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Simulations are used to examine the microscopic origins of strain hardening in polymer glasses.
While stress-strain curves for a wide range of temperature can be fit to the functional form predicted
by entropic network models, many other results are fundamentally inconsistent with the physical
picture underlying these models. Stresses are too large to be entropic and have the wrong trend with
temperature. The most dramatic hardening at large strains reflects increases in energy as chains
are pulled taut between entanglements rather than a change in entropy. A weak entropic stress is
only observed in shape recovery of deformed samples when heated above the glass transition. While
short chains do not form an entangled network, they exhibit partial shape recovery, orientation, and
strain hardening. Stresses for all chain lengths collapse when plotted against a microscopic measure
of chain stretching rather than the macroscopic stretch. The thermal contribution to the stress is
directly proportional to the rate of plasticity as measured by breaking and reforming of interchain
bonds. These observations suggest that the correct microscopic theory of strain hardening should
be based on glassy state physics rather than rubber elasticity.

PACS numbers: 61.41.+e,81.05.Kf,81.40.Jj,81.40.Lm

I. INTRODUCTION

Glass forming polymers are of great industrial im-
portance and scientific interest because of their unique
mechanical properties, which arise from the connectiv-
ity and random-walk-like structure of the constituent
chains. At large strains, the stress increases as the chain
molecules orient, in a process known as strain hardening.
Strain hardening suppresses strain localization (crazing,
necking, shear banding) and is critical in determining ma-
terial properties such as toughness and wear resistance.
Traditional theories of glassy strain hardening [1, 2] as-

sume that polymer glasses behave like crosslinked rubber,
with the number of monomers between crosslinks equal
to the entanglement length Ne. The increase in the stress
σ due to deformation by a stretch tensor λ̄ is attributed
to the decrease in entropy as polymers stretch affinely
between entanglements. Beyond the initial plastic flow
regime, entropic network models predict [2]:

σ(λ̄) = τflow +GRg(λ̄)L
−1(h)/3h (1)

where τflow is the plastic flow stress, GR is the strain
hardening modulus, L−1 is the inverse Langevin function,
g(λ̄) describes the entropy reduction for ideal Gaussian
chains, and L−1(h)/3h corrects for the finite length of
segments between entanglements. The value of Ne enters
in h, which is the ratio of the Euclidean distance between
entanglements to the contour length.
Entropic network models have had much success in

fitting experimental data [2, 3, 4, 5]. However, serious
discrepancies between the models and experiments are
revealed in trends with temperature and the values of fit
parameters [6]. Entropic models predict GR = ρekBT ,
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where ρe is the entanglement density. This is about 100
times smaller than values measured near the glass tran-
sition temperature Tg [7]. Moreover, GR increases mono-
tonically as T decreases [7, 8], while any entropic stress
must drop to zero as T → 0. Parameters such as GR and
Ne, which entropic models assume to be material con-
stants, must be adjusted significantly to fit data for dif-
ferent strain states (i.e. uniaxial or plane strain) [9]. Fits
to the shape of strain hardening curves also yield smaller
values of Ne than those obtained from the plateau moduli
of melts [2].

A more fundamental conceptual difficulty with en-
tropic models is that, unlike rubber, glasses are not er-
godic. For T < Tg, thermal activation is not sufficient to
allow chains to sample conformations freely. Rearrange-
ments occur mainly under active deformation [10, 11]
and at a frequency that scales with the strain rate [12].
In such far from equilibrium situations, the relevance of
entropy is unclear. In addition, experiments [13, 14, 15]
and simulations [16, 17, 18] show that the internal energy
contributes to strain hardening, but this is not included
in entropic network models.

Molecular simulations allow a full analysis of the mech-
anisms of large strain deformation in glassy polymers
[10, 18, 19, 20, 21, 22, 23, 24, 25, 26]. In recent papers
[8, 17], we have examined the origins of strain harden-
ing using a coarse-grained bead-spring model [27]. As
in experiments, numerical values of GR are much larger
than predicted by entropic models and show the opposite
trend with temperature [8]. A direct correlation between
τflow and GR was discovered that allowed curves for dif-
ferent interactions, strain rates and temperatures to be
collapsed [8]. Substantial strain hardening was observed
for chains that are shorter than Ne and thus do not form
a network [17, 25]. For chains of all lengths, strain hard-
ening was directly related to strain-induced orientation
and the rate of plastic rearrangement [17].
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This paper extends our simulation studies in several
directions. Uniaxial and plane strain compression are
examined for a wide range of Ne, T and chain lengths.
Stress curves for all entangled systems can be fit to Eq.
1. The fits confirm the connection between τflow and GR

[8], which both drop linearly to zero as T rises to Tg. This
observation motivates a modification of Eq. 1. Using Tg

and the fit to a stress-strain curve at one temperature,
the model predicts strain hardening curves for all T <
Tg remarkably well. However, as in experiments [9], it
is necessary to vary parameters such as GR and Ne in
unphysical ways in order to fit curves for different strain
states.

Direct examination of entropic and energetic contribu-
tions to strain hardening reveals qualitative failures of
network models. The rapid hardening at large strains
that is fit by the Langevin correction in Eq. 1 does not
reflect a reduction in entropy. Instead there is a rapid rise
in energetic stress as chains are pulled taut between en-
tanglements. Variation in the energetic contribution for
different strain states leads to changes in fit values of Ne.
For all chain lengths and Ne, we find that the thermal
part of the stress correlates directly with breaking and
reformation of van der Waals bonds during deformation.
This provides an explanation for the correlation between
GR and τflow.

Remarkable shape recovery is observed in experiments
when highly deformed samples are unloaded and heated
slightly above Tg [28]. Network models assume this re-
covery is driven by a “back stress” related to the entropy
of the entanglement network, and shape recovery is often
seen as providing evidence for entropic strain hardening.
Our simulations also show dramatic shape recovery that
is driven by orientational entropy. However, the magni-
tude of the associated stress is only of order ρekBT and
thus much too small to be significant in strain hardening.

Changes in microscopic chain conformations are also
explored. While Eq. 1 assumes affine deformation of seg-
ments of length Ne, the observed deformation becomes
increasingly subaffine as strain increases. This reflects
a straightening of segments between entanglements that
disturbs the local structure of the glass and increases
the internal energy. Although unentangled chains do not
form a network, they still undergo significant orientation
during strain [8, 25]. For all chain lengths, the thermal
contribution to the stress is directly related to the orien-
tation of chains on the end-to-end scale rather than the
macroscopic stretch [17, 29].

The following section describes the potentials, geom-
etry and strain protocol used in our simulations. Next,
fits to entropic network models are examined, and an ex-
tension that incorporates the correlation between τflow
and GR is presented. This is followed by a discussion
of the energetic and entropic contributions to the stress
and the role of entropic back stresses in shape recov-
ery. Sections III D and III E explore the effect of chain
length and orientation and demonstrate the connection
between plastic deformation and the thermal component

of the stress. The final section presents a summary and
conclusions.

