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We present results on a series of 2D atomistic computer simulations of amorphous systems sub-
jected to simple shear in the athermal, quasistatic limit. The athermal quasistatic trajectories are
shown to separate into smooth, reversible elastic branches which are intermittently broken by dis-
crete catastrophic plastic events. The onset of a typical plastic event is studied with precision, and
it is shown that the mode of the system which is responsible for the loss of stability has structure
in real space which is consistent with a quadrupolar source acting on an elastic matrix. The plastic
events themselves are shown to be composed of localized shear transformations which organize into
lines of slip which span the length of the simulation cell, and a mechanism for the organization is
discussed. Although within a single event there are strong spatial correlations in the deformation,
we find little correlation from one event to the next, and these transient lines of slip are not to
be confounded with the persistent regions of localized shear — so-called ”shear bands” — found in
related studies. The slip lines gives rise to particular scalings with system length of various measures
of event size. Strikingly, data obtained using three differing interaction potentials can be brought
into quantitative agreement after a simple rescaling, emphasizing the insensitivity of the emergent
plastic behavior in these disordered systems to the precise details of the underlying interactions. The
results should be relevant to understanding plastic deformation in systems such as metallic glasses
well below their glass temperature, soft glassy systems (such as dense emulsions), or compressed
granular materials.

I. INTRODUCTION

In crystalline materials it is generally accepted that the
microstructural objects which govern deformation and
flow are a class of topological defects known as dislo-
cations. Most work in the field of crystalline plasticity
focuses on describing deformation in terms of the under-
lying dislocation dynamics. In the case of non-crystalline
systems the situation is not so clear, even though a broad
category of systems–including metallic glasses; clays and
soils; pastes, foams, gels, and other so-called “soft”
materials–seem to share a few hallmark traits. In the
past several decades much work regarding the underlying
microscopic processes of amorphous plastic flow, has left
many unanswered questions and much controversy. Per-
haps the most important of these questions is whether
or not there exist some sort of microstructural defects in
the materials which, roughly speaking, play the role of
the dislocations in crystals [1, 2, 3, 4, 5].

Some of the earliest computer simulations of metal-
lic glasses by Maeda and Takeuchi and co-workers [6, 7]
and experiments on rafts of soap bubbles by Argon and
Kuo [8] and Argon and Shi [9] revealed that the atomic
motions during plastic shear were confined to clusters
of particles with a size of several particle diameters
across. These observations inspired Argon to propose
a theoretical scheme based on a mean-field treatment
of transitions in local regions of space, “Shear Transfor-
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mation Zones” (STZs), where each transformation con-
tributes a quantum of plastic shear strain [10]. Draw-
ing on Argon’s works, Falk and Langer [11], introduced
mean-field equations of motion for the number density
of STZs and showed that such a theory could account
qualitatively for many aspects of the phenomenology of
sheared metallic glasses such as strain hardening, the
Bauschinger effect, and the emergence of a yield stress.
The basic picture of an STZ may not be limited in
utility to metallic glasses and could play an important
part in the physics of other amorphous materials under
shear such as foams, pastes, granular materials and the
like [12, 13, 14, 15, 16, 17, 18, 19, 20].

These initial treatments all neglected spatial interac-
tions of STZs. However, one might expect that the rear-
rangement of an STZ should induce quadrupolar elastic
displacements at long range, in analogy with the trans-
formation of an Eshelby inclusion, [21, 22] or the nucle-
ation of a dislocation loop. Schematic, mesoscopic mod-
els constructed to account for such elastic interactions,
first proposed by Bulatov and Argon, and later extended
by others, [22, 23, 24, 25, 26, 27, 28] have been shown
to predict various sorts of localization of deformation.
This mechanism might provide a physical explanation
for an important technological problem: shear-banding,
that is the localization of deformation to narrow bands,
which is observed in many systems, including: metallic
glasses [29, 30, 31], sheared rafts of bubbles [9], sheared
foams confined between glass plates [32], dry foams [33],
and granular materials [34, 35, 36].

Despite these successes, theories of plasticity in amor-
phous materials remain controversial because they rely
on many assumptions which are difficult to check in
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precise ways. In particular, these elusive STZs –unlike
dislocations–cannot be identified a priori as any sort of
topological defect [96]. The athermal, quasi-static sim-
ulations we present here provide us a starting point to
perform such observations since they allow for the iso-
lation and identification of elementary transitions be-
tween mechanically stable states [37, 38]. On these
grounds, one might expect that an individual, elemen-
tary, quadrupolar, Eshelby-like rearrangement might be
associated with any particular single transition between
mechanically stable states, but as we will see, the reality
is more complex. Our work is a first attempt to simul-
taneously identify elementary shear induced rearrange-
ments in simulations of amorphous solids from both the
perspective of the energy landscape and real-space.

This paper is organized as follows. We first, in sec-
tion II, outline our athermal, quasistatic (AQS) algo-
rithm, and provide a physical rationale for its use, dis-
cussing the types of physical systems to which we expect
our treatment to apply and its limitations. Section III
deals with the nature of the smooth elastic segments of
AQS trajectories, and in particular how the trajectories
break down at the onset of individual catastrophic events.
The nucleation of one particular plastic event in a moder-
ately sized system will be used as a case study. Section IV
deals with the nature of the individual plastic cascades
themselves and their spatial structure. Again, a typical
event will be used as a case study. Finally, in section V,
we will show how the nature of the plastic events dis-
cussed in section IV dictates particular scalings with the
system size of the stress and energy relaxation during the
plastic events and the strain interval between successive
events.

II. THE ATHERMAL, QUASISTATIC LIMIT

A. Timescales

Athermal, quasi-static (AQS) simulations have been
used in several recent studies [37, 38, 39, 40, 41, 42]
of plasticity in amorphous solids. The AQS algorithm
simply consists of repeated alternating steps of: 1) min-
imization of the potential energy of all the particles in
the simulation cell [97] and 2) application of a small,
homogeneous strain to all particles and simulation cell
boundaries. This simulation technique was introduced
by Kobayashi, Maeda and Takeuchi [6, 7, 43] as a way
to bypass intrisic limitations of MD simulations to reach
long timescales, and therefore low shear rates. Such lim-
itations remain even with modern computers.

The AQS algorithm relies on the idea that in the ab-
sence of external drive, amorphous solids remain close
to a mechanically stable state in a complex potential en-
ergy landscape. For molecular or metallic glasses, this as-
sumption is reasonable as soon as the bath temperature is
low compared to the glass transition temperature Tg. A
more precise bound can be obtained when these solids are

Increasing Shear Strain

Energy Minimum

Energy Maximum

+/- Inflection Point

-/+ Inflection Point

Reversible (Elastic) Step Irreversible (Plastic) Step

FIG. 1: A schematic representation of deformation-induced
changes of a local minimum in the potential energy landscape.
The shape of the landscape varies continuously as the strain
is increased going from left to right with both the location
and height of the minimum changing.

submitted to some constant deformation rate γ̇, consid-
ering that the thermal relaxation should be compared to
γ̇. The athermal limit correspond to the situation when
γ̇ >> 1/τrelax, where τrelax characterizes the thermally
activated escape of the system from a local minimum.
In this limit, escape from local minima is primarily in-
duced by strain and not by thermal activation [44, 45].
Because a low temperature limit is taken, this situation
is likely to be relevant to different systems than metal-
lic or molecular glasses. Foams, granular materials close
to jamming, and several instances of soft glassy systems
are intrinsically athermal and would likewise remain in a
mechanically stable configuration in the absence of any
external drive.

