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Mechanical rejuvenation and over-aging in the soft glassy rheology model
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Mechanical rejuvenation and over-aging of glasses is investigated through stochastic simulations
of the soft glassy rheology (SGR) model. Strain- and stress-controlled deformation cycles for a wide
range of loading conditions are analyzed and compared to molecular dynamics simulations of a model
polymer glass. Results indicate that deformation causes predominantly rejuvenation, whereas over-
aging occurs only at very low temperature, small strains, and for high initial energy states. Although
the creep compliance in the SGR model exhibits full aging independent of applied load, large stresses
in the nonlinear creep regime cause configurational changes leading to rejuvenation of the relaxation
time spectrum probed after a stress cycle. During recovery, however, the rejuvenated state rapidly
returns to the original aging trajectory due to collective relaxations of the internal strain.

PACS numbers: 81.05.Kf,83.50.-v,61.43.-j

I. INTRODUCTION

The mechanical properties of glassy materials contin-
uously evolve due to slow, non-equilibrium dynamics,
a phenomenon called physical aging [1, 2, 3]. As a
consequence, the response of glasses to an applied load
depends not only on measurement time, but also on
the wait time tw that has elapsed since the glass was
formed. In general, increasing wait time makes glasses
less compliant and increases their resistance to plastic
flow [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. For glasses
formed through a rapid quench from the liquid state, the
effects of aging take a particularly simple form: response
functions such as the creep compliance obey a self similar
scaling with the wait time and depend only on the ratio of
t/tµw. The aging exponent µ has been found to be approx-
imately unity for a wide class of structural glasses mod-
erately below the glass transition temperature [2, 15].

However, large mechanical deformation and plastic
yielding can modify the aging dynamics. A primary
example of this phenomenon is the observed reduction
in the aging exponent obtained through creep measure-
ments of glassy polymers at large stress. Since the re-
laxation times of the deformed glass resemble those of
a younger glass, it was hypothesized that the glass had
been “rejuvenated” by the stress [2]. Experiments on
a wide variety of materials including polymer glasses
[6, 16, 17], colloidal glasses [4, 5], and even the cytoskele-
ton of the cell [18] have shown a similar decrease in re-
laxation times under high loads. However, the interpre-
tation of these results in terms of rejuvenation remains
controversial. Detailed experiments by McKenna have
shown that the time to equilibration of mechanically re-
juvenated glasses remains essentially unchanged by the
application of external load [7], suggesting that stress
does not in fact change the extent of aging. Other stud-
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ies indicate that the apparent enhancement of particle
mobility eventually disappears after unloading [6, 17],
and that the configurational states of mechanically re-
juvenated glasses are distinct from the states visited by
aging in the absence of load [10, 12, 19].

Signatures of over-aging due to deformation have re-
cently been observed as well. For instance, polymer
glasses subject to a stress relaxation experiment well be-
low the glass transition temperature exhibit rapid den-
sification for certain strains [20]. Molecular simulations
of simple structural glasses show that a small amplitude
strain cycle at zero temperature can decrease the inher-
ent structure energy [10]. Also, detailed experiments
by Lequeux and co-workers show over-aging in systems
of dense colloids, which are effectively athermal glasses.
They observe changes to the entire spectrum of relax-
ation times [8, 9]: after a period of small amplitude os-
cillatory shear, the glass appears rejuvenated over small
timescales, and over-aged over longer timescales.

The emerging picture of the phenomenology of glasses
under load presents some interesting questions that seem
to defy a simple explanation in terms of the rejuvena-
tion hypothesis. Firstly, under what loading conditions
do over-aging and rejuvenation occur? So far, over-aging
has been seen only under very specific circumstances: low
temperature, small strains, and strain-controlled loading
conditions. Rejuvenation, on the other hand, has been
observed much more generally in deformed samples, but
has been studied most extensively at high temperatures
(only moderately below the glass transition temperature)
and constant stress conditions. Another important ques-
tion is presented by the work of McKenna [7]. What is
the nature of the states created by loading, and how do
we reconcile the rejuvenated relaxation spectrum with
the fact that the time to equilibration is unchanged by
the stress?