II. POLYMER MODEL AND METHODS

We employ a coarse-grained bead-spring polymer
model [27] that incorporates key physical features of
linear homopolymers such as covalent backbone bonds,
excluded-volume and adhesive interactions, chain stiff-
ness, and the topological restriction that chains may not
cross. Each linear chain contains N spherical monomers
of mass m. All monomers interact via the truncated and
shifted Lennard-Jones potential:

ULJ(r) = 4u0

[

(a

r

)12

−
(a

r

)6

−

(

a

rc

)12

+

(

a

rc

)6
]

,

(2)
where rc is the potential cutoff radius and ULJ(r) = 0
for r > rc. We express all quantities in terms of the
molecular diameter a, energy scale u0, and characteristic
time τLJ =

√

ma2/u0.
Covalent bonds between adjacent monomers on a chain

are modeled using the finitely extensible nonlinear elastic
(FENE) potential

UFENE(r) = −
kR2

0

2
ln(1 − (r/R0)

2) , (3)

with the canonical parameter choices [27] R0 = 1.5a and
k = 30u0/a

2. The equilibrium bond length l0 ≃ 0.96a.
The FENE potential does not allow chain scission, but
the maximum tensions on covalent bonds for the systems
studied here are well below the critical value for scission
in breakable-bond models [30].
As a means of varying Ne, we introduce chain stiffness

using the bending potential

Ubend(θ) = kbend(1− cosθ) , (4)

where θ is the angle betweeen consecutive covalent bond
vectors along a chain. Increasing kbend increases the root-
mean-squared (rms) end-to-end distance of chains Ree.
The chain stiffness constant C∞ ≡< R2

ee > /(N − 1)l2
0

for well-equilibrated [31] melt states rises from 1.8 to 3.34
as kbend is increased from 0 to 2.0u0. The value of Ne

decreases from about 70 to about 20 over the same inter-
val [32]. The key parameter in entropic network models
is the number of statistical segments per entanglement
Ne/C∞ (Table I).
The initial simulation cell is a cube of side length L0,

where L0 is greater than the typical end-to-end distance
of the chains. Nch chains are placed in the cell, with peri-
odic boundary conditions applied in all three directions.
Each initial chain configuration is a random walk ofN−1
steps with the distribution of bond angles chosen to give
the targeted large-scale equilibrium chain structure. In
particular the mean value of cos(θ) is adjusted so that

C∞ =
1+ < cos(θ) >

1− < cos(θ) >
. (5)
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Nch is chosen so that the total number of monomers
Ntot = NNch is 250000 (L0 = 66.5a) for flexible
(kbend = 0) chains and 70000 (L0 = 43.5a) for semi-
flexible (kbend > 0) chains. The initial monomer number
density is ρ = 0.85a−3.

After the chains are placed in the cell, we perform
molecular dynamics (MD) simulations. Newton’s equa-
tions of motion are integrated with the velocity-Verlet
method [33] and timestep δt = .007τLJ − .012τLJ . The
system is coupled to a heat bath at temperature T using
a Langevin thermostat [34] with damping rate 1.0/τLJ .
Only the peculiar velocities are damped.

We first equilibrate the systems thoroughly at T =
1.0u0/kB, which is well above the glass transition tem-
perature Tg ≃ 0.35u0/kB [35]. The cutoff radius rc
is set to 21/6a, as is standard in simulations of melts
with the bead-spring model [27, 32]. For well-entangled
chains, the time required for diffusive equilibration is
prohibitively large. To speed equilibration we use the
double-bridging-MD hybrid (DBH) algorithm [31], where
Monte Carlo moves that alter the connectivity of chain
subsections are periodically performed.

Glassy states are obtained from well-equilibrated melts
by performing a rapid temperature quench at a cooling
rate of Ṫ = −2× 10−3u0/kBτLJ . We increase rc to its fi-
nal value, typically 1.5a, and cool at constant density un-
til the pressure is zero. The quench is then continued at
zero pressure using a Nose-Hoover barostat [33] with time
constant 10τLJ until the desired T is reached. Larger val-
ues of rc lead to higher final densities and larger stresses
at all strains [36], but we have checked that using val-
ues of rc as large as 2.6a does not change the conclusions
presented below. Indeed, stress-strain curves for different
rc ≥ 1.5a collapse when normalized by τflow [8]. In this
paper T varies from 0 to 0.3u0/kB. Simulations at T = 0
are not directly relevant to experiments, but are useful
to gain theoretical understanding of polymer deformation
in the limit where thermal activation is not important.
To operate in the T → 0 limit, we remove the Gaussian
noise term from the standard Langevin thermostat and
retain the viscous drag term.

Values of Ne (Table I) are measured by performing
primitive path analyses (PPA) [32, 37]. Details of the
PPA procedure are the same as those used for undi-
luted systems in our recent paper [8]. Melt entanglement
lengths are consistent with values of Ne from the melt
plateau moduli [32]. Quenching melt states into a glass
has little effect on the values of Ne determined from PPA
[38]. The changes in entanglement density ρe = ρ/2Ne

upon cooling are primarily due to a 15% increase in ρ.
The conclusion that glasses inherit the melt value of Ne

is consistent with experimental [39] and simulation [30]
studies of the craze extension ratio, as discussed in Sec-
tion IIIA. However, it is inconsistent with some entropic
models of strain hardening [3] that assume that ρe in-
creases rapidly as T decreases.

The values of N employed in this paper are 12 − 500
for flexible chains and 4 − 350 for semiflexible chains,

spanning the range from the unentangled to the fully en-
tangled (N ≫ Ne) limits. It is important to note that un-
entangled systems (N < Ne) are often brittle. This may
severely limit the maximum strain that can be studied
in experiments and complicate comparison to our simu-
lations.

TABLE I: Chain statistics in fully entangled glasses (N/Ne >
7)

kbenda
2/u0 Ne C∞ Ne/C∞

0.0 71 1.70 42

0.75 39 2.05 19

1.5 26 2.87 9

2.0 22 3.29 7

In fundamental studies of strain hardening [2, 7, 40],
compressive rather than tensile deformation is preferred
because it suppresses strain localization. This allows the
stress to be measured in uniformly strained systems. The
rapidity of the quench used here minimizes strain soften-
ing, which in turn yields ductile, homogeneous deforma-
tion even at the lowest temperatures and highest strains
considered.
We employ two forms of compression; uniaxial and

plane strain. The stretch λi along direction i is de-
fined as Li/L

0

i , where L0

i is the cell side length at the
end of the quench. In uniaxial compression, the systems
are compressed along one direction, z, while maintaining
zero stresses along the transverse (x, y) directions [41].
In plane strain compression, the systems are also com-
pressed along the z direction, and zero stress is main-
tained along the x direction, but the length of the system
along the y direction is held fixed (λy = 1).
Compression is performed at constant true strain rate

ǫ̇ = λ̇z/λz, which is the favored protocol for strain hard-
ening experiments [40]. The systems are compressed
to true strains of ǫ = −1.5, corresponding to λz =
exp(−1.5) ≃ 0.22, for uniaxial compression and ǫ = −1.2
(λz ≃ 0.30) for plane strain compression. These strains
are similar to the highest achievable experimentally [13]
in glassy state compression.
Simulations were performed at ǫ̇ between −10−5/τLJ

and −10−3/τLJ . As in previous studies of strain hard-
ening [8] and the initial flow stress [35, 42], a weak loga-
rithmic rise in stress with strain rate was observed for
|ǫ̇| <

∼ 3 · 10−4. This small rise does not change the
conclusions drawn in the following sections and a sim-
ilar logarithmic rise is observed in many experiments
[43]. Thus, while our simulations are performed at much
higher strain rates than experiments, we expect that they
capture experimental trends. A more rapid change in
behavior was observed for |ǫ̇| >∼ 3 · 10−4 and qualitative
changes in behavior can occur at the much higher rates
employed in some previous simulations [25, 26]. For ex-
ample, the time for stress equilibration across the sample
is of order L0/cs where cs is the lowest sound velocity.
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When this time is larger than the time between plastic
rearrangements, then each rearrangement occurs before
the stress field around it has fully equilibrated in response
to surrounding rearrangements. The decorrelated relax-
ation of different regions leads to a more rapid rise in yield
stress with rate [35]. The effect of rate on the relaxation
of unentangled chains is discussed in Section IIID.