When these amorphous solids are submitted to
small amounts of deformation, they smoothly follow
deformation-induced continuous changes of a local min-
imum. This process is illustrated in figure 1. Strain in-
duces a bias on the potential energy landscape, and the
material configuration tracks the location of a single en-
ergy minimum as it moves smoothly through configura-
tion space. This kind of motion is completely reversible
in that if we reverse the sense of the imposed strain, the
system returns to its original configuration. As we will
see, it is possible to solve analytically for the trajecto-
ries of the system during this smooth motion, and these
trajectories determine the elastic constants of the mate-
rial. [46, 47, 48] Of course, reversibility holds only for
small enough amounts of strain such that the minimum
remains stable. For increasing strains, this smooth be-
havior must eventually break down, as the energy mini-
mum in which the system resides flattens out and collides
with a saddle point [37, 38, 49, 50].

From the preceeding picture, we understand that as a
small strain rate is applied to such an athermal system,
its response involves two types of behavior. Usually, the
system smoothly and reversibly follows the continuous
shear-induced changes of a single minimum as described
above. Occasionaly, the occupied minimum vanishes, and
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FIG. 2: Stress vs. strain curve for a 200x200 system of har-
monic discs. The event at γ = .1631 will be discussed further
below in section IV. Note the smooth, roughly linear elastic
segments interrupted by the discrete plastic events.

the system has to relax toward an entirely new minimum
in configuration space. This intermittent behavior shows
up clearly when energy or stress is plotted against strain
as in figure 2. On this figure, smooth segments corre-
spond to reversible, elastic, changes of a particular energy
minimum in configuration space; they are interrupted by
discontinuous jumps, which corresponding to the shear
induced annihilation of that minimum with a barrier. It
is only during these jumps that energy is dissipated and
across the jumps that irreversiblity may enter.

The energy dissipation which occurs during these dis-
crete events will take some finite time, τdissip., and in
order for the system to track the changes in the poten-
tial energy landscape, it must be driven at a slow enough
rate such that these discrete events have sufficient time
to complete: γ̇ << 1/τdissip.. Although the mechanisms
of energy dissipation are system specific, it is reasonable
to expect that material response in the quasi-static limit
is largely determined by the existence of a potential en-
ergy landscape and not by the detailled mechanisms of
energy dissipation. [51, 52, 53, 54]. We will see, however,
that in the AQS limit, the energy dissipation is strongly
intermittent, and plastic jumps seen on figure 2 exhibit
a broad range of amplitudes. As we will see, the typical
amount of dissipation in an event, and accordingly the
timescales which would be associated with that energy
dissipation, show strong finite size effects. We should
thus keep in mind that since τdissip. might depend on the
system size, it is probably only justified to speak of the
quasi-static limit as a formal γ̇ → 0 limit, for a fixed
finite system size.

We see that the AQS limit entails three limits: zero
temperature, zero strain limit, and the large size, thermo-
dynamic limit. From the preceeding discussion it appears
that the AQS limit holds when these limits are taken in
the order: T → 0, then γ̇ → 0, then L → ∞ [98].

As long as the system remains in a convex region sur-
rounding a minimum of the potential energy landscape,
as it does along the continuous elastic branches, the pre-
cise form of the energy minimization method should have
no impact and the system will return to the local energy
minimum after it is perturbed by the externally imposed
deformation. On the other hand, when the system is
driven past a limit of stability, as in the third frame of fig-
ure 1, the precise method of energy minimization could,
in principle, have an impact on the selection of a new
minimum in which to reside as the system ”rolls down-
hill” away from the minimum which was just destroyed.

The physical mechanisms for energy dissipation are
modeled differently for different systems. In Durian’s
bubble model [55, 56], bubbles exert drag forces on each
other proportional to their relative velocities; in Cundall
and Strack’s model for granular materials [57], grains dis-
sipate energy via a viscous dashpot connected in parallel
with the springs which repel the particles; in simulations
of molecular or metallic glasses [58], one generally uses
some sort of fictitious viscous thermostat to control the
temperature in the system. Historically the AQS proce-
dure has been implemented using some efficient energy
minimization scheme, such as the non-linear conjugate
gradient method, and we proceed along these lines. How-
ever, one may hope that the details of the minimization
technique, in particular, the nature of the viscosity and
the existence of finite inertia, do not change the general
picture that can be drawn from AQS simulations; a point
of view we tentatively adopt here.

This point of view finds some support in comparative
studies of MD and AQS simulations, [54]. Lacks has
shown that the effective viscosity and diffusivity of the
MD simulations extrapolates to the AQS results in the
zero temperature limit for a low strain rate. In related
work, Yamamoto and Onuki [44, 59] have shown that
the viscosity and diffusivity in similar simulations can be
understood in terms of spatially heterogeneous dynam-
ics which themselves are controlled by a critical point at
T = 0, γ̇ = 0. As we will see, these observation seem to
be in agreement with ours and provide further indication
that AQS simulation are a valid limit of MD simulations.
To the best of our knowledge, however, no such explicit
connection between MD and AQS has been shown for
foam or granular models, but we consider it likely that
analogous results would be obtained in these models in
the limit of vanishing strain rate. We will therefore as-
sume that the AQS procedure is equally applicable to the
wet foams and frictionless granular systems, in addition
to the metallic glasses for which it has traditionally been
considered to apply.

B. Numerical Details

In this work we deal exclusively with 2D systems. Bi-
disperse mixtures are used to inhibit crystallization. The
mixtures used throughout have particles with radii: rL =
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.5 and rS = .3 [99] and a number ratio of: NL = NS
1+

√
5

4 .
The mixture is similar to that used by Falk and Langer
and was found sufficient to inhibit crystallization. The
systems are prepared via a zero temperature quench from
an initially random state as in references [60, 61]. We
suppose that the systems lose memory of their initial
preparation before a strain of unity and use the strain of
unity as a starting point for tabulating statistical prop-
erties of the steady flow. No segregation is detectable
within the 200% window over which the systems are
strained, but it would be difficult to rule out effects which
occur on very long strain scales. Lees-Edwards bound-
ary conditions are used throughout [58]. The athermal
quasistatic dynamics algorithm described above is imple-
mented using strain steps of size 10−4 which, as will be
discussed below, is small enough such that all loading
curves have well resolved elastic segments even for the
largest samples simulated.

Two different minimization algorithms from the conju-
gate gradient family were employed [62]: the non-linear
Pollak-Riberi conjugate gradient minimizer and the trun-
cated Newton linearized conjugate gradient minimizer.
For the non-linear Pollak-Riberi conjugate gradient min-
imizer, we used the routine as implemented in the GNU
Science Library [63]. For the truncated Newton lin-
earized conjugate gradient minimizer, we used an Armijo
backtracking algorithm [62] with a sufficient decrease pa-
rameter of .1 and the linear conjugate gradient routine
as implemented in the Iterative Template Library [64]
adapted by us to perform truncation [62] upon encounter-
ing curvatures less than 10−12. We found the latter pro-
cedure to be more robust and efficient. The simulations
of the single 50x50 system of Lennard-Jones particles dis-
cussed in section III and the 200x200 system of harmoni-
cally interacting particles discussed in section IV utilized
the former minimization algorithm, while the data runs
which were used for the analysis in section V utilized the
latter. Both algorithms gave statistically identical results
when run on an ensemble of 50x50 harmonic systems.