A comprehensive molecular model that describes ag-
ing and deformation in glasses is not available to date.
However, phenomenological energy landscape approaches
such as the soft glassy rheology (SGR) model [21] have
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been able to capture many aspects of the rheology of
glasses, and have successfully been used to interpret over-
aging in strain-controlled experiments at low tempera-
ture [9, 19]. In this study, we will use the SGR model
to systematically explore the loading phase diagram in
order to better understand the generality and the im-
plications of mechanical rejuvenation and over-aging, as
well as the relationship between configurational and dy-
namical changes. We perform stochastic simulations of
the SGR model over a wide range of experimental con-
ditions and compare the results to molecular dynamics
simulations of a model polymer glass in selected cases.

II. MODELS

A. Soft Glassy Rheology Model

It has been found experimentally and through molec-
ular simulations that the structural relaxation events
which result in aging and plastic deformation involve the
cooperative motion of groups of approximately 10-30 par-
ticles [22, 23, 24]. The premise of the SGR model is that
each of these mesoscopic rearranging domains can be de-
scribed by a single fictive particle in a rough free-energy
landscape. This particle performs thermally or mechani-
cally activated hops between locally harmonic “traps” in
the landscape. The density of states of the traps is

ρ(E) =
1

xg

exp(−E/xg), E ≥ 0 (1)

where xg is the glass transition temperature, and E is
the depth of a trap. At low temperature, many traps
will be very long lived. The master equation governing
the dynamics of the fictive particles is [21]

Ṗ (E, l, t) = −γ̇
∂P

∂l
− PΓ0 exp

[

−
(

E − kl2

2

)

/x

]

+ Γ(t)ρ(E)δ(l). (2)

P (E, l, t) is the occupation probability of a state with
energy E and local strain l at time t. The energy barrier
for particle hopping is reduced by the local strain energy,
Eb = E − kl2/2 where k is the stiffness of the well. All
of the barriers have a common energy of zero, so the en-
ergy of the fictive particle in the trap is −Eb. On the
right hand side of eq. (2), the first term describes the
elastic motion of the fictive particles in their wells under
a strain rate of γ̇. In the absence of particle hopping,
this term simply increases the local strain variable of the
particles. The second term in eq. (2) describes activated
hopping out of the wells, which can be viewed as a lo-
cal plastic yield event; Γ0 is the attempt rate and x is a
“noise temperature” [21]. The noise temperature is gen-
erally higher than the thermodynamic temperature, as it
incorporates the effect of non-equilibrium fluctuations in
the aging glass. The third term describes the transition
to the new state after hopping, whose energy is chosen

randomly from the density of states ρ(E) and is initially
unstrained; Γ(t) is the total hopping rate at time t. The
macroscopic stress in this formulation is

σ = k〈l〉. (3)

We solved the master equation (2) numerically using
Monte Carlo simulations of ten thousand particles under
various thermo-mechanical conditions. In this work, xg,
Γ0, and k are chosen to be one, which has the effect of
setting the units of energy, time, and strain. Note that a
strain of one in these units is the yield strain of an average
particle. An initial configuration was created from the
liquid state at xl > 1 from the corresponding Boltzmann
distribution and was then quenched instantaneously to
the glass phase at x < 1. In the absence of load, the
system falls out of equilibrium and exhibits full aging,
i.e. an aging exponent µ = 1 [25].
For the strain-controlled loading protocol, each fic-

tive particle is treated independently. The strain vari-
able is increased at constant rate, and at each time step
the particles i hop with probability Pi = Γidt where
Γi = Γ0 exp

[

−
(

Ei − kl2i /2
)

/x
]

is the hopping rate of
the particle. The stress is computed from Eq. (3), where
the average is taken over all 10,000 particles. The stress-
controlled loading protocol is somewhat more compli-
cated because of the implicit relationship between the
master equation and the stress. In this case, we use the
kinetic Monte Carlo method [26] to evolve an ensemble
of particles. A time step is chosen from a Poisson distri-
bution with the global rate Γ =

∑

Γi, and the particle
that will hop is chosen with a probability proportional to
each particle’s individual hopping rate. The relaxed par-
ticle hops into a zero strain state, and the stress it was
holding is redistributed uniformly among the particles
in the system, i.e. the microscopic strains are increased
evenly until Eq. (3) is satisfied again. If the stress is
applied quickly, the strain energy may exceed the barrier
for some elements. These are relaxed instantaneously and
the procedure is repeated until a stable configuration is
found.