III. RESULTS

A. Comparison to Eight-Chain Model

The eight chain model [2] has been very successful in
describing the functional form of stress-strain curves and
is widely used to fit experimental results [28]. It as-
sumes that the entanglement network deforms affinely
at constant volume and employs a body centered cu-
bic network geometry with eight chains per node. The
stretch of each segment between nodes is then λchain =
((λ2

x + λ2

y + λ2

z)/3)
1/2, yielding h = λchain/

√

Ne/C∞ in
Eq. 1. This choice of network was the main advance
of the eight chain model over previous entropic models
[1, 44]. It allows the model to fit stress-strain curves for
various strain states, i.e. shear [4, 5] and uniaxial [2, 3]
or plane strain [2, 4] compression [45]. The prediction
for the difference between principal stresses along axes i
and j in the strain hardening regime is

σi − σj = τ ijflow +GR
L−1(h)

3h
(λ2

i − λ2

j) , (6)

where τ ijflow is an independently modeled, rate- and

temperature-dependent plastic flow stress [43, 44].
Equation 6 simplifies for the cases of uniaxial and plane

strain compression considered here and in many exper-
iments. For uniaxial strain only σz is nonzero and the
constant volume constraint implies λx = λy = λ−0.5

z . For
plane strain compression, the constant volume constraint
requires λx = λ−1

z and both σz and σy are nonzero.
Equation 6 implies a relation between the strain hard-
ening of σz and σy , but the latter does not appear to
have been measured in experiments.
Despite its wide use, there are fundamental difficulties

with the eight chain model that were noted in the Intro-
duction. As a rubber-elasticity based model, it predicts
GR = ρekBT . This prediction is about 100 times too
small at T ∼ 0.9Tg if values of ρe are estimated from the
melt plateau modulus and has the wrong trend with de-
creasing T [6, 7]. Some models [3, 46] assume ρe is much
larger than in the melt and rises rapidly as T decreases
below Tg in order to fit experiments. However, studies of
crazing in polymer glasses do not indicate any increase
in ρe over the melt [39, 42]. A constant entanglement
density is also consistent with the idea that entangle-
ments represent topological constraints and the observa-
tion that the topology does not evolve significantly below
Tg. The extra entanglements added in network models as

T decreases may capture the effect of glassy constraints
associated with energy barriers, but it is not clear that
it is natural to treat such constraints within a rubber-
elasticity framework.
Another shortcoming of the eight chain model and

more recent work [43, 46] is that the flow stress must
be introduced as an independent additive constant. Ex-
periments [47] and our recent simulations [8] suggest that
τflow and GR scale in the same way and are controlled
by the same physical processes. For example, both de-
crease nearly linearly as T increases [7, 47], vanish at
a strain-rate dependent Tg, and increase logarithmically
with strain rate [48]. Indeed complete strain hardening
curves for different rates and cohesion strengths collapsed
when scaled by τflow [8]. This suggests that τflow is most
naturally included as a multiplicative rather than addi-
tive factor. To further test this idea we have examined
fits to the eight-chain model for a range of kbend, T and
strain states.

FIG. 1: (Color online) Compressive stress −σz as a function
of λz for uniaxial compression at kBT/u0 = 0, 0.1, 0.2, and
0.3 from top to bottom. The chains had kbend = 1.5u0 and
ǫ̇ = −10−4/τLJ . Solid lines show a fit to the eight-chain model
(Eq. 6) at kBT/u0 = 0.2 and the extrapolation of this fit to
other temperatures using the modified model (Eq. 7). The
initial elastic rise and yield for 1 > λz > 0.8 are sensitive to
aging and are not fit by the eight-chain model.

Figure 1 shows the compressive stress −σz as a func-
tion of λz for uniaxial compression of systems with
kbend = 1.5u0. Near λz = 1 there is a sharp elastic
increase, followed by yield. Both simulations and exper-
iments [13, 28, 42, 49, 50] find that this initial region
(0.8 <

∼ λz < 1) is sensitive to the past history of the
sample, including the quench rate and aging. At greater
compressions the system is “rejuvenated” and the stress
becomes independent of history [13]. Our discussion will
focus on this strain hardening regime.
As with experimental data, the strain hardening re-

gion (λ < 0.8) of all curves can be fit (within random
stress fluctuations) by adjusting the parameters (τzxflow,

GR, Ne) in Equation 6. The quality of such fits is il-
lustrated for T = 0.2u0/kB. Typical uncertainties in fit
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parameters are about 10%. For example, data at all tem-
peratures can be fit with Ne = 15± 1 and best fit values
lie within this range. Note that the value of Ne = 26
obtained from the plateau modulus and PPA is substan-
tially larger [32]. Fits of Eq. 6 to experiments [2] also
tend to yield smaller values of Ne than the plateau mod-
ulus.
As in previous work [7, 8, 47], fit values of both the

flow stress and hardening modulus decrease linearly with
temperature. The temperature where they extrapolate to
zero, Tg ≃ 0.41u0/kB, is consistent with previous results
for the glass transition temperature for this strain rate
[35]. Data for all temperatures can be fit with a fixed
ratio β ≡ GR/τflow anywhere in the range from 0.5 to
0.7. This nearly constant value of β provides further
support for the idea that strain hardening scales with
flow stress.
The above observations can be incorporated into a

modified eight chain model that describes the temper-
ature dependent strain hardening in terms of only four
parameters τ0flow, Tg, Ne and a temperature independent

ratio β. Here τ0flow is the flow stress at T = 0 and at other

temperatures τflow = τ0flow(1 − T/Tg). The shear stress
in the strain hardening regime is written as

σi−σj = τ0,ijflow

[

1−
T

Tg

] [

1 + β
L−1(h)

3h
(λ2

i − λ2

j )

]

. (7)

Note that Eq. 7 is equivalent to the usual eight-chain
model except that it imposes proportionality between the
flow stress and hardening modulus and assumes a linear
temperature drop in both. This reduction in parameters
may be useful in extrapolating experimental data, since
values for one temperature determine those at any other
if Tg is known.
The solid lines in Figure 1 show predictions of Eq. 7

based on the fit at T = 0.2u0/kB: τ0flow = 0.634u0a
−3,

β = 0.56, and Ne = 14.1. The predictions agree quite
well with simulation results over an extremely wide range
of T/Tg. The largest deviations are of order 10% at T = 0
and the smallest λz. There is a slight over-prediction of
the change in curvature with increasing T that manifests
as slight (∼ 10%) increases in β or decreases in Ne in
best fits to the data, particularly at T = 0.3. Fits of the
same quality are obtained for all kbend and strain states
(see Fig. 2), suggesting that this simple extrapolation
may be widely applicable to data from simulations or
experiment.
A more stringent test of Eq. 7 is whether it is able to

predict stresses for multiple strain states with the same
parameters. As pointed out by Arruda and Boyce [2],
uniaxial and plane strain compression produce extremely
different changes in chain configuration. Under plane
strain compression the chains all stretch in one direction,
while in uniaxial compression the chains stretch along all
directions in the plane perpendicular to the compression
axis.
Figure 2 shows results for plane strain compression of

the same systems as Fig. 1. As before, excellent fits can

be obtained to Eq. 6 and extrapolations from fits at one
temperature using Eq. 7 capture the variation in stress
over the full temperature range. Despite these successes,
there are troubling inconsistencies in the parameters of
these fits. While the values of GR for σz in plane strain
and uniaxial compression are consistent (within our 10%
uncertainty), the value of Ne is significantly higher for
plane strain; Ne = 20 ± 2. In addition, the strain hard-
ening of σy and σz in plane strain are inconsistent. From
Eq. 6, the value of σy is determined up to an additive
constant from measurements of σz . The dashed line in
Fig. 2(b) shows this prediction for T = 0 with the ad-
ditive constant adjusted to fit data at large λz . At all
temperatures the variation in σy is systematically smaller
than predicted from σz. The decrease corresponds to a
reduction in GR for σy by about 20%. In contrast, best
fit values of Ne for σy and σz match to within 1%.