The potential energy functions were pairwise addi-
tive central force laws. Three different force laws were
employed: a standard 6-12 Lennard-Jones interaction,
a harmonic, repulsive spring force, and a non-linear
hertzian repulsive spring force [100]. The Lennard-Jones
energy was truncated at a distance of 2 particle diame-
ters, and linear and quadratic terms were added to ensure
continuity up through second derivatives at the cutoff to
avoid pathologies in the minimization routine.

The pair interactions read:

UHarm(rij) = (1 − sij)
2θ(1 − sij)

UHertz(rij) = (1 − sij)
5/2θ(1 − sij)

ULJ(rij) =
(

s−12
ij − 2s−6

ij + Asij + Bs2
ij

)

θ(2 − sij)

where θ is the unit step, and A and B are the coefficients
which force continuity of the first and second derivatives
at the cutoff in the Lennard-Jones potential. sij is the

dimensionless separation between particles i and j,

sij =
rij

Ri + Rj

where Ri is the radius of particle i.

III. ELASTIC BREAKDOWN AND PLASTIC

NUCLEATION

As described above, trajectories in AQS are composed
of smooth, reversible elastic segments which are sepa-
rated by discontinuous, irreversible plastic events. The
smoothness of the elastic segments allows us to obtain
analytical results regarding the singularity at the onset
of a plastic event and to analyze the real-space structure
of the critical mode of the system which is responsible
for nucleating the subsequent plastic event.

A. Analytical Framework

We first briefly review the formalism developed in [48]
and recall the key results. The basic principle underlying
this framework is that, owing to the smoothness of the
energy during the elastic segments, exact analytical ex-
pressions for the trajectory can be written by requiring
that the system track the local energy minimum as its lo-
cation in configuration space changes due to the imposed
shear strain.

The resulting equations governing the trajectory of the
particles were found to be[101] :

v̊iα
.
=

d̊riα

dγ
= −H−1

iαjβΞjβ (1)

The open circle over the r in equation (1) is to indicate
that the derivative is to be taken in the frame which is
co-moving with the simple shear; that is:

x̊(γ) = x(γ) (2)

ẙ(γ) = y(γ) − γx(γ = 0). (3)

Thus, equation (1) describes the non-affine component
of the motion, and the full motion of the particles in
the laboratory frame is given by the imposed homoge-
neous shear plus the correction term embodied in equa-
tion (1). Hiαjβ is the so-called “hessian matrix” or “dy-
namical matrix” – the second derivatives of the energy:

Hiαjβ
.
= ∂2U

∂riα∂rjβ
. Ξiα is the derivative of the net force

on particle i with respect to strain — or, equivalently,
the derivative of the stress contribution of particle i with

respect to a change in its position: Ξiα
.
= ∂2U

∂γ∂riα
. As dis-

cussed in detail in [48], Ξiα vanishes for configurations
with local symmetry, and, as such, is a measure of the
local configurational disorder about particle i.
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The stress is defined as the total derivative of the en-
ergy with respect to γ while enforcing mechanical equi-
librium of the particles via equation (1).

σ
.
=

dU

dγ
=

∂U

∂r̊iα

d̊riα

dγ
+

∂U

∂γ
=

∂U

∂γ
(4)

where the final equality holds because of mechanical equi-
librium. So we see that the fact that the particles do not
follow affine trajectories does not give rise to any cor-
rections to the stress. This is not true, however, for the
shear modulus.

To find the shear modulus, we simply differentiate yet
one more time, again with a total derivative which should
be understood to be taken while enforcing the corrections
given in equation (1).

µ
.
=

dσ

dγ
=

∂2U

∂γ2
− ΞiαH−1

iαjβΞjβ = µa − µna (5)

In equation (5), µa
.
= ∂2U

∂γ2 is the term which arises from

the Born expression for pure affine deformation [65], and
µna

.
= ΞiαH−1

iαjβΞjβ is the term which comes from consid-
ering the non-affine corrections. Note that the corrected
modulus is always less than the naive Born expression.
The microscopic analytical expressions for σ, µa, Hiαjβ

and Ξiα in the case of pairwise interacting systems can
be found in reference [48], but we emphasize that the
equations (1), (4), and (5) are completely general and
valid for any arbitrary n-body interaction potential (e.g.
embedded atom methods [66, 67], or potentials for sili-
con [68]).

So what is the structure in real space of the response
during the continuous elastic segments? To illustrate,
we now focus on a typical elastic segment in one par-
ticular 50x50 Lennard-Jones sample. For any particular
configuration, we can efficiently solve equation (1) via
some iterative method. We use the conjugate gradient
algorithm exactly as implemented in the Iterative Tem-
plate Library [64] with a relative tolerance of 10−8. This
method, utilizing the analytical form for the elastic re-
sponse, should be preferred over the alternate method of
explicitly shearing the system by a small, finite amount
then reminimizing the energy. The latter method es-
sentially amounts to using a finite difference in lieu of
a derivative whose analytical form we know. In refer-
ence [47], it was found using the alternate method of ex-
plicit shear that when taking a small enough strain step
to remain in the linear regime, the energy had to be com-
puted to quadruple precision. No such special measures
should be necessary in directly solving equation (1).

Figure 3 shows the fields Ξiα and v̊iα at a value of the
strain which is roughly a distance of 10−4 from the next
catastrophic event. Note that the Ξ field appears essen-
tially random, as expected, based on its role as a measure
of local configurational disorder. v̊iα, on the other hand,
should depend strongly on the low modes in the spec-
trum of H , as can be seen directly from equation (1).

FIG. 3: The particular force in response to homogeneous
shear, ~Ξ (top), and the non-affine velocity (or “displacement”)
field, v̊iα (bottom), at a strain configuration, γ = 0.2945, or
γc − γ ∼ 10−4.

It exhibits striking correlations in both compression and
shear.

The strongly spatially correlated behavior apparent in
this elastic response field (and accordingly |µna|) should
be contrasted with the lack of any correlation beyond a
length of a few particle diameters in any of the other
mechanical quantities such as µa, energy, pressure, shear
stress, or vonMises stress. The importance of such non-
affine corrections to elastic behavior has been realized
in the context of experiments and simulations on emul-
sions and foams reported by Liu and co-workers [69] and
Langer and Liu [70]. More recently, Wittmer, Tanguy,
and co-workers et. al. have conducted a comprehensive
study of the contribution to elasticity of the non-affine re-
arrangements in a Lennard-Jones system [46, 47]. How-
ever, in this work, we will be more interested in the role of
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FIG. 4: Stress (top) and shear modulus (bottom) for a small
strain interval. Left: fixed strain steps of size 10−4 using the
standard energy minimization algorithm; Right: convergence
to the yield point using a decreasing strain step size and the
modified linesearch algorithm described in the appendix.

the non-affine response on approach to the end-points of
the elastic segments and its role in nucleating the plastic
cascades rather than its role in renormalizing the elastic
moduli away from the plastic events.

B. Approaching Catastrophes

Equation (1), which describes the elastic segments,
breaks down precisely when the local minimum vanishes;
i.e. when the potential energy surface develops a direc-
tion of zero curvature, along which the minimum collides
with a first order saddle as in the cartoon of figure 1. This
scenario, with a single control parameter destabilizing a
single degree of freedom, is the simplest possible type of
bifurcation — known as a fold in bifurcation and catas-
trophe theory or a tangent bifurcation in dynamical sys-
tems theory [71]—, and we will see how this breakdown
dictates the scalings of various quantities with strain at
the onset of the plastic events.

