
= I, (3)

where VC is the voltage on the capacitor, I is the total
current and V (t) is the applied voltage. Eq. (2) simply
states that the applied voltage is equal to the sum of
voltage drops on each element of the circuit, and Eq. (3)
is the Kirchhoff’s current law at the point of connection
of capacitor, inductor and memristor. We solve Eqs. (2)
and (3) together with Eq. (1) numerically using initial
conditions close to a steady state and different V (t).
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FIG. 4: (Color online) Modeling of the spontaneous in-phase
slowdown responses. This plot demonstrates that stronger
and longer lasting responses for both spontaneous in-phase
slowdown and spontaneous in-phase slowdown after one dis-
appearance of the stimulus are observed only when the cir-
cuit was previously “trained” by a periodic sequence of three
equally spaced pulses as present in V2(t). The applied voltage
V1(t) is irregular and thus three first pulses do not “train” the
circuit to learn. The simulation parameters are as in Fig. 3.
The lines were displaced vertically for clarity. The arrows are
used to define the correct vertical axis for each line.

III. RESULTS AND DISCUSSION

In our circuit scheme, a favorable (standard) environ-
mental condition corresponds to a positive applied volt-
age and unfavorable condition to a negative applied volt-
age. If the favorable condition is applied for a long pe-
riod of time, then, during this period of time, a positive
voltage is applied to the memristor. According to Eq.
(1) and f (VC) as in Fig. 2(b), the latter switches into
the low resistance state M1. In this case, the LC con-
tour is damped and excited oscillations decay fast. Fig.
3(a) demonstrates that when a non-periodic sequence of
pulses is applied to the scheme, the circuit learning abil-
ity (or change of M) is small and oscillations in the con-
tour are strongly damped. In the opposite case, when we
apply periodic pulses with a frequency close to the LC
contour’s resonant frequency, the change of M is much
more pronounced, the memristor switches into its higher
resistance state and, since the LC contour becomes less
damped, oscillations in the contour survive for a longer
time. Such behavior is related to the fact that during
the application of resonant pulses the amplitude of volt-
age oscillations on the capacitor increases with each pulse
and at some point exceeds VT in amplitude. As a conse-
quence, the memristor learns fast and its state changes
significantly.

Fig. 4 shows simulations of spontaneous in-phase slow-
down (SPS) and SPS after one disappearance (SPSD)
events as in the experiments with the amoeba4 (a de-

scription of these experiments is given below). In these
simulations we use the scheme described above with the
only restriction that the response signal can not exceed a
certain value, which in our particular calculations is se-
lected to be equal to the voltage corresponding to stan-
dard (favorable) conditions VF . This signal is selected to
be equal to VC if VC < VF and to VF if VC > VF .

20

In SPS experiments, the amoeba was exposed to three
intervals of unfavorable conditions (namely, low temper-
ature and humidity). Each time, the locomotion speed
decreased. After that, standard (favorable) conditions
were applied. However, the movement of the amoeba
has been found to slow spontaneously when the next in-
tervals of unfavorable conditions would have occurred.
Exactly the same behavior is found in our circuit model.
This is shown in Fig. 4, where a regular pulse sequence
V2(t) is applied. It is clearly seen that in response to the
application of three regular pulses, the response signal
decreases each time these pulses are applied as well as at
subsequent times when following pulses would have oc-
cured. The opposite behavior is demonstrated when the
three training pulses are not periodic as shown in Fig. 4
with an irregular pulse sequence V1(t). In this case, the
anticipated response is significantly smaller.
Application of the fourth pulse in Fig. 4 corresponds

to conditions of SPSD experiments4 in which the an-
ticipated slowdown after a single unfavorable condition
was observed only among previously trained organisms.
Again, we can see a striking similarity with the exper-
imental results on amoeba’s learning: in the case of a
pulse sequence with the first three non-periodic pulses
(V1(t)), the subsequent application of a single pulse does
not result in a significant anticipated slow-down after the
pulse. On the other hand, a “trained” circuit (by ap-
plying the V2(t) pulse sequence) manifests several well-
defined slowdown events after the fourth pulse.
Finally, we plot in Fig. 5 the final state of the memris-

tor just after the application of three learning pulses as
a function of time interval between the pulses. It can be
noticed that learning occurs in the interval 8s< τ <10s,
which is close to the LC contour time sequence. Also, the
larger the rate at which the memristor learns (as exempli-
fied by the parameter β in the function f(VC)) the more
defined is the time interval for learning. To some extent,
this plot resembles Fig. 3 in Ref. [4] for amoeba’s learn-
ing. A qualitative description of the dependence shown
in Fig. 5 is the following. It is well known that the am-
plitude of oscillations excited in a LC contour decreases
when the applied voltage frequency moves away from the
resonant frequency. In particular, if we consider just a
simple LC contour (as in Fig. 2(a) but without R and
M) driven by V (t) = V0 cos(ωt), then the amplitude of
steady-state voltage oscillations on the capacitor is