FIG. 2: (a) Compressive stress −σz and (b) perpendicular
stress −σy as a function of λz for plane strain compression
at kBT/u0 = 0, 0.1, 0.2, and 0.3 from top to bottom in each
panel. The chains had kbend = 1.5u0 and ǫ̇ = −10−4/τLJ .
Solid lines show a fit to the eight-chain model (Eq. 6) at
kBT/u0 = 0.1 and the extrapolation of this fit to other tem-
peratures using the modified model (Eq. 7). The dashed line
in (b) shows the variation in σy predicted by Eq. 6 and mea-
sured values of σz.

A strong dependence of model parameters such as GR

andNe on strain state has also been noted experimentally
[9]. One possibility is that the strain state changes the
role of entanglements in ways that are not captured com-
pletely by the eight-chain model. Another is that while
the eight-chain model provides a useful fitting function,
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it does not capture the correct strain hardening mech-
anisms. In this case, fit parameters may not have di-
rect physical significance. The scaling of GR with σflow

rather than T supports the view that entropy is not the
dominant source of stress and this is examined further
below. It is also important to note that the fits above
assumed constant volume, but the simulation volume de-
creased with strain by up to 8% for plane strain and large
kbend. Including the correct λi in Eq. 6 would change the
predicted stress by up to 15%. In the following section
we show that violations of the assumption of affine dis-
placement of entanglements can produce similar changes.
Thus the fit parameters compensate for changes that are
not included in the model, further reducing their direct
relevance.

B. Dissipative and Energetic Stresses

Entropic network models assume that strain hardening
arises entirely from a reversible increase in the entropy
of the entanglement network. Experiments showed many
years ago that strain hardening is also associated with
large increases in internal energy [13], but this observa-
tion has not been incorporated into published theoretical
models. Simulations allow us to separate the role of en-
tropy and energy in strain hardening.
For uniaxial and plane strain compression, the stress

along the compressive axis is directly related to the work
W done on the system per unit strain: σz = ∂W/∂ǫz. σz

can be separated into an energetic component σU
z and a

thermal component σQ
z using the first law of thermody-

namics: dW = dQ + dU , where U is the internal energy
of the system and dQ is the heat transfer away from the
system. This implies

σz =
∂W

∂ǫz
: σU

z =
∂U

∂ǫz
: σQ

z =
∂Q

∂ǫz
= σz − σU

z . (8)

These quantities are readily obtained from our simulation
data and could in principle be obtained by differentiat-
ing results for W and Q from deformation calorimetry
experiments. Unfortunately existing studies [51, 52, 53]
have not extended into the strain hardening regime.
Experimental data are frequently plotted in a manner

designed to isolate the Gaussian and Langevin contri-
butions to the strain (Eq. 1). If σz is plotted against
g(λ̄) = λ2

z − λ2
x, then Eq. 6 predicts a straight line in

the Gaussian limit (h << 1). The Langevin correction
((3h)−1L−1(h)) adds an upwards curvature. Since λx is
not generally measured, experimental stresses are plot-
ted as a function g(λz) that is determined by assuming
constant volume. For uniaxial strain g(λz) = λ2

z − 1/λz

and for plane strain g(λz) = λ2
z − 1/λ2

z.
Figure 3 illustrates the variation of total, thermal

and energetic stresses with g under uniaxial and plane
strain compression for the most highly entangled system
(Ne = 22). The total stress for both strain states shows
strong upward curvature that is normally attributed to

the Langevin correction. As expected from entropic net-
work models, the amount of curvature decreases with in-
creasing Ne [8]. However, Fig. 3 shows that this curva-
ture is not related to entropy. Almost all of the upward
curvature is associated with the energetic contribution to
the stress, while σQ

z shows the linear behavior expected
for Gaussian chains. Similar behavior is observed for all
Ne and T , and we now discuss the trends in σQ and σU

separately.

FIG. 3: (Color online) Total stress (solid lines) and thermal
(dashed lines) and potential energy (dot-dashed lines) contri-
butions for (a) uniaxial compression at kBT/u0 = 0.2 and (b)
plane strain compression at kBT/u0 = 0. The systems had
kbend = 2.0 (Ne = 22), N = 350 and (a) ǫ̇ = −10−5/τLJ or
(b) ǫ̇ = −10−4/τLJ . Dotted lines show best fits of σz to Eq.
7 with (a) Ne = 15.5 and (b) Ne = 22. Straight lines are fits
to σQ

z . Both σz and g are negative under compression.

For all systems, temperatures, and strain states the
thermal stress is well fit by the linear behavior expected
for Gaussian chains. There may be a small upwards cur-
vature, particularly for uniaxial compression, but it is
comparable to statistical fluctuations. Attempts to fit
σQ
z to the eight chain model always require increasing Ne

significantly above values obtained from the melt plateau
modulus.
We define a thermal hardening modulus Gtherm from

the slope of linear fits to σQ
z = σ0 + Gthermg(λz). Ta-

ble II shows values for Gtherm for uniaxial and plane
strain compression for various entanglement lengths at
T = 0.2u0/kB. While Gtherm is systematically higher
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for uniaxial compression, the differences (10-30%) are
not large. In contrast, Gtherm decreases rapidly with
increasing Ne. Rubber elasticity theories for Gaussian
chains would predict GR ∝ N−1

e and it is interesting
that Gtherm appears to scale in this way. As shown in
Table II, changes in NeGtherm are within our statistical
error bars (∼ 10%) and show no systematic trend with
Ne.

TABLE II: Thermal Moduli Gtherm in units of u0/a
3 for T =

0.2u0/kB and ǫ̇ = −10−4/τLJ . Errorbars are about 10%.