B. Molecular Dynamics

For qualitative comparison with a structural glass,
we perform molecular dynamics (MD) simulations on a
“bead-spring” polymer model [27] that has been stud-
ied extensively for its glass-forming properties. In this
model, beads interact via a non-specific van der Waals
potential (Lennard-Jones), and bonds are modeled as a
stiff spring (FENE) that prevents chain crossing. The
reference length-scale is a, the diameter of the bead; the
energy scale, u0, is determined by the strength of the
van der Waals potential, and the time scale is τLJ =
√

ma2/u0, where m is the mass of a bead. The pressure
and stress are therefore measured in units of u0/a

3.
In these simulations, we consider 855 chains of 100

beads each in an originally cubic simulation volume with
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periodic boundary conditions. The polymers are first
equilibrated at a melt temperature of 1.2u0/kB, and then
quenched into the glassy state by decreasing the tempera-
ture at constant rate to below the glass transition temper-
ature Tg ≈ 0.35u0/kB [28]. Deformation experiments are
then performed on the glass at constant temperature by
either applying a uniaxial load, or by imposing volume-
conserving, uniaxial deformation at constant strain rate.
This polymer model has been used frequently in stud-
ies of deformation of polymer glasses [29]. In particular,
it demonstrates mechanical rejuvenation during nonlin-
ear creep under large loads [14]. Except at very large
strains where polymer entanglements become important,
we expect these results to be pertinent for most glassy
materials.

III. RESULTS

We begin exploring the loading phase diagram in the
limit of zero noise temperature and zero strain rate,
where over-aging has most commonly been observed.
Starting configurations are created from different melt
temperatures xl. At x = 0, the samples are strained
at constant rate to a maximum strain γmax and then re-
turned to zero strain at the same rate. The stress and the
mean energy are plotted versus strain in Fig. 1 for two
different initial melt temperatures. Initially, the stress
is linear in strain as the system responds elastically, and
then becomes constant after yield. Note that the yield
stress is higher for the state that was quenched from the
lower melt temperature. Also, the energy of the higher xl

configuration is lowered by the strain cycle (over-aging),
whereas the lower xl configuration has a higher energy
after the same cycle (rejuvenation). These results are
qualitatively similar to molecular simulation results of a
binary Lennard-Jones glass at zero temperature reported
in ref. [10] and appear to be generic to rough energy land-
scapes with many metastable states [19].
In Fig. 2, we explore in detail the effects of the noise

temperature x, the initial configuration temperature xl,
and the strain rate γ̇ in the strain controlled protocol
described above. Here we treat x as a free adjustable pa-
rameter, although in the SGR model it is envisioned to
be related to the dissipated energy of yielding elements.
For each thermo-mechanical history, we compare the fi-
nal energy after the strain cycle Ef to the energy E0 of
the same sample if it had not been strained, but simply
aged at constant temperature for an equivalent amount
of time. The relative energy difference ∆E/E0 is positive
for rejuvenation, and negative for over-aging.
In Fig. 2(a) the energy difference ∆E/E0 is plotted