Since Ξ depends only on local information about the
near-neighbor particle configurations, we expect that it
may be treated as roughly constant in the neighborhood
of one of these catastrophic events, whence, according
to equation (1) the elastic response field will start to di-
verge along the direction of the zero curvature. As the
low curvature direction gets flatter and flatter, eventually
the non-affine correction to the shear modulus dominates
the Born term in equation (5) and the net modulus be-
comes negative. At this point the stress starts to decrease
as a function of strain, and the system is unstable against
any applied stress. These configurations are accessible to
us because strain – and not stress – is controlled. Even-
tually, the curvature will go to zero, and v̊ and µna will
diverge.

We now proceed to isolate the singular behavior at the
catastrophic points. In the lowest order non-trivial Tay-
lor expansion for the energy at the transition point, we
must include a higher order term for the critical direction,
as the quadratic term vanishes. Generically, we expect a
cubic term to remain [71]:

U ∼ As3
0 +

1

2
siαHiαjβsjβ + δγ(Σ+Ξiαsiα)+

µa

2
δγ2 (6)

A, Σ,Hiαjβ , Ξiα, and µa are constants which are evalu-
ated at the transition. The physical interpretation of all
but A are discussed at length in reference [48]. siα de-
notes the displacement of the reference coordinate away
from the critical configuration: siα

.
= r̊iα(γ) − r̊iα(γc).

s0 denotes the projection onto the critical mode, s0
.
=

siαΨ0
iα, where Ψ0

iα is the unit vector which lies in the
(non-translational) null space of Hiαjβ . So we have:

− Fiα
.
=

∂U

∂siα
= 3As2

0Ψ
0
iα + Hiαjβsjβ + δγΞiα (7)

Hiαjβ =
∂2U

∂siα∂sjβ
= Hiαjβ + 6As0Ψ

0
iαΨ0

jβ (8)

Requiring equation (7) to be zero (which is equivalent
to applying equation (1)), and since Ψ0

iα lies in the null
space of Hiαjβ , we have:

Hiαjβsjβ = −δγΞiα (9)

and

3As2
0 = −δγΞ0 (10)

We may solve equation (9) for siα up to the d uni-
form translational modes and the critical mode. Equa-
tion (10) then provides the solution for the critical mode:

s0 =
√

−δγΞ0/3A. The motion along this critical mode
experiences a square root singularity, characteristic of
the simple fold catastrophe, while the motion along the
higher modes is smooth at the level of the expansion (6).

This singular behavior for s0 induces singular behavior
in the modulus and stress. Expanding equation (4), we
have:

σ = Σ − δγ(Ξ̃iαH−1
iαjβ Ξ̃jβ) −

√

−δγΞ3
0

3A
+ µaδγ (11)

where Ξ̃iα is Ξiα with the critical component projected
out: Ξ̃iα = Ξiα − Ψ0

iαΨ0
jβΞjβ . Expanding equation (5),

or, equivalently, taking the γ derivative of equation (11),
we get:

µ
.
=

dσ

dγ
= µa − µ̃na − (−δγ)−1/2

√

Ξ3
0

12A
(12)

where µa is the Born contribution to the modulus as
in equation (5), µ̃na = Ξ̃iαH−1

iαjβ Ξ̃jβ is the non-singular



7

0

0.05

0.1

0.15

0.2

0.25
λ∗
λ

p

0.29492 0.29496γ

0.85

0.9

0.95

1

α

1e-10 1e-08 1e-06 1e-04
γ

c
-γ

1e-06

1e-04

1e-02

1e+00
1/µ
λ∗
λ

p
-λ0p

FIG. 5: All data shown here for the same trajectories plot-
ted above in figure 4b. a) relative participation of the low-
est normal mode in the non-affine elastic displacement field,
α∗ .

= (Ψ0
iαv̊iα)2/(̊viαv̊iα) (dotted); lowest eigenvalue of the

dynamical matrix (solid); next several eigenvalues (dashed).
b) In log-log scale (as a guide to the eye, the thick black line
is

√
γc − γ): 1/µ (circles); lowest eigenvalue (squares); next

several eigenvalues minus their terminal values (diamonds).

part of the non-affine correction, and the remainder is
the isolated singular piece.

To check these predictions, we perform a careful con-
vergence to a particular catastrophic point in the system
shown above in figure 3. During the linesearch portion
of the minimization routine, we converged first to a min-
imum of force and subsequently to a minimum of energy
along the line and found this procedure to produce robust
convergence to the transition point.

Figure 4 shows the stress and modulus for the same
system as in figure 3 upon approach to the singularity.
Zooming in on the endpoint of the elastic segment, we
see that the qualitative predictions of the theoretical ar-
guments are borne out; namely that the stress reaches

a maximum precisely as the modulus becomes negative.
We further note that the Born contribution to the modu-
lus is essentially constant on this region of γ (not shown).

In figure 5a, we plot the several smallest eigenvalues
and the participation of the lowest mode, α(γ). In agree-
ment with Malandro and Lacks, we find that a single

eigenvalue vanishes. In the window of strain shown, the
participation of the lowest mode goes linearly from about
.85 at a distance of about δγ ∼ 10−4 to nearly unity at
a distance of δγ ∼ 10−10.

Figure 5b shows the stress, the inverse of the modulus,
and several higher eigenvalues as functions of strain on a
log-log scale. The critical strain is determined to within
10−12 (not shown), and this terminal value is used to
measure δγ

.
= γc − γ for configurations down to 10−10

(shown). All quantities exhibit the same
√

δγ behavior
at small δγ. This was predicted above for the modulus
and critical curvature, however, the higher curvatures are
constants at the order of the expansion (6). We can ra-
tionalize the

√
δγ behavior for the higher modes by con-

sidering that the total derivative of any function, f(siα),
should be dominated by the singular behavior of s0:

df

dγ
∼ ∂f

∂s0

ds0

dγ
∼ ∂f

∂s0
(−δγ)−1/2

C. The Critical Mode

The real space structure of a localized plastic event is a
key input into coarse-grained models of plasticity [22, 23,
24, 25, 26, 27, 28] and different supposed forms could lead
to different emergent behavior in these models. A real
space analysis of the incipient failure mode, although it
does not correspond to a complete shear transformation,
but rather to the onset of one, gives some insight into
the form of an elementary plastic event.

In figure 6, we show the field v̊iα at δγ ∼ 10−10, at
which point it is almost entirely aligned with the crit-
ical mode. The geometry is predominantly quadrupo-
lar; a core region with outward particle velocities along
the tensile axis and inward particle velocities along the
compressive axis. We stress that the eigenmodes them-
selves have changed little in the window of strain from
δγ ∼ 10−4 to δγ ∼ 10−10 as we have approached the
incipient failure event, and the change in v̊iα comes al-
most entirely from the change in the relative weightings
of the modes, with the quadrupole in the lower right of
figure 3b becoming dominant at the critical strain.

In constructing figure 6 we have performed two trans-
formations. First, we have applied an inverse affine trans-
formation to the locations of the particles and their dis-
placement vectors, v̊iα:

ry → ry

rx → rx − γry

v̊y → v̊y

v̊x → v̊x − γv̊y
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FIG. 6: The radial and tangential projections of the non-affine
displacement field, v̊iα, at γc−γ ∼ 10−10 transformed back to
the rectilinear frame and centered on the vector with largest
magnitude as described in the text. The center corresponds
to the quadrupolar pattern which is starting to develop in the
lower right of figure 3 at a strain of γc − γ ∼ 10−4. A core
region of radius 2 is excluded from the image (and subsequent
analysis). Scale is arbitrary: the field is normalized to unity.
At this strain, v̊iα is essentially indistinguishable from the
critical eigenmode, Ψ0

iα.