Ne Guniax
therm Gplane

therm NeG
uniax
therm NeG

plane

therm

22 1.3 1.0 28 23

26 1.0 0.75 27 20

39 0.57 0.50 22 20

71 0.37 0.34 26 24

Figure 4 shows σU
z during plane strain compression for

different Ne. Results are shown for T = 0 because the
energetic stresses are the largest, but results at higher
temperatures show similar trends. The value of σU rises
to a peak near the yield point, and then drops to a nearly
constant value for |g| > 1. The initial behavior for |g| <
1 is nearly independent of the entanglement length but
does depend weakly on age and strain rate. The behavior
at slightly larger |g| depends strongly on entanglement
length (Fig. 4). For example, at T = 0.2u0/kB the ratio
of the constant energetic stress to the flow stress rises
from about 4% for flexible chains to 16% for the most
entangled system. Similar ratios are obtained for the
T = 0 data in Fig. 4.
Hasan and Boyce examined the enthalpy stored in

samples of polystyrene (PS), polymethylmethacrylate
(PMMA) and polycarbonate (PC) as a function of resid-
ual strain [13]. They found a sharp increase in enthalpy
up to a strain of about 20% (|g| = 0.55) that was larger
in annealed samples than in rapidly quenched samples
like those used here. For quenched PS, the magnitude of
the rise in energy density is about 4MPa. Values for the
work performed are difficult to extract from the paper,
but as a rough estimate we take the flow stress (55MPa)
times the strain (0.2) and find 11MPa. Thus in the ini-
tial stages of deformation, of order a third of the work
is stored in energy. Calculating the same ratio for our
simulations gives values between 30 and 45%.
For strains from -0.2 to -0.8 (|g| = 2.0) or larger, Hasan

and Boyce found a weak, nearly linear rise in enthalpy.
This corresponds to a constant σU like that observed in
Fig. 4 for intermediate |g|. Analysis of their figures [13]
shows that the ratio of σU to the flow stress increases
from about 4% for PS to 15% for PC. Since PC is more
entangled than PS, this trend is the same as observed in
Fig. 4. Note that in both simulations and experiments
the fraction of work stored as energy depends strongly
on the strain amplitude. The fraction stored during the
initial rise to the flow stress is dependent on sample age

[13] and may be of order 50% or more [54, 55]. As |g|
increases and σU remains constant, the fraction stored
as energy drops towards the much smaller value given by
σU/σflow.
Fig. 4 shows a sharp rise in σU at the largest values

of |g|. The onset moves to smaller |g| and the magni-
tude of the rise increases as Ne decreases. This rise is
the source of almost all the curvature in the total stress.
The experiments of Hasan and Boyce [13] did not show
this rise. One reason may be that their experiments only
extended to uniaxial strains of -0.8 (|g| = 2.0) for the
most entangled systems. However, their measurement is
also limited to the residual enthalpy after the sample is
unloaded. Simulations were performed to determine the
amount of energy recovered during unloading from dif-
ferent strains. The recovered energy is relatively small
in the region where σU has a small constant value, but
rises rapidly at larger strains. Indeed, almost all of the
energy that contributes to the sharp rise in σU at large
|g| is recovered when samples are unloaded. Thus exper-
iments could only observe this rise by using deformation
calorimetry.

FIG. 4: (Color online) Energetic components of stress σU
z

for plane strain compression at T = 0 with strain rate ǫ̇ =
−10−4/τLJ for Ne = 22 (solid line), Ne = 26 (dot-dashed
line), Ne = 39 (dashed line), and Ne = 71 (dotted line).

The rise in energetic stress at large |g| seems to occur
when segments of length Ne are pulled taut between en-
tanglements. To demonstrate this we examined changes
in chain statistics with stretch. Entropic network models
assume that the deformation of the entanglement net-
work is affine to the macroscopic stretch. An affine dis-
placement would, on average, increase the length of any
chain segment by a factor of λchain. This stretch can not
apply at the smallest scales since the length of chemical
bonds l0 can not increase significantly. As a result chains
are pulled taut and deform subaffinely on small scales.
The larger the strain, the larger the length of taut seg-
ments.
To illustrate this we compare the rms Euclidean dis-

tance between monomers separated by n bonds R(n) to
the affine prediction Raff (n). If R0(n) is the distance
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before stretching, then Raff (n) = λchainR0(n) where
λ2

chain = (λ2

x + λ2

y + λ2

z)/3. For the case of plane strain,

λ2

chain = (λ2

z + 1 + λ−2

z (V/V0)
2)/3, where λx has been

eliminated by using the ratio V/V0 of the final and initial
volumes. Volume changes are normally ignored, but are
large enough to affect the plots shown below.

Figure 5(a) shows the ratio of the observed R(n) to the
affine prediction as a function of n/Ne for different g(λz)
and Ne under plane strain. There is a clear crossover
from subaffine behavior (R/Raff < 1) to affine behavior
(R/Raff ≃ 1) with increasing n. In the subaffine regime
at small n, chains are pulled nearly taut. The crossover to
affine behavior moves to larger n as |g| increases, imply-
ing that chains are pulled straight over longer segments.
For chains with Ne = 39 the crossover remains slightly
below Ne at the largest strains considered here. How-
ever for Ne = 22 the crossover appears to reach Ne by
|g| = 5. At larger |g| the magnitude of R/Raff decreases,
but the region of rapid crossover appears to remain near
Ne. This suggests that the entanglements prevent chains
from stretching taut on longer scales.

Figure 5(b) shows there is a direct correlation between
subaffine deformation at Ne and the increase in the en-
ergetic contribution to the stress. The values of σU

z from
Fig. 4 are replotted against R(Ne)/Raff (Ne) instead of
|g| [56]. There is a sharp rise in σU

z as R(Ne)/Raff(Ne)
decreases below about 0.925. As seen in panel (a), this
corresponds roughly to the point where the length of taut
segments reaches Ne. This suggests that the energetic
stress arises when the entanglement network begins to re-
sist further deformation. As expected from this picture,
we find a growing tension in covalent bonds as σU

z rises.
However, the maximum tensions in the “worst case” sce-
nario of plane strain compression for Ne = 22 are only
about 100u0/a, which is well below the breaking strength
240u0/a used in breakable-bond simulations [30].

The above findings help to explain some of the discrep-
ancies in the fit parameters for the eight-chain model.
The upwards curvature in plots of σz vs. |g| comes from
energetic terms rather than entropy. Fits to uniaxial and
plane strain give different Ne because the energetic con-
tributions are different. However the fit values are never
far fromNe because the sharp increase in σU

z occurs when
segments of length Ne are pulled taut. Fig. 5(a) also
indicates that the entanglement network does not de-
form completely affinely as assumed in the eight-chain
model. Even at small strains R(Ne)/Raff (Ne) is slightly
less than one and this would produce significant (∼10%)
changes in the stress from Eqs. 6 or 7 [57].

Note that the deviations from affinity observed in Fig.
5 are significantly smaller than those predicted from
rubber-elasticity based models for the non-affine defor-
mations in entangled polymers above Tg [58, 59]. These
models assume that fluctuations about affine deforma-
tion are confined to the “tube” formed by surround-
ing entanglements. They predict nonaffine reductions in
R(Ne)/Raff (Ne) that are about 50% greater than our re-
sults at small strains. At the larger strains where we find

entanglements produce a significant energetic stress, the
disparity decreases. The discrepancy appears to reflect
the fact that the nonaffine displacements in our simu-
lations [8] are much smaller than the tube radius until
the energetic stress begins to dominate. Interestingly,
the magnitude of the nonaffine displacements decreases
slightly with increasing rc, suggesting they are limited
by cohesive interchain interactions rather than entangle-
ments. These observations provide further evidence that
polymers in a glass are not free to explore their tube
as assumed in entropic models. It would be interesting
to extend these comparisons to melt models to see what
additional information can be obtained.

FIG. 5: (Color online) (a) R(n)/Raff (n) for the same systems
and conditions as Fig. 4 with n scaled by Ne. Solid lines indi-
cate Ne = 22 and dashed lines indicate Ne = 39. Curves are
for |g| =2.5, 5, 7.5, and 10 from top to bottom. (b) σU

z plot-
ted against R/Raff evaluated at n = Ne. This corresponds to
evaluating σU

z along a vertical slice of (a). Solid, dot-dashed,
dashed, and dotted lines indicate data for Ne =22, 26, 39,
and 71 respectively [56].