for samples with the same xl and γ̇, but various noise
temperatures x. We see that over-aging does indeed oc-
cur only at low noise temperatures, which may be why
it has mostly been observed in low temperature simula-
tions and in colloids. The small x curves show a tran-
sition from over-aging at low strains to rejuvenation at
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FIG. 1: (a) Stress vs. strain and (b) Energy vs. strain at zero
noise temperature. The solid line is for an initial configura-
tion at a liquid temperature of xl = 2, and the dashed line
corresponds to xl = 1.5.
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FIG. 2: (Color online) Relative difference in energy versus
maximum strain after a single strain cycle of amplitude γmax.
(a) Noise temperature x = 0.1, 0.2, 0.3, 0.5, and 0.8 from
bottom to top, xl = 2 and γ̇ = 0.25 for each sample. (b) xl =
1.25, 1.5, 2.5, and 5 from top to bottom, x = 0.001 and γ̇ =
0.25 for each sample. (c) γ̇ = 1 (circle), 0.5 (square), 0.25
(triangle), 0.1 (diamond), and 0.01 (cross), x = 0.5 and xl =
2.

high strains. At very high strains (not shown) the glass
yields, and all of the samples are maximally rejuvenated.
As the noise temperature is increased, the magnitude of
over-aging and the maximum strain where it occurs both
decrease. For x > 1, the SGR model is in equilibrium
and the effects of over-aging and rejuvenation disappear
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FIG. 3: (Color online) Distribution of energy barriers after a
zero temperature strain cycle. γmax goes from zero (dark blue
circles) to 3 (light blue ×’s). The initial energy distribution
P0(E) and the landscape density of states ρ(E) are shown as
dashed lines.

except for weak transients.
Figure 2(b) shows the energy difference at very low x

for various initial states xl. The amount of over-aging
decreases as the initial energy is decreased, and asymp-
totically approaches zero in the case of a quench from ex-
actly xl = xg. Note that the strain at which over-aging is
maximized does not seem to depend on the initial config-
uration, but always occurs at γmax ≈ 1.4. Alternatively,
at higher temperatures where rejuvenation is predomi-
nant, we find that the amount of rejuvenation increases
with melt temperature xl.
Finally, the mechanical rate also plays a role in whether

the energy will be reduced or increased by the strain cy-
cle. Figure 2(c) shows relative energy changes for a sam-
ple with noise temperature x = 0.5 for various strain
rates. The amount of rejuvenation decreases with in-
creasing strain rate for moderate strains, but the curves
eventually cross as the strain approaches yield. This is
due to the fact that the yield stress (or strain) increases
with rate. At the highest strain rates, over-aging appears
possible even at high temperatures. Note, however, that
high strain rates are not treated entirely realistically in
this model. In the SGR model, an element yields instan-
taneously when strained to greater than the yield strain.
However, in real solids, very fast strain rates lead to large
affine displacements but relatively few plastic events as
these require a finite time to relax.
With the SGR model, further intuition can be gained

by investigating the effect of mechanical deformation on
the population of the traps directly. Figure 3 shows the
distribution of energy barriers for various γmax after a
zero noise temperature strain cycle. The strain cycle
causes particles in the lowest energy states to hop into
new states chosen from the landscape energy distribu-
tion ρ(E). Over-aging then occurs when the states be-
ing relaxed are of lower energy than the mean energy
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FIG. 4: (Color online) Molecular dynamics results for the
relative difference in energy versus strain after a single strain
cycle. (a) T = 0.01 (circle), 0.1 (square), and 0.2u0/kB (trian-
gle). The quench time is tqu = 750τLJ and γ̇ = 5.3×10−5τ−1

LJ

for each sample. (b) tqu = 750τLJ (square) and 7500τLJ

(circle). T = 0.01u0/kB and γ̇ = 5.3 × 10−5τ−1

LJ . (c)
γ̇ = 5.3 × 10−6τ−1

LJ (circle), 5.3 × 10−5τ−1

LJ (square), and
5.3× 10−4τ−1

LJ (triangle). T = 0.2u0/kB , and tqu = 750τLJ .