In this frame, the system maps onto itself under a purely
vertical or purely horizontal shift by the box length, a
property one which would be lost in a Lees-Edwards cell
at finite strain. Further, we have moved to a co-ordinate
system, (r, θ), which is centered on the particle with the
largest vector; for simplicity we have taken the center of
the core to be on the particle with largest v̊. Also note
that we have considered separately the radial and tan-
gential projections and excluded a core region of radius
2.

It is natural to ask whether the eigenmode is analogous
to the displacement field generated in a linear, isotropic,
elastic medium by some disturbance at the core. To map
the discrete vector field onto a continuous field, we divide
the system into annuli of width 2 starting at a radius of 2
outside of the nominal core. In each annulus, we project
onto circular harmonics by summing:

ṽr(r; n) =
∑

j∈A(r)

vrje
inθj

ṽθ(r; n) =
∑

j∈A(r)

vθje
inθj

(where j indexes the particles in a given annulus ) and
normalizing each term by the number of particles in the
annulus.

It is found through this decomposition and is obvi-
ous from simple visual inspection of the field, that the
n = 2 (quadrupole) contribution dominates and has a
phase angle which roughly gives extension along y = x
and compression along y = −x (there is a slight clock-
wise departure which can be seen in figure 6) while the
tangential component is roughly aligned at y = 0, x = 0.

If the material behaves as a linear homogeneous
isotropic elastic solid outside of some core region, we
would expect, recalling the form of the quadrupolar space
of solutions of the 2D Navier-Lamé equation, that [72]:

vr(r; 2) =
2A

r3
+

(1 + κ)B

r
(13)

vθ(r; 2) =
2A

r3
+

(1 − κ)B

r
(14)

where κ is the ratio of Lamé constants: κ = λ
2(λ+µ) and

the θ dependence of the radial and azimuthal fields should
be understood to have a relative phase of 45 degrees. In
figure 7, we plot the magnitude of the quadrupolar sector
for vr(r) and vθ(r).

The radial field seems to be consistent with a pure r−1

behavior, while the azimuthal field becomes too noisy to
determine whether it follows any particular power law.
For a general quadrupole, one would expect a crossover
to r−3 behavior at small r, and it is evident that this
crossover length is small if the r−3 term is even present
at all. Furthermore, we may attempt to extract a value
of κ = (vr − vθ)/(vr + vθ). For radii less than 10, the
azimuthal field is not too noisy, and the extracted κ fluc-
tuates between .4 and .5 (not shown), .4 being roughly
consistent with the value of κ averaged over the elas-
tic segments. At larger radii, the extracted κ leaves the
physically allowed regime, becoming larger than .5, which
is not surprising given the increased noise in vθ at these
radii. The agreement between this catastrophic mode
and an elastic quadrupole is very reasonable.
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FIG. 7: The magnitudes of the quadrupolar (n = 2) projec-
tions of the radial, Ar2 (black circles), and azimuthal Aθ2 (red
squares), components of of the critical mode. Solid lines are
r−1 and r−3.

D. Discussion

There is a subtle distinction between the incipient fail-
ure mode, which we have just measured, and a complete
shear transformation. Ideally, one would like to measure
changes in the particle configurations after the system
has been driven past stability and then completely re-
laxed. In our atomistic system, as in the coarse-grained
models [22, 23, 27], localized plastic events rarely occur
in an isolated way, and most often the incipient failure
event, such as the one measured here, triggers a subse-
quent plastic cascade. As we will see below, although it is
possible to make some measurements of the elementary
shear transformations which occur during the cascades,
they cannot be given as precise a meaning as the mea-
surements of the incipient failure modes such as the one
measured in this section.

Before leaving the subject of plastic onset, we should
clarify the relationship of the picture put forward here
to the earlier numerical studies of Srolovitz and co-
workers [73]. In those athermal simulations of metallic
glasses under shear, the authors reported on stress con-
centrations which acted as catalysts for plasticity. These
stress concentrations were shown to vanish upon unload-
ing, and an analogy was made with the stress fields
around the tips of nascent shear cracks. Although we
will, in fact, report on a related mechanism below, we
have not found such stress concentrations at the on-
set of plastic events. In fact, the formalism presented
above (and discussed at length in [48]) makes it clear
that the instability is a collective property of the sys-
tem and should not necessarily be discernible by look-
ing at strictly local quantities. The local Born moduli,
and the so-called “site-symmetry” parameters discussed
by Egami et. al. [74], are closely related to the field
Ξiα (see reference [48] for the details of this relationship)

which was shown to be essentially random and well be-
haved near the transition. Although it is possible that
there may be stronger correlations between Ξiα and the
normal modes in other systems, such as those studied
by Srolovitz and co-workers, no such correlations were
found in any of the three different interaction potentials
studied here in 2D, and there is no fundamental need for
the stress itself to be particularly large locally in order
to nucleate a plastic event.

IV. PLASTIC EVENTS

In the previous section, we focused on the behavior of
the elastic segments of the quasistatic trajectories, and in
particular, the behavior on approach to their endpoints
at the onset of the plastic events. We now discuss the
processes at work during these plastic events themselves
as the system searches the potential energy landscape in a
fully non-linear way in search of a new inherent structure
after it is driven past a threshold of stability. A single
typical event in a large system will be used as a case
study.

A. The Cascade Mechanism

Already in the seminal work [8], Argon emphasized the
analogy between a local shear transformation and the
nucleation of a dislocation loop. He cautioned that the
analogy should not be taken too literally; in a crystal, the
barrier for the nucleation of a pair of dislocations is large
compared to the subsequent Peierls barriers, so, once nu-
cleated, the pair is essentially free to glide apart. In a
disordered system, on the other hand, even if one could
topologically identify dislocations, the concept would be
of limited utility, as there are no directions of symmetry
along which the pair might glide apart.

However, the elastic-like fields which are expected to
result in the surroundings of a local shear transformation
should alter the probabilities of observing subsequent
shear transformations in neighboring regions. These
elastic-like fields are expected to have quadrupolar sym-
metry (i.e. they represent elementary shear) and resem-
ble the elastic fields associated with the nucleation of a
dislocation pair or the transformation of an Eshelby in-
clusion [21].

Kobayashi, Maeda and Takeuchi were able to observe
such elastic-like displacements of the particles surround-
ing the core of a single shear transformation in their com-
puter simulations [6, 7]. Bulatov and Argon, with this
picture of elastically mediated interactions in mind, con-
structed a stochastic model of plasticity by embedding
potential shear transformation sites unifmormily in a 2D
lattice [23, 24, 25]. Within their model, such cascades
did emerge to play a role analogous to that of dislocation
glide. Since then, several others [22, 26, 27, 28] have con-
structed coarse-grained models along similar lines with
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a

b

FIG. 8: Schematic representation of a banding scenario.
Sample is in tension along y = 0 and compression along x = 0.
Stage 1) Virgin material. Stage 2) a) transforms and increases
shear stress along red lines, increasing probability for b) to
transform. Stage 3) Should the transformation at a) induce
a transformation at b), the two stress fields are roughly addi-
tive.

varying assumptions about the precise microscopic de-
tails of the elastic consequences of a local plastic event.