C. Reversibility and entropic back stresses

If the work performed in deforming a glass is entropic,
it should be reversible. However, large strain experiments
performed well below Tg show only ∼10% strain recovery
upon unloading [13]. Entropic network models postulate
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that there is an entropic “back stress” [2] that favors
further strain reduction but that relaxation is too slow
to observe because of the high viscosity of the glassy state
[1]. As expected from this picture, lowering the viscosity
by heating even slightly above Tg leads to nearly complete
shape recovery of well-entangled glasses [28].

To see if similar behavior occurs in simulations, we
loaded samples to ǫ = −1.5 at ǫ̇ = −10−5/τLJ and T =
0.2u0/kB. The samples were then unloaded at the same
|ǫ̇| and T until all σi were zero. Fully entangled samples
(N = 350, Ne = 39) recovered only 6% of the peak strain
and unentangled chains (N = 16) recovered slightly less,
∼ 4%. The result for entangled chains is comparable to
experiments [13].

The samples were then heated to T = 0.4u0/kB over
100τLJ and allowed to relax with a Nose-Hoover barostat
imposing zero stress in all three directions. Figure 6(a)
shows the resulting strain recovery. For the entangled
system, an additional 87% of the strain was recovered af-
ter 105τLJ and the rate of recovery remained significant
at the end of this period. In the unentangled system, 46%
of the strain is recovered, mainly in the first 2× 104τLJ .
While this recovery is substantially smaller than for en-
tangled systems, network models would predict no strain
recovery for unentangled chains. Examination of pair
and bond energies shows that they are nearly constant
during the relaxation at T = 0.4u0/kB. These results im-
ply that entropic stresses drive the relaxation and that
entanglements play an important role.

To monitor the entropy in chain confirmations we eval-
uated the orientational order parameter, P2(cos(α)) =
(3cos2(α) − 1)/2, where cos2(α) =< R2

z > / < R2

ee >.
This quantity measures the deviation from isotropy at
the end-end scale. There is significant orientation of both
short and long chains during the initial strain, which is
discussed further below. During the relaxation to zero
stress and heating to T = 0.4u0/kB the orientation re-
laxes only 3% for entangled chains and 5% for unen-
tangled chains. As shown in Fig. 6(b), rapid and sub-
stantial deorientation occurs during the strain relaxation
above Tg. Short chains become nearly isotropic after only
∼ 2 · 104τLJ , and there is little strain recovery after this
point. Entangled chains deorient more slowly, and both
P2 and ǫz are continuing to evolve slowly at the end of the
simulations. These results clearly show that the entropy
of chain orientation drives the strain relaxation. They
also show that the network of entangled chains prevents
chains from deorienting without recovery of the macro-
scopic strain.

While Fig. 6 provides strong support for an entropic
back stress, the magnitude of this stress can only be of
order ρekBTg and thus much smaller than the stresses
associated with strain hardening. To confirm this we
took the N = 350 sample studied in Fig. 6 and heated
to T = 0.4u0/kB with different stress control. In-
stead of fixing all σi to zero, only the total pressure
p = −(σx+σy+σz)/3 was kept at zero while the ratios of
the Li were fixed at the values after deformation. After

FIG. 6: (Color online) Time dependent relaxation at T =
0.4u0/kB of (a) true strain and (b) chain orientation param-
eter P2 for entangled N = 350 (solid lines) and unentangled
N = 16 (dashed lines) systems. Systems were prepared by
loading to ǫz = 1.5 at T = 0.2u0/kB , unloading to zero stress
and then heating to 0.4u0/kB over 100τLJ .

heating, there was a shear stress σz−σx ≈ σz−σy whose
direction favored relaxation back to ǫ = 0. The magni-
tude of this stress relaxed rapidly (∼ 104τLJ) to about
twice the entropic estimate of ρekBTg ≈ 0.02u0/a

3, while
the stress during strain hardening below Tg is more than
two orders of magnitude larger. Similar results were ob-
tained at higher temperatures. We next applied a shear
force of the same magnitude (0.04u0/a

3) to an unstrained
system at T = 0.4u0/kB. The magnitude of the strain
produced by this stress over 105τLJ was 1.2, which is
comparable to that during stress relaxation (Fig. 6).
Both this driven response and the stress relaxation var-
ied approximately as the logarithm of time, indicating
that the sample displays creep rather than viscous flow.
Recent studies of a similar glassy system also show creep
behavior at this temperature and time scale [60].

D. Chain Length Effects

The orientation of unentangled chains shown in Fig.
6(b) is not expected from entropic network models. For
N < Ne there is no entanglement network spanning the
system. Network models assume that this network is es-
sential in forcing the deformation of individual chains to
follow the macroscopic strain. However because chains
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are not free to relax in the glassy state, chain orientation
can occur even without entanglements. In recent work on
uniaxial compression, we found significant strain hard-
ening of unentangled chains [8] and discovered a direct
connection to chain orientation [17] as suggested by re-
cent analytic studies [29]. In this section we extend the
study of chain length dependence to other strain states
and systems.

Figure 7(a) shows stress-strain curves for flexible
chains (Ne = 71) in plane strain compression for a range
of N between 12 and 500. At small |g|, the stresses are
nearly independent of N . Beyond yield, the stresses in-
crease faster for larger N , reaching an asymptotic limit
for N ≫ Ne as expected from network models [8]. How-
ever, there is significant strain hardening for chains as
short as Ne/6. Similar behavior is observed for all entan-
glement densities under both uniaxial and plane strain.
This is illustrated for kbend = 2.0u0 (Ne = 22) under uni-
axial strain in Fig. 10(a) and for kbend = 0.75u0 in Fig.
2(c) of Ref. [17].

Examination of individual chain conformations shows
that strain hardening is directly correlated with increas-
ing chain orientation [61]. To quantify this we define a
microscopic stretch of chains as λc

i ≡ Ri/R
0

i where Ri is
the rms projection along i of the end-end distance and
R0

i is the value before deformation. Fig. 7 shows λc
i for

flexible chains under plane strain compression. For fully
entangled chains (N/Ne ∼ 7) the microscopic stretch re-
mains close to the macroscopic stretch as already con-
cluded from Fig. 5. For λx the deviation is smaller than
the line width. For λz the maximum deviations of about
2% (lowest dashed line in Fig. 7(c)) can be attributed
to non-affine deformation of the unentangled ends of the
chains.

As the chain length decreases, the microscopic
stretch shows increasing deviations from the macroscopic
stretch. Chains compress by less than the imposed strain
along the z axis, and stretch by a smaller amount along
the x axis. For each N , λc

i is close to the entangled re-
sults at small |g| and then saturates at large |g|. The
onset of saturation in λc

i correlates with the saturation
of the stress, and moves to larger |g| with increasing N .
These results clearly show that entanglements force the
chain orientation to follow the macroscopic stretch but
that significant chain orientation occurs without entan-
glements. Strain also orients chains in unentangled melts,
but is only appreciable when the strain rate is faster than
chain relaxation times [62]. The extremely slow dynam-
ics in glasses prevents relaxation of shear-induced orien-
tation.