of the states they hop into. At zero noise temperature,
this predicts that maximum over-aging occurs at a strain
amplitude γmax where kγ2

max/2 =
∫

∞

0
dEρ(E)E = 1, or

γmax =
√
2. This can be seen clearly in Fig. 2(b) for

all values of xl. The strain amplitude at maximum over-
aging thus gives a measure of the mean energy of the
landscape. The amount of over-aging, or the energy at
this peak strain, is due to the number of low energy states
available to relax, and therefore depends sensitively on
the initial configuration.
This picture also helps us understand why over-aging

occurs primarily at low temperatures. At higher noise
temperature, the low energy states that are relaxed by
small strains to produce over-aging are rapidly depleted
via thermal activation, meaning that the peak over-aging
is drastically reduced. Additionally, thermal aging re-
sults in the relaxation of higher energy states during the
strain cycle, and these states are left with residual strain
energy after the cycle. Consequently, the final stress in-
creases with noise temperature, and the effective aging
during the cycle is reduced.
We compare these results with molecular dynamics

simulations of the model polymer glass under similar
thermo-mechanical histories by varying the maximum
strain, the strain rate, and the temperature of the glass.
In order to investigate the effect of different initial states,
an equilibrated melt at T = 1.2u0/kB is quenched at
different rates to the final glassy temperature. The re-
sults are shown in Fig. 4 and are qualitatively similar to
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FIG. 5: (Color online) Relative energy change due to a stress
cycle applied for t = 10. In (a) the energy difference is plotted
versus the stress, and in (b) the same data is plotted versus
the maximum strain in the stress cycle. x = 0.1 (circles), 0.2
(squares), 0.4 (triangles), and 0.6 (diamonds). xl = 2 for each
sample. The dashed line in (b) is the energy versus strain for
an equivalent strain-controlled protocol at x = 0.1.

behaviour found in the SGR model. Figure 4(a) shows
that higher temperatures lead to increased rejuvenation,
Fig. 4(b) shows that initial states of higher energy (faster
quench) result in more rejuvenation, and Fig. 4(c) shows
increased rejuvenation at moderate strains as well as de-
creased rejuvenation at large strains as the strain rate
is decreased. However, there is a significant difference
between the SGR and molecular dynamics results. We
have not found appreciable over-aging in our molecular
dynamics simulations, even at very low temperatures and
fast cooling rates. This is in contrast to recent molecular
dynamics results of an atomistic polymer model under a
similar strain cycle [12]. The authors of this study report
over-aging of the simulated glass by the strain for very
fast quench rates. However, this is likely because they
did not compare to a non-strained control sample but to
the initial (just quenched) energy before the strain cy-
cle. We observe that even at very low temperatures, our
model exhibits significant aging directly after the glass is
quenched when quench rates are very high. It remains
an open question to what extent over-aging occurs in real
polymer glasses under realistic quench and loading con-
ditions.

Stress-controlled loading protocols similarly show reju-
venation and over-aging in the SGR model. In this case, a
stress step function is applied for a period of t = 10 and
then released. The change in energy due to the stress
cycle is plotted in Fig. 5(a) for various noise tempera-
tures. At low noise temperature, there is over-aging at
low stress and rejuvenation at high stress. At high noise
temperature, there is a broad flat region for small stress,
followed by a steep increase in rejuvenation at high stress
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FIG. 6: (Color online) Creep compliance of the SGR model
quenched from xl = ∞ (see text) and aged for tw = 100
(circles), 316 (squares), 1000 (triangles), 3162 (diamonds),
and 10000 (×’s) at x = 0.5 and σ = 0.75 (within the nonlinear
regime).

within the nonlinear regime. In Fig. 5(b), the same data
is plotted versus the maximum strain achieved during
the stress cycle for direct comparison with the strain-
controlled data. The results plotted in this way look very
similar to Fig. 2(a) for the strain cycle. Over-aging oc-
curs over a similar range of noise temperature and strain,
however, closer inspection shows that the amount of over-
aging is somewhat smaller for the stress-controlled pro-
tocol. Finishing the cycle at zero stress rather than zero
strain means that low energy states that did not relax
during the experiment have residual strain energy and
are rejuvenated.
Our analysis so far has utilized changes in the energy