The cascade mechanism is illustrated schematically in
the cartoon in figure 8. In frame 1, we have a vir-
gin material with several potential shear transformation
sites indicated by open circles. As a macroscopic strain
is applied, eventually, the system will become mechani-
cally unstable (as described in detail in the previous sec-
tion), and a shear transformation will be nucleated at,
say, region A. This initial event will have an associated
displacement field with a cos(2θ) symmetry, giving in-
creased (decreased) shear stresses along the lines y = x
and y = −x (along the lines y = 0 and x = 0). The
potential shear transformation sites which lie away from
the initially transformed site along the lines of increased
stress, having had their local stress levels increased, may
themselves become mechanically unstable even without
further increment of the macroscopic strain. The process
favors lines of slip generated along the lines of maximal
stress (which for our geometry would be along the ver-
tical and horizontal axes); an emergent behavior much
like the glide of a pair of dislocations, yet without the
presence of any topologically identifiable objects.

B. A Typical Cascade

To fix these ideas, we recall and elaborate on the single
event which was discussed in reference [75]. The system
under consideration is a 200x200 system of harmonically
interacting particles, with particle mixtures and prepa-
rations as described in the previous section. A segment
of the stress vs. strain curve is shown in figure 2.

We examine the plastic event which occurred at γ =
.1631, and presume that it is representative of the kinds
of events which occur at steady state. At γ = .1631, the
system has just been strained past the edge of an elastic
segment – the local energy minimum has coalesced with
a barrier, leaving only an inflection point in its wake –
and the system is poised to undergo a non-linear, plastic
rearrangement upon energy minimization.

The total potential energy and sum of the squares of
the forces during the energy minimization are shown in
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FIG. 9: Energy and sum of the squares of the forces during the
conjugate gradient descent for the single event at γ = .1631.

figure 9. As we use a conjugate gradient minimization
routine, we have no rigorous notion of time. However,
in steepest descent dynamics, where dxiα/dt = Fiα, the
time derivative of the energy is precisely the sum of the
squares of the forces. We have implemented a steepest
descent dynamics and have checked on a single event that
the resulting cascade was similar to the result of the con-
jugate gradient algorithm. This allows us to interpret
the number of minimization timesteps as some measure
of time. However, the steepest descent algorithm is by
far too slow to be used systematically in this study, and
we thus have to rely on conjugate gradient methods.

As the non-linear conjugate gradient algorithm pro-
gresses, during the first 100 or so minimization steps, the
system behaves much as if it was making a small cor-
rection during a purely elastic relaxation, operating in
an essentially linear regime. The energy relaxes toward
a plateau, and the forces also decrease (not visible on
the scale of the figure) accounting for the non-affine lin-
ear elastic corrections (discussed in detail in the previous
section) necessary to return the system, roughly speak-
ing, to where the minimum “ought to” be. The forces
are very small, and the energy plateau is very flat. It
is almost as if the system is at a mechanical equilibrium
state... a “quasi-basin”. Soon, however, at about the
200-th minimization step, the forces get large and the
energy drops rapidly; the system exits this quasi-basin.

The force curve is intermittent with clusters of sharp
peaks separated by quiescent periods, however it is diffi-
cult to make precise distinctions; peaks may overlap and
quiescent periods may be disturbed by small rumblings
down by an order of magnitude from the peaks. We will
focus on the cluster of force peaks which occur before
minimization step 1150 and replot this segment of the
descent on a blown up scale in figure 10. Note the rea-
sonably well defined initial force peak around step 230
followed by several subsequent smaller peaks up to step
800. After step 800, there is a period of relative quies-
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FIG. 10: Close-up of the data shown in figure 9b during the
first 1150 minimization steps.

cence which which lasts through step 1100.
The energy descent is broken into intervals of 50 steps

each, starting at 200 and ending at 1150. The slip
and energy dissipation in realspace which occurs during
these periods is shown in the sequence of images in fig-
ures 11, 12, and 13. For any particular particle, we de-
fine the slip as the difference between the displacement of
that particle and the average displacement of its neigh-
bors (particles with which it is in contact); in this sense
it is analogous to a discrete Laplace operation on the dis-
placement field. All real space structures are transformed
back to the rectilinear frame by an inverse simple shear of
magnitude equal to the current strain, .1631, such that in
the plots shown, the point (x, y) may be identified with
the points (x + aL, y + bL) where a and b are arbitrary
integers.

The incremental slip occurring in each window of 50
minimization steps is shown in figure 11, and the cumu-
lative slip (with incremental slip superimposed in red)
is shown in figure 12. Any particle is shaded if it has
slipped by more than 10−3. The local incremental energy
dissipation is plotted, in figure 13, on a log scale which
ranges from 10−6 to 101, with grey indicating an energy
change of less than 10−6 in magnitude, white indicating
an energy increase, and black, an energy decrease.

The pattern which emerges is that each of the peaks in
the squared force in figure 10 corresponds to a well local-
ized cluster of particles which undergoes large slipping
relative to its neighbors. As can be seen in figures 11
and 12, the new slippage does not occur precisely on top
of the slippage which occurred during previous peaks,
but instead, new slippage tends to occur at the extremi-
ties of the region which has already undergone apprecia-
ble slip. Furthermore, the local energy dissipation which
occurs concomitantly with each force peak and cluster
of slipping particles can be seen to take the form of a
quadrupole which is centered over the cluster of slipping
particles. Note that the quadrupoles predominantly have
energy increases (white) along the tensile axis, y = x,
and energy decrease (black) along the compressive axis,
y = −x. This spatial organization can be understood in
terms of the banding argument outlined above.

Figure 14 shows the displacement and slip which oc-
curs after the energy relaxation is fully complete. The
displacement field is plotted such that an arrow of length
.5 is drawn at each particle in the direction of its displace-

ment. The shade of the arrows represents the amplitude
of the displacement on a linear scale. This representa-
tion allows for better appreciation of the orientation of
the displacement field even when its magnitude becomes
small. Recall from the definition above that the slip is es-
sentially a type of discrete derivative of the displacement.
We prefer to deal directly with displacements rather than
energies or stresses, as the latter are essentially spatial
derivatives of the former and thus much noisier.

The coherent, elastic-like behavior of the displacement
field is striking. It is consistent with the banding mech-
anism described above, and is roughly equivalent to the
displacement field resulting from the gliding apart of a
pair of dislocations or a shear crack running vertically
through the system. The cascade appears to arrest be-
fore it has spanned the system. There is a large, weak
vortex (clockwise) at about (x = 0, y = L/2) between
the slip line and its periodic images and a large, weak
hyperbolic flow at about (x = 0, y = 0). They are to
be expected from a periodic array of incomplete vertical
slip lines. If the slip line had been complete, the result-
ing pattern would have likely been the text book example
of a pure shear with displacements in the y direction, a
gradient along the x direction, translationally invariant
along the y direction, and with a discontinuity along the
slip line.

Along the vertical slip itself, one sees small vortex-like
(counter-clockwise) displacement fields in which the mag-
nitude of the displacements is markedly smaller than the
displacements of particles which slip. These smaller vor-
tices represent regions of the material along the slip line
which have failed to slip and can be thought of as result-
ing from a uniform line of elastic quadrupoles (a slip line)
with a gap in the line. Not surprisingly, these vortex-like
regions of “unbroken” material which appear in the dis-
placement field in figure 14 correspond to regions which
are absent from the plot of the slip field in figure 15.

C. Discussion

In this section, we have examined one particular, typ-
ical (the magnitude of stress relaxation was around the
average, and the event was taken at random from the set
of all plastic events) plastic event in a 200x200 system
of harmonically interacting particles and shown that the
behavior was consistent with the picture of a cascade of
elastically interacting localized plastic yielding events or-
ganized into a line of slip along the vertical bravais axis of
the simulation cell. We have observed other such events
aligned along either the vertical or horizontal axis of the
simulation cell. Such organization of local slippage events
into lines of slip was observed long ago in experiments on
bubble rafts by Argon and Kuo [8] and, more recently,
in confined films by Abd el Kader and Earnshaw [32].
Although experimental observations of these features are
limited to studies of soap bubbles, observation in numer-
ical simulations are quite rich.