Fig. 7(d) shows the ratio of the product of the chain
and macroscopic stretches Πiλ

c
i/Πiλi. This corresponds

to the ratio of changes in the volume subtended by the
chains to changes in the macroscopic volume. For entan-
gled chains the ratio is close to unity, as expected for a
crosslinked network. The volume subtended by unentan-
gled chains need not follow the macroscopic volume, but
the observed deviations are less than 11% in Fig. 7(d).

Deviations are even smaller for flexible chains under uni-
axial strain.

Figure 8 shows that σz is determined directly by the
microscopic orientation of chains rather than the macro-
scopic deformation. Results for plane strain compression
of flexible chains (from Fig. 7(a)) and uniaxial compres-
sion of semiflexible chains (Ne = 39) are plotted against
an effective g calculated from λc

i : geff ≡ (λc
z)

2 − (λc
x)

2.
When plotted against this measure of microscopic chain
orientation, results for all chain lengths collapse onto a
universal curve. A similar collapse was obtained in Ref.
[17] using a single effective orientation parameter λeff

z

along the compression direction. This was obtained by
measuring λc

x and using the assumption of constant chain
volume to determine λeff

z (i.e. λeff
z = 1/λc

x for plane
strain). The collapse produced for g(λeff

z ) is nearly iden-
tical to that in Fig. 8 because chain volume is nearly
constant (Fig. 7(d)) and geff is mainly determined by
λx.

Fig. 9 shows that results for σz−σy during plane-strain
compression also depend only on microscopic chain orien-
tation. When plotted against the macroscopic |g|, results
for unentangled chains lie substantially below those for
entangled chains. When plotted instead against the mi-
croscopic orientation function geff = (λc

z)
2 − (λc

y)
2, data

for all chains collapse onto a universal curve (Fig. 9(b)).
Note that λc

y decreases by as much as 5% from λy = 1
for the shortest chains, and this affects the data collapse
[63].

The quality of the collapse of the total stress decreases
slightly as the entanglement length decreases. This is
illustrated for Ne = 22 (kbend = 2.0) in Fig. 10. Re-
sults for fully entangled systems (N ≥ 4Ne) collapse
completely. Data for smaller N follow the asymptotic
curve at small |geff |, and then drop below it at a |geff |
that decreases with decreasing N . The smallest chains
in Fig. 10 and 8(b) are only a few persistence lengths
and may not behave like Gaussian chains [17]. However
such effects are not large enough to explain why results
for short chains fall below the asymptotic curve in Fig.
10(b).

These discrepancies are instead explained by examin-
ing the variation with N of the energetic contribution
to the stress. Figure 10(c) shows σU

z plotted against
g(λeff ). The initial peak at low |geff | is nearly inde-
pendent of N , but the behavior at large |geff | is not.
There is a sharp rise in σU

z for fully entangled chains,
that does not occur for N ≤ 44. The magnitude of this
rise is comparable to the deviation between results for
N = 44 and the asymptotic curve for entangled chains
in Fig. 10(a). These results suggest that while the ther-
mal contribution to the stress depends only on the chain
orientation, the energetic contribution at large |g| only
occurs for entangled chains. Without the entanglement
network, chains can contract along their tube to elimi-
nate the large energetic stresses.

We have confirmed that increasing the strain rate from
|ǫ̇| = 10−5/τLJ to 10−3/τLJ does not change the relation
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between chain orientation and stress described in this
section. The main effect is to increase λeff towards λ
with the increase being more pronounced for shorter
chains. At even higher strain rates, there is almost no
relaxation, and λeff is close to λ for all N . This is
the regime observed in recent simulations [25, 26] with
atomistic potentials, whose greater complexity requires
higher strain rates.

E. Dissipative Stresses and Plasticity

The large value of the hardening modulus and the
multiplicative relation between it and flow stress, sug-
gest that strain hardening is related to dissipation by
plastic rearrangements rather than stored entropy. To
quantify the rate of plastic deformation RP , we examine
changes in the Lennard-Jones bonds between monomers
over small strain intervals δǫ = 0.005. At the start of
the interval, all bonds shorter than rc = 1.5σ are identi-
fied. Then the fraction δf of these bonds whose length
changes by more than 20% during the interval is evalu-
ated. This threshold is large enough to exclude changes
due to elastic deformations. Tests also show that the
value of δǫ = 0.005 is small enough that a given atom
is unlikely to undergo multiple, independent bond rear-
rangements in any interval. To eliminate activated rear-
rangements associated with equilibrium aging, the rate of
plasticity during deformation was monitored at T = 0.
Figure 11(a) shows the rate of plasticity RP ≡ δf/δǫ

as a function of |g| during uniaxial compression of fully
entangled (N = 350) and short (N = 4) chains with
kbend = 0.75. The two chain lengths lead to very different
curves, but for both cases RP is directly proportional to
the dissipative component of the stress. To illustrate this
we also plot σQ

z /σ∗ where σ∗ is the constant of propor-
tionality relating RP and σQ

z . Note that even the rapid
fluctuations with |g| in the two quantities are correlated.
These fluctuations are greatly reduced in the total stress,
which can not be made to correlate as well with RP . The
N = 4 chains exhibit nearly perfect-plastic behavior for
|g| > 1, showing that the correlation is not directly re-
lated to strain hardening. The fact that σ∗ is nearly the
same for short chains that flow at a constant τflow and
entangled chains that show significant strain hardening
at larger strains is clear evidence for the close connection
between the flow stress and strain hardening.
In Ref. [17] we showed that RP and σz were also cor-

related for uniaxial compression of chains with kbend = 0
and 1.5u0. Figure 12 shows that this connection extends
to plane-strain compression. In all cases studied, RP

tracks both the mean σQ
z and local fluctuations. More-

over, the normalization constants have nearly the same
value within our numerical uncertainties. Best fits for
all N , kbend and strain states range between 0.98 and
1.1u0/a

3. Since RP is the rate of rearrangements per LJ

bond, σ∗ should correspond to the density of LJ bonds
ρLJ times the energy dissipated per bond. Each atom
has on average about 13 LJ neighbors and each bond
is shared by two atoms, so ρLJ ∼ 6.5ρ. Thus the en-
ergy dissipated per bond σ∗/ρLJ is about a quarter of
the binding energy (0.68u0). Note that this value would
change slightly with the threshold used to define a bond
rearrangement and other factors in the definition of RP ,
but the result that σ∗ is similar for all systems with the
same rc is more robust. Increasing rc increases the bind-
ing energy and also σ∗.
The same σ∗ are obtained when the strain rate is re-

duced to 10−5/τLJ , but the magnitude of the fluctuations
increases slightly. Different behavior appears when the
strain rate is increased to 10−3/τLJ . Fluctuations are
much smaller since there is insufficient time for stress
equilibration. There is also a decrease in RP , while σQ

z

increases. This implies that there are fewer plastic rear-
rangements involving larger dissipation, presumably be-
cause the system does not have time to minimize the
energy.