of the system to identify the occurrence of rejuvenation
or over-aging. However, the notion of rejuvenation has
its origin in an acceleration of the dynamics under load
[2, 4, 5, 6, 7, 8]. As described earlier, rejuvenation is
commonly measured via a decrease in the aging expo-
nent µ with applied stress σ. Experimentally, the aging
exponent can be evaluated through creep experiments:
superposition of the creep compliance J(t, tw) of samples
that have aged for different wait times tw reveals the
t/tµw scaling behaviour. In principle, this type of anal-
ysis can also be performed in the SGR model, but is
impeded by the fact that the creep compliance exhibits
a clear t/tw scaling only in the limit of tw → ∞ [30].
In particular, for quenches from a finite liquid temper-
ature xl, we find that the scaling regime is not acces-
sible within a reasonable simulation time. In the creep
experiments described below, we therefore initialize the
trap distribution from ρ(E), where the scaling regime is
more easily accessible. This is equivalent to performing a
quench from xl = ∞. Figure 6 shows representative com-
pliance curves for several different wait times under an
applied load of σ = 0.75. Indeed, compliance curves obey
the t/tw scaling behaviour characteristic of trap models
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FIG. 7: (Color online) (a) Energy as a function of wait time
after a stress cycle of duration t = tw. σ = 0.05 (circles),
0.6 (squares), 0.7 (triangles), 0.75 (diamonds). x = 0.5 and
xl = ∞ for each sample. (b) Scaled correlation functions for
tw = 100, 316, 1000, 3162, and 10000 (all overlapping) for
σ = 0.75. Data collapse is obtained for µ = 0.68.
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FIG. 8: (Color online) (a) Aging exponent versus the stress in
the SGR model, as determined from the correlation functions
eq. (4) after a stress cycle of duration t = tw. x = 0.5 and
xl = ∞. (b) Aging exponent versus stress from molecular
dynamics simulations of a model polymer glass using (cir-
cles) the creep compliance and (squares) the mean-squared
displacement after stress release at 10tw . T = 0.2u0/kB .

[25]. Interestingly, we find this scaling behaviour to be
independent of the magnitude of the applied stress, even
within the nonlinear creep regime. Although the form of
the scaling function is stress dependent [30], the decrease
in the aging exponent under large load that is observed in
real structural glasses does not occur in the SGR model.
However, it is clear from the data in Fig. 5 that large

stress cycles cause rejuvenation of the energy of the en-
semble. To test the effect of wait time on the state of
the aged samples after creep, we release the stress after
a creep experiment of duration tw and measure the aver-
age energy of the unloaded system. Figure 7(a) plots the
energy vs wait time for four different stresses and shows
that not only does the energy change nonlinearly with

the stress as anticipated from Fig. 5, but the slope of the
energy versus wait time curves also decreases for increas-
ing stress. Highly stressed samples appear to have aged
less.
The simple relationship between the energy and the

dynamics in the SGR model implies a simultaneous
change in the dynamics after the stress is released. To
see this, we compute the correlation function

C(t, tw) =

∫

∞

0

dEbP (Eb, t, tw)e
−(Γ0e

−Eb/x)t (4)

which measures the probability that a particle in a trap
at time tw has not hopped at time tw + t [25]. These
functions are shown in Fig. 7(b) for various wait times
after a nonlinear stress cycle. The shape of the correla-
tion function is typical of glasses, although missing the
initial β-relaxation decay. There is a plateau region at
short times where there are very few relaxation events,
followed by a rapid decrease at t ≈ tw. In contrast to
the compliance curves, the scaling of correlation func-
tions with tw after the cycle is drastically changed by
large stresses. Figure 7(b) shows that for σ = 0.75, the
correlation functions no longer display full aging behav-
ior, but we find good data collapse if we rescale time
with tµw, where µ = 0.68. It appears that for stress con-
trolled deformation at finite temperature, the relaxation
time spectrum of the mechanically rejuvenated glass does
indeed resemble a younger glass.
Figure 8(a) presents the variation of aging exponents