12

FIG. 11: Incremental slip (as defined in the text) at 50 step intervals during the minimization routine. Sequence starts at step
200 and ends at step 1150. A particle is shaded if it slips by more than 10−3.

In their vertex model for dry foams, Okuzono and
Kawasaki [76] observed that in the limit of small strain
rate, their system underwent large events, and the au-
thors proposed an analogy with avalanches in sandpile

models. The displacement fields associated with these
events were similar to the ones we have shown here, with
the system exhibiting two “elastic-like” regions slipping
with respect to each other along a line at 45 degrees to
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FIG. 12: Cumulative slip (incremental slip superimposed in red) at the same intervals as in figure 11.

the principle axes of applied strain (c.f. figure 5b in ref-
erence [76]). We do not know of any attempts to observe
such displacement fields in models of wet foams such as
Durian’s bubble model [55, 56].

Evidence of such transient, slip bands is also observed

in the simulations of compressed granular materials by
Aharonov and Sparks [34] and Kuhn [35, 36]. These
simulations took into account the Coulombic friction be-
tween particles at contact and were performed at finite,
but small strain rates, yet the emergent behavior seems,
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FIG. 13: Local energy dissipation during the same time intervals as in figures 11 and 12. Data is on a log scale which ranges
from 10−6 to 101, with grey indicating an energy change of less than 10−6 in magnitude, white indicating an energy increase,
and black, an energy decrease.
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FIG. 14: Particle displacements which occur during the entire plastic event. Individual arrows have a uniform length of .5 and
a shading which is linear in the amplitude of the displacement. The reader is encouraged to utilized the zooming features of
the pdf document format to explore the fine scale structure of the displacement field.
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FIG. 15: Local slip (as defined in the text) which occurs during the entire plastic event. Arrow lengths are equal to the
magnitude of the particular slip scaled by a factor of 10. Slips of amplitude less than 10−3 are not shown for clarity.

at least qualitatively, insensitive to these details. Note,
however, that one might expect qualitatively different be-
havior as the truly rigid, hard sphere limit is approached.

Simulations were performed by Leonforte and co-
workers [77] which were similar to the ones we have de-
scribed here but with rigid walls at y = 0 and y = L
rather than fully periodic boundary conditions. Not sur-
prisingly, the vertical bands are suppressed, and transient
horizontal bands emerge.

V. FINITE SIZE SCALINGS

The cascades discussed in the previous section which
comprise the plastic events will now be shown to give rise
to simple scalings of various measures of the event size
with the length of the simulation cell. In the following, we
classify each strain step taken in the simulation as either
elastic or plastic: if the stress was positive, a strain step
was considered to be plastic if it resulted in an energy de-
crease; if the stress was negative, a step was considered to
be plastic if it resulted in an energy increase [102]; oth-



17

erwise, it was considered to be elastic. We suppose that
this operational definition corresponds closely to the rig-
orous definition of a plastic event in terms of the onset
of a catastrophe via the vanishing of an eigenvalue of the
hessian matrix, but as we emphasized above, care must
be taken to ensure that we take small enough strain steps
such that we remain in the quasistatic regime. Note how-
ever that, in principle, there may always be small plastic
discontinuities whose energy drop would be masked by
the elastic energy increase for a given strain step size.
All the data used for the statistical analysis were gath-
ered from an ensemble of 8 systems at strains between 1
and 2 for each box size and interaction potential.

Before we begin our discussion of the statistics of the
plastic events, we first report, in figure 16, on the distri-
butions of the instantaneous shear modulus, µ = ∆σ

∆γ , for

the various system sizes and interaction potentials. We
normalize the values by the average flow stress, 〈σ〉 and
note that the distributions are essentially unchanged if
we include/exclude the plastic events from the analysis.
The average flow stresses for all interactions and system
sizes are reported in table I. For each potential, there is
a slight increase with size of the average, 〈σ〉, which is
noted in table I — this effect seems to saturate for the
larger systems.

The distributions of the moduli are all essentially
Gaussian in the neighborhood of the most likely value,
but with tails on the soft side, indicative of the non-
linear yielding upon approach to the catastrophes dis-
cussed above. The peak occurs at a dimensionless mod-
ulus of about 28 for the Harmonic and Lennard-Jones
systems and at a slightly higher value for the Hertzian
system. This implies that, generically, these dense, disor-
dered systems have a flow stress which is about .035 times
the characteristic modulus, regardless of the nature of the

interaction potential. This value of the “flow strain”, 〈σ〉
µ ,

is roughly consistent with simulations of various models
of foams in 2D [55, 56, 76, 78, 79] (in the dense limit,
away from the loss of rigidity) and the 3D simulations of
yielding of a Lennard-Jones glass [80, 81, 82], although
it is somewhat higher than Johnson’s recently reported
universal flow strain in 3D glasses [83]. It is not clear pre-
cisely how this flow strain, measured in steady flow, re-
lates to the yield strain measured by Mason and cowork-
ers in oscillatory rheological experiments on microemul-
sions [84], but the order of magnitude of a few percent is
in rough agreement.

We stress that it is our ability to resolve the elastic
behavior and measure a well defined modulus which gives
us confidence that we have chosen a strain step which is
small enough to properly resolve the quasistatic behavior.
For larger strain steps, the well defined peak disappears,
the stress essentially makes a random increase or decrease
at each step, and the quasistatic behavior — i.e. the
separation of plastic from elastic events — is lost.

For the purposes of this work, the more interesting
quantities are the various measures of cascade size. Ob-
vious choices are the distributions of the stress drops, the

12.5 25.0 50.0

Harm 6.5E-2 6.9E-2 7.2E-2

Hertz 5.2E-3 6.0E-3 6.0E-3

LJ 1.5E0 1.7E0 1.8E0

TABLE I: Average stress during steady flow for the three
different system sizes and interaction potentials.
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FIG. 16: Distribution of instantaneous modulus (defined by
the finite difference, ∆σ/∆γ) normalized by the average stress
during steady flow. Each group of three curves corresponds
to a particular system length (12.5,25,50) arbitrarily shifted
vertically for clarity with increasingly longer lengths shifted
upward. Legend is as follows: circles with solid line (black):
Harmonic; squares with dotted line (red): Hertzian; diamonds
with dashed line (green): Lennard-Jones.

energy drops, and the lengths of the elastic segments.
As the patterns we observed in the 200x200 system of
harmonic discs were clearly 1D features, one might ex-
pect that the distributions of the various quantities which
characterize the event size would be invariant when prop-
erly rescaled by the length of the box.

First consider the distribution of stress drops. Since
the events we observe are predominantly organized into
lines of slip which extend across the length of the cell,
we expect that such an event should release an amount
of stress equal to ∆σ ∼ µδǫ ∼ µ(a/L) where a is some
measure of the amplitude of the slip at the site of the
cascade and L is the length of the box. Since the system
is in steady state, the stress built up in the strain interval,
µ∆γ, between these events must be equal, on average, to
the stress released in an event, ∆σ, so we must have that,
∆γ ∼ a/L. The stress drops can be related to the energy
drops if we make the simple assumption that, on average,
the energy release is elastic; that is:

∆U ∼ L2 〈σ〉∆σ

µ
∼ aL〈σ〉

Now that we have considered the energetics of the plas-
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tic events, we show how the same size effects dictate
their relative frequency. During the elastic segments, the
stress increase is ∆σel ∼ µ∆γ. In steady state, this elas-
tic stress increase must be balanced, on average, by the
plastic dissipation, so we simply have:

∆γ ∼ ∆σ

µ
∼ a2λ

L
.