IV. SUMMARY AND CONCLUSIONS

Extensive simulations of strain hardening were per-
formed for polymer glasses with a wide range of entan-
glement densities, chain lengths and temperatures. As
in experiments, we find that the calculated stress-strain
curves of entangled chains can be fit to expressions de-
rived from entropic network models (Eq. 6). These mod-
els normally treat the flow stress as an independent pa-
rameter that is determined by entirely separate mech-
anisms. However, our simulations [8] and experiments
[47] show that τflow and GR are correlated, and that
both drop linearly to zero as T rises to Tg. This suggests
that τflow enters multiplicatively rather than additively,
and motivated a simple modification of the eight-chain
model that describes the full temperature dependence of
stress-strain curves. While this model may prove useful
for extrapolating experimental data at one temperature
to all others, the fit parameters do not appear to have
physical significance. For example, values of Ne are dif-
ferent for uniaxial and plane strain deformation. Another
difficulty is that the model implies a relation between the
two nonzero stress components in plane strain compres-
sion that is not satisfied by the data. We are not aware
of experimental studies of the transverse stress σy , but
it would be interesting to see if the same inconsistency
could be observed experimentally.
Separate study of the energetic and thermal compo-

nents of the stress provided insight into the failures of
network models. The thermal component of the stress
σQ scales nearly linearly with |g| for all systems. Even
when h is as large as 0.5, the Langevin contribution to
strain hardening (Eq. 6) is not evident in σQ. Instead
the rapid rise in σ at large |g| is associated with an in-
crease in the energetic component of stress. This rise
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is the dominant factor in fits of Ne to the eight-chain
model. Since the energetic contributions scale in differ-
ent ways for uniaxial and plane strain, fit values of Ne are
different for the two strain states. Existing experiments
have not examined energetic and thermal components of
the stress separately in the strain hardening regime un-
der isothermal conditions, but in principle deformation
calorimetry experiments could do so. Our results sug-
gest that a study of trends with entanglement density
would be particularly useful.
Analysis of chain conformations reveals the origin of

the energetic stress. As strain increases, chains are
pulled taut over longer segments. When the length of
straight segments reaches Ne, entanglements limit fur-
ther straightening. Additional strain leads to a rapid
increase in the tension in covalent bonds and the ener-
getic component of stress. Straightening on a scale of
order Ne corresponds to large h. Thus even though dif-
ferent strain states lead to different fit values of Ne in the
eight-chain model, both fit values tend to follow trends
in the true Ne. Modern microscopic theories of rubber
elasticity [64] incorporate intra- and inter-chain energetic
effects due to chain stretching and orientation, respec-
tively. Analytic studies based on this approach [65] may
be able to capture the changes in stress and chain con-
formation observed in our simulations.
Our simulations reproduce the shape recovery observed

in experiments when strongly deformed, well-entangled
glasses are unloaded and heated slightly above Tg [28].
This relaxation is often invoked as evidence for the en-
tropic stresses predicted by network models. As expected
from this picture we find a strong correlation between re-
laxation of strain and the decay of strain-induced orien-
tational order. However, we show that the stress associ-
ated with shape recovery is only of order ρekBT and thus
much too small to account for strain hardening. This
stress was determined by measuring the shear stress in
deformed samples after rapid heating, and by identifying
the shear stress needed to strain an undeformed sample
at the rate observed in shape recovery. The latter method
could also be applied in experiments.
Limited orientation and shape recovery were observed

for unentangled chains even though entropic models as-
sume that there is no network to impose chain orienta-
tion in such systems. Significant strain hardening was
also found for these unentangled chains. The stress and
orientation follow results for highly entangled chains at
small |g| and saturate at large |g|. The onset of satura-

tion moves to larger |g| as N increases. As suggested by
recent theoretical work [29] and observed in our recent
simulations [17], the stress is directly related to effective
stretches describing the microscopic chain orientation λc

i

rather than the macroscopic stretches λi. Plots of stress
against g(λ̄c) collapse data for unentangled and highly
entangled chains onto a single curve. Small deviations
from this collapse are observed when the energetic con-
tribution to the stress is large, i.e. when Ne is small and
strain is large.
For both entangled and unentangled chains the ther-

mal contribution to the stress is directly proportional
to the rate of bond rearrangements. Both the gradual
trends and rapid fluctuations in the two quantities track
each other. The proportionality constant is nearly inde-
pendent of Ne and chain length. The latter result helps
to explain the connection between τflow and GR since
short chains shear at a constant stress near τflow. There
has been great interest recently in plasticity in model
atomic glasses [66, 67, 68]. It would be interesting to
check whether the direct correlation between dissipative
stress and bond breaking/reformation holds in such sys-
tems [69].

One of the intriguing questions raised by our results is
why the thermal contribution to the stress always rises
nearly linearly with |g|. The stress has the functional
form expected for the entropy of Gaussian chains even
in the limit T → 0 where entropic contributions to the
stress must vanish. One possibility is that entropy enters
indirectly. As |g| increases, the number of conformations
available to the chains is reduced. The growing constraint
on conformations may naturally lead to an increase in the
number of local bond rearrangements that scales with
entropy. This would explain the linear increase in the
rate of plasticity with |g|, and the corresponding increase
in σQ.
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FIG. 7: (Color online) Dependence of (a) stress and (b,c)
microscopic chain orientation on |g| for flexible chains un-
der plane strain compression at T = 0.2u0/kB with ǫ̇ =
−10−5/τLJ . Panel (d) shows the ratio of changes in chain
volume to macroscopic volume. The chains have lengths
N = 500 (solid lines), N = 107 (dotted lines), N = 36 (dash-
dotted lines), N = 18 (dashed lines), and N = 12 (dash-
dot-dotted lines). The lower dashed line in (c) shows the
macroscopic stretch λz.
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FIG. 8: (Color online) Compressive stress as a function
of microscopic orientation function geff ≡ (λc

z)
2 − (λc

x)
2 at

T = 0.2u0kB with ǫ̇ = −10−5/τLJ . (a) Plane strain compres-
sion of flexible chains with lengths N = 500 (solid line), 107
(dotted line), 36 (dash-dotted line), 18 (dashed line), or 12
(dot-dash-dot line). (b) Uniaxial compression of semiflexible

chains (Ne = 39) with N = 350 (⋆), 175 (-), 70 (squares), 40
(· · ·), 25 (△), 16 (−−−) and 10 (⋄).
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FIG. 9: (Color online) Stress difference σz − σy as a func-
tion of (a) the macroscopic g and (b) the microscopic orien-
tation function geff ≡ (λc

z)
2 − (λc

y)
2 at T = 0.2u0kB with

ǫ̇ = −10−5/τLJ . Chains have length N = 500 (solid line), 107
(dotted line), 36 (dash-dotted line), 18 (dashed line), or 12
(dot-dash-dot line).
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FIG. 10: (Color online) (a) Stress as a function of g during
uniaxial compression of kbend = 2.0u0 chains with N = 350
(dotted), 88 (solid), 44 (dash-dot-dotted), 22 (dash-dotted)
and 11 (dashed) at T = 0.2u0/kB and ǫ̇ = −10−5/τLJ . (b)
Stress replotted against geff . (c) Energetic stress σU

z plotted
against geff .
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FIG. 11: (Color online) Rate of plastic deformation RP (solid
lines) and normalized dissipative stress (dashed lines) for uni-
axial compression of kbend = 0.75u0 chains with N = 350
(upper curves) and N = 4 (lower curves). Here T = 0,
ǫ̇ = −10−4/τLJ and σ∗ = 1.02u0/a

3 for N = 350 and
1.1u0/a

3 for N = 4.

FIG. 12: (Color online) Rate of plasticity (solid lines) and
dissipative stress (dashed lines) for plane strain compression
of flexible (kbend = 0) N = 500 chains (lower curves) and
semiflexible (kbend = 1.5u0) N = 350 chains (upper curves).
Here T = 0, ǫ̇ = −10−4/τLJ and σ∗ = 1.05u0/a

3 for kbend =
1.5u0 and 0.98u0/a

3 for kbend = 0u0.