V 0
C =

∣

∣

∣

∣

V0

1− LCω2

∣

∣

∣

∣

. (4)

If we now assume a memristor connected in parallel with
the capacitor in such a contour, to first approximation,
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FIG. 5: (Color online) Resistance of memristor calculated at
two different values of the parameter β in the function f(VC)
as a function of time interval τ between the pulses. Here,
we plot the value of the memristance M right after the last
(third) pulse in the learning sequence. The memristor state
significantly changes when pulse period is close to the LC
contour frequency. The simulation parameters are as in Fig.
3.

M can be significantly changed only if VC exceeds the
memristor threshold VT . This occurs when, according to
Eq. (4), the frequency ω of the applied field is close to

the resonance frequency 1/
√
LC. Fig. 5 clearly demon-

strates that the range of periods of applied oscillations
leading to significant changes in M is distributed around
the period of resonant oscillations in the contour, which
in the present case is T = 2π

√
LC = 8.9s.

We have demonstrated that a simple electronic circuit
can be used to model the results found in Ref. 4, which
show that an amoeba migrating across a narrow lane can
learn the period of temperature shocks, and predict when
future shocks would occur. As the amoeba migrates in
normal conditions, new veins form in the amoeba as a
natural process of movement, and old ones decay into
the tail of the amoeba (see Fig 1). As a result, the
amoeba’s internal structure dynamically changes with
vein formation and degradation. The vein formation is
pressure dependent, and the pressure is a result of the
constriction of the sol by the actin fibers in the gel, with
both radial and longitudinal contractions. This contrac-
tion is rhythmic and periodic with ATP and Ca2+ levels,
and possibly with other biological compounds as well.
Thus, in amoeba’s motility, it is the internal oscillations
of actin fiber contractions that create the pressure gra-
dients that control the formation of new veins and the
decay of old ones; movement entails change in the vein
structure, whether or not an outside periodic stimulus is
present. The circuit in Fig. 2 can be seen as describing
the process of vein formation, whereby LC oscillations
generate the voltage threshold to change the state of the
memristor. In the amoeba, the formation of veins means
that sol can flow more easily; in our circuit, a high resis-

tance state in the memristor means that the input signal
is more conserved, so that current can flow more easily.

Ref. 4 explains that a periodic stimulus may in fact
link certain biological oscillators together, producing a
strong rhythmic response to that stimulus. Qualitatively
speaking, assuming these oscillators link together locally
in the amoeba, a strong local response would aid vein for-
mation in that local area so that the sol flow caused by
those oscillators is less damped than sol flow in veins that
resulted from a normal or weak oscillatory response. To
reiterate, a periodic stimulus will produce a stronger pe-
riodic response, assuming that biological oscillators link
together, resulting in stronger vein formation, as a con-
sequence of which the oscillatory response can be more
conserved than usual. We argue that therein lies the
memory of the amoeba: the passive “decision” to con-
serve the strongest output signal produced by a given
input signal. This is the effect illustrated by our circuit;
a strong LC response is conserved by a high memris-
tor value. Vein structures are changed over time by the
movement of the amoeba in response to any given stimu-
lus; however, it seems that a periodic stimulus produces
the strongest response that leads to memory. Clearly,
due to the complexity of the biological problem at hand,
we cannot exclude that other mechanisms are at play in
producing the observed amoeba’s memory.

IV. CONCLUSIONS

In conclusion, we have presented an electronic circuit
model to describe the amoeba’s ability to recognize pat-
terns and predict events. This model contains a mem-
ristive element and simulates the mechanisms of biolog-
ical memory that possibly occur in the protoplasm of
the Physarum, which produce a sol flow that depends
on the history and state of the system. A collection of
circuits as those presented here (but with different reso-
nant frequencies), or, possibly, a single circuit with the
replacement of the capacitor and/or inductor with the
newly introduced memory-capacitor (memcapacitor) and
memory-inductor (meminductor)12, closely simulates the
experimentally observed learning ability of the amoeba4

including the memory of period, and provides a dynamic
picture of the memory mechanism in this unicellular or-
ganism. It is worth noting that the proposed electronic
circuit is made only of passive elements and can be real-
ized in the laboratory. It may thus find applications in
electronic applications that require “circuit learning” or
pattern recognition. Finally, this model may be extended
to multiple learning elements and may thus find applica-
tion in neural networks and guide us in understanding the
origins of primitive intelligence and adaptive behavior.
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