with stress obtained from superposition of the correla-
tion functions at different wait times. At small stresses,
the exponent is unity, but decreases rapidly for nonlinear
creep. For comparison with the polymer model, we re-
peat the creep experiment using molecular dynamics fol-
lowing a similar protocol. In MD, we extract aging expo-
nents from superposition of mean squared displacements
(see ref. [14]) of particles after stress release. Figure 8(b)
shows that these exponents (squares) similarly decrease
with increasing stress amplitude. Remarkably, aging ex-
ponents obtained by superposition of creep compliance
curves (circles) appear to be identical to those found
through mean-squared displacements after the stress is
released. This indicates that the change in the aging ex-
ponent observed in nonlinear creep experiments is due
to the evolving configuration of the glass, rather than
the direct effect of stress on energy barriers, which would
cease when the stress is removed.
It seems that the SGR model does produce rejuvena-

tion in the relaxation times, but is the mechanically reju-
venated glass actually taken back in time by the applica-
tion of stress? If this were the case, we would expect the
relaxation after stress to proceed exactly like the younger,
unstressed glass. In Fig. 9, we investigate the recovery
of a glass after a stress cycle and compare to the natural
aging trajectory of an unstressed glass. We see that the
aging progresses much more rapidly after the stress cycle,
and asymptotically approaches the energy relaxation of
the unstressed sample. This is the essence of the paradox
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FIG. 9: Energy during a stress cycle and the subsequent re-
covery (solid line) compared to an unstressed glass (dashed).
Here x = 0.75, xl = 2 and σ = 0.5.

pointed out by McKenna [7]: although the stressed glass
has an apparently rejuvenated relaxation spectrum, the
time it takes to reach equilibrium is unchanged. In the
SGR model, this has a simple explanation. Every time a
trap relaxes, it releases the strain it was holding. There-
fore, at constant (zero) stress, each relaxation causes a
decrease in the strain energy of the entire ensemble of
particles. This leads to a return to the unstrained aging
trajectory over a timescale similar to the decay of the cor-
relation function. It is conceivable that in real glasses,
interactions between relaxing elements similarly explain
McKenna’s observations.

IV. CONCLUSIONS

We have performed stochastic simulations of the SGR
model for strain-controlled and stress-controlled loading
cycles in the glassy phase. Both types of loading induce
changes to the mean energy of the glass corresponding

to regimes of mechanical rejuvenation and over-aging.
Within the SGR model, rejuvenation is the predominant
effect, while over-aging is only observed at low strains,
low temperatures, and high energy initial configurations.
These results are in qualitative agreement with molecu-
lar dynamics simulations of a model polymer glass over
a wide range of loading parameters.

In addition to changes in the energy of the glass, me-
chanical rejuvenation is often observed as a decrease in
the aging dynamics. To this end, we have evaluated the
aging exponent through the scaling of the creep compli-
ance with wait time, in direct analogy with experiment.
As previously remarked in ref. [30], the creep compliance
in the SGR model strictly obeys full aging (µ = 1), even
at very high load. In contrast, experiments [2, 4, 16]
and MD simulations [14] show that the aging exponent
decreases with stress amplitude in the nonlinear creep
regime. The physics of this phenomenon does not seem
to be captured by the SGR model; instead, the dynam-
ical effects of mechanical rejuvenation appear only after
the stress cycle. Aging exponents found from the tw scal-
ing of correlation functions after unloading decrease with
increased stress, in qualitative agreement with MD sim-
ulations. Reconciling the stress dependence of the aging
exponent in the SGR model with experiment would be a
fruitful topic for further development of the model, but
may require a better understanding of the physics of me-
chanical rejuvenation at the molecular level.

Finally, we have explored the relaxation dynamics af-
ter a rejuvenating stress cycle. The SGR model exhibits
the fundamental difficulty with the “rejuvenation” hy-
pothesis. While the relaxation times after a stress cycle
appear to be exactly identical to a younger glass, when
the stress is released, the aging trajectory gradually re-
turns to the undeformed path [7]. In the SGR model, this
effect is due to collective strain relaxation which occurs
after each hopping event. Identifying the effects of struc-
tural relaxations on the rejuvenated state may similarly
provide insight to this effect in real glasses.
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