So we see that the relative frequency of the plastic events
should not even depend on the energy scale of the under-
lying interaction potential.

We now proceed to plot the various distributions:
P ( ∆U

L〈σ〉 ), P (∆σ(L
µ )), and P (L∆γ), for all three system

sizes and all three interaction potentials. All 27 curves
collapse onto a single master curve which is very well
fit by an exponential (with better collapse for the larger
system sizes). For clarity, in figure 17 we first show the
distribution for each of the three quantities — energy
drop, stress drop, strain interval — in its own plot for
all 9 systems, then, in figure 18, show the 9 curves cor-
responding to only the largest system size, but for all
three quantities and for all three interaction potentials.
This characteristic value for a which one extracts from
the master curve is a few tenths of a particle diameter,
in good agreement with the discontinuity in the displace-
ment fields shown above. The precision of the collapse in
figure 18 is quite striking and indicates that the nature
of the slip which occurs along the cascade line has little
to do with the precise nature of the interaction potential.

The event rate scalings, in particular, have profound
consequences concerning both fundamental and technical
issues. For any arbitrarily small strain step size, there
will always be systems large enough, such that the step
size is no longer small enough to resolve the elastic behav-
ior, many independent plastic events will be simultane-
ously nucleated at every strain step, and the quasistatic
behavior will break down. Thus, it is technically impor-
tant, for any quasistatic simulation, to verify that one is
properly resolving the elastic behavior, independently for

each system size! For the present study, this is evidenced
by the peak-like behavior in figure 16. We note that, had
the elementary relaxation events been uncorrelated, the
plastic event rate would have scaled extensively, as L2,
so the correlations reduce the frequency of plastic events
relative to what would have been observed for indepen-
dent uncorrelated events.

VI. CONCLUSION

In conclusions, we have shown that elementary plastic
events take the from of cascades of shear transformations
in the athermal quasistatic limit for a general class of
densely packed simple amorphous materials. The incre-
mental stress and displacement fields associated with the
cascades are quite reminiscent of micro-structural shear
cracks which immediately heal themselves after crack-
ing. These local shear transformations might be roughly
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FIG. 17: Distribution of (top to bottom): ∆U
L〈σ〉

, L∆σ
µ

, and

L∆γ. Where ∆U is the energy drop for a plastic event, ∆σ
is the stress drop for a plastic event, and ∆γ is the length
of an elastic segment. Legend is as follows: solid (black):
L = 12.5; dotted (red): L = 25; dashed (green): L = 50;
circles: Harmonic; squares: Hertzian; diamonds: Lennard-
Jones.

thought of as the elementary objects responsible for plas-
ticity in amorphous material, analogous to the disloca-
tions which are thought to be responsible for plasticity
in crystals.

The locus of rearrangement shows some spatial corre-
lation from one event to the next, but these correlations
decay quickly after just a few plastic events. We ob-
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for all three interaction potentials. Only the 9 curves corre-
sponding to the largest systems are shown for clarity.

serve no evidence for the kinds of pronounced persistent

shear localization which is seen in many experiments and
simulations of sheared amorphous materials where hard
walls are employed to drive the system, and we find it
likely that the persistent localization observed elsewhere
is due largely to effects of the boundary. Future inves-
tigations into the role of the boundaries will be crucial
in both atomistic studies [80, 82, 85, 86] and mesoscopic
models [22, 87].

The detailed picture of the onset of individual plas-
tic events which we developed showed that directions
of low curvature on the potential energy surface, when
driven to zero by the strain, are responsible for nucleat-
ing the cascades of shear transformations. These low-
lying modes which were shown to have an essentially
“shear-transformation-like” quadrupolar character, were
found to play a dominant role in the non-affine elastic dis-
placement fields, even reasonably far away from the on-
set of a cascade, and might be observed experimentally
in this way. Strikingly, at least in the systems studied
here, these modes are not observable via looking at local
stresses (e.g. as in reference [73]), or local Born values of
the elastic constants, and can only be observed through
the non-affine elastic response which is a collective prop-
erty of the potential energy surface.

We showed that the organization of the shear trans-
formations into cascades during the individual plastic
events caused a scaling of the average event size with the
length of the simulation cell regardless of the underlying
interaction potential. These strongly correlated events,
which involve lengths as large as the simulation cell, are
in qualitative agreement with various numerical simula-
tions, both atomistic [44, 59] and mesoscopic [22, 25].
They induce scalings with the length of the system for
various measures of event size (energy drop, stress drop,
and elastic segment length) which would have been in-

correctly predicted from an underlying picture of uncor-
related localized events. Furthermore, various interac-
tion potentials (Lennard-Jones, harmonic and hertzian
springs) were shown to exhibit nearly identical behav-
ior upon appropriately adjusting the energy scale for the
given potential.

Although, we were able to measure the properties of
the nucleating modes quite precisely (at least in mod-
erately sized systems), once cascades were initiated, the
picture became quite complicated with simultaneous and
overlapping shear transformations. In general, our work
highlights the fundamental difficulties involved in decom-
posing any cascade into constituent elementary events.
Thus, important questions which are relevant to the con-
struction of plasticity theories, such as the spatial struc-
ture of a complete, isolated shear transformation [26, 87],
remain open. Even so, we were able to demonstrate that
the predominant activity during the cascades was qual-
itatively characteristic of local shear transformations,
with incremental displacements and associated mechan-
ical fields having predominantly quadrupolar character
and the cumulative displacements and mechanical fields
being reminiscent of narrow lines of slip.

One of the most important directions for future study
will be extending to finite temperatures and strain
rates. The scaling analysis performed by Yamamoto
and Onuki [44, 59] showed that in sheared supercooled
liquids, the dynamical correlation length becomes tem-
perature independent at small enough temperatures —
the “strong-shear” regime — whence it scales like the
strain rate to some negative power. The recent athermal

mesoscale model of plasticity proposed by Picard and co-
workers [22] also exhibits a diverging length, but with a
stronger divergence than that reported in the 2D sim-
ulations by of Yamamoto and Onuki. Recent work by
Langer, Liu and co-workers and Berthier and Barrat has
suggested that imposed strain rate induces an effective

temperature in athermal systems [88, 89], much the same
as the effective temperature in unsheared supercooled liq-
uids [90, 91, 92] defined in terms of effective fluctuation
dissipation relations [93], and consistent with the picture
of Yamamoto and Onuki of decreasing correlations upon
increasing either strain rate or temperature.

This raises important questions regarding the cor-
related motions in both the atomistic and mesoscopic
simulations. What role do shear transformations play at
finite temperature and strain rate both in the strong-
shear and thermal (aging) regimes, and how robust with
respect to finite drive is the cascade mechanism? Is
the underlying mechanism for the heterogeneity in the
strong-shear regime different than the thermal regime?
Does the strong-shear scaling relation, ξ ∼ γ̇−1/4, of
Yamamoto and Onuki continue to hold below the glass
transition, or is there a crossover to the ξ ∼ γ̇−1/2

behavior observed in the mesoscale model of Picard et.

al.? More generally, is there any difference between a
supercooled liquid in the strong-shear regime and an
amorphous solid? These are some of the fundamental
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questions which must be addressed in order to make
progress‘ toward a coherent theory of sheared amorphous
material.
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