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Abstract

We perform molecular dynamics simulations of 512 water-like molecules that interact via the

TIP5P potential and are confined between two smooth hydrophobic plates that are separated by

1.10 nm. We find that the anomalous thermodynamic properties of water are shifted to lower

temperatures relative to the bulk by ≈ 40 K. The dynamics and structure of the confined water

resemble bulk water at higher temperatures, consistent with the shift of thermodynamic anomalies

to lower temperature. Due to this T shift, our confined water simulations (down to T = 220 K)

do not reach sufficiently low temperature to observe a liquid-liquid phase transition found for bulk

water at T ≈ 215 K using the TIP5P potential. We find that the different crystalline structures

that can form for two different separations of the plates, 0.7 nm and 1.10 nm, have no counterparts

in the bulk system, and discuss the relevance to experiments on confined water.
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I. INTRODUCTION

Despite the numerous accomplishments in water research to date [1, 2, 3, 4], the topic

continues to be the subject of intense interest. In particular, water confined in nanoscale

geometries has garnered much recent attention due to its biological and technological impor-

tance [5, 6]. Confinement can lead to changes in both structural and dynamical properties

caused by the interaction with a surface and/or a truncation of the bulk correlation length.

Moreover these changes depend on whether the interactions of water with the wall particles

are hydrophilic or hydrophobic [7]. One of the motivations for studying two different kinds of

interactions arises from studies of protein folding, since the folding of a protein is influenced

by its hydrophobic and hydrophilic interactions with water [8].

It is not clear exactly how the dynamics of liquids depends on the nature of the confining

surfaces. The behavior may change depending on the surface morphology. Simulations

of simple liquids show that the dynamics typically slow down near a non-attractive rough

surface while the dynamics speed up near a non-attractive smooth surface [9]. A slowing

down of water dynamics near a hydrophilic surface has been experimentally observed [10].

Water confined in Vycor [11, 12] has at least two different dynamical regimes arising from

the slow dynamics of water near the surface and fast dynamics of water far away from the

surfaces [13, 14, 15, 16, 17, 18].

One anomaly hypothesized to occur in supercooled water is the emergence of a phase

transition line separating liquid states of different densities. This phenomenon is called a

liquid-liquid (LL) phase transition [19, 20, 21, 22, 23, 24]. A LL transition has been seen in

a variety of simulation models of water [19, 25, 26], but is difficult to observe experimentally

due to the propensity of ice to nucleate at temperatures where a transition is expected.

Nonetheless, indirect evidence of a transition has been found [20, 27, 28, 29, 30]. Studies of

some simple models of liquid also show a LL phase transition [31, 32, 33, 34, 35].

Bulk water simulations using the TIP5P potential [36, 37] indicate the presence of a

LL phase transition ending in a second critical point at T ≈ 217 K and ρ ≈ 1.17 g/cm3

[25, 38]. A LL phase transition has been suggested based on simulations using the ST2

potential confined between smooth plates [39]. A liquid-to-amorphous transition is seen in

simulations using the TIP4P potential [40, 41, 42] confined in carbon nanotubes [43]. Recent

theoretical work [45] suggests that hydrophobic confinement suppresses the LL transition
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to lower T . Here we aim to determine how confinement between smooth hydrophobic walls

affects the location of the the LL critical point as well as the overall thermodynamic, dynamic

and structural properties.

The freezing of water in confined spaces is also interesting. On one hand, recent experi-

mental studies of water confined in carbon nanopores show that water does not crystallize

even when the temperature is cooled down to 77 K [10]. On the other hand, computer

simulation studies show that models of water can crystallize into different crystalline forms

when confined between surfaces [44, 46, 47, 48, 49]. For example, monolayer ice was found in

simulations using the TIP5P model of water [47]. By applying an electric field along lateral

directions (directions perpendicular to the confinement direction) another crystalline struc-

ture for three molecular layers of water confined between two silica plates was found [48].

Also, bilayer hexagonal ice was found in simulations using the TIP4P model [46]. In general

these simulations predict a variety of polymorphs in confined spaces, but the crystalline

structures found have yet to be observed in experiments.

This paper is organized as follows: In Sec. II, we provide details of our simulations and

analysis methods. Simulation results for the liquid state are provided in Secs. III, IV, and

V. The crystal states are discussed in Sec. VI, and we conclude with a brief summary in

Sec. VII.

II. SIMULATION AND ANALYSIS METHODS

We perform molecular dynamics (MD) simulations of a system composed of N = 512

water-like molecules confined between two smooth walls. The molecules interact via the

TIP5P pair potential [36] which, like the ST2 [50] potential, treats each water molecule as a

tetrahedral, rigid, and non-polarizable unit consisting of five point sites. Two positive point

charges of charge qH = 0.241e (where e is the fundamental unit of charge) are located on

each hydrogen atom at a distance 0.09572 nm from the oxygen atom; together they form an

HOH angle of 104.52◦. Two negative point charges (qe = −qH) representing the lone pair

of electrons (e−) are located at a distance 0.07 nm from the oxygen atom. These negative

point charges are located in a plane perpendicular to the HOH plane and form an e−Oe−

angle of cos−1(1/3) = 109.47◦, the tetrahedral angle. To prevent overlap of molecules, a fifth

interaction site is located on the oxygen atom, and is represented by a Lennard-Jones (LJ)
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potential with parameters σOO = 0.312 nm and ǫOO = 0.6694 kJ/mol.

The TIP5P potential accurately reproduces many water anomalies when no confinement

is present [25]. For example, it accurately reproduces the density anomaly at T = 277 K and

P = 1 atm. Its structural properties compare well with experiments [25, 36, 37, 51]. TIP4P

and TIP5P are known to crystallize [25, 52] within accessible computer simulation time

scales; TIP5P shows a “nose-shaped” curve of temperature versus crystallization time [25],

a feature found in experimental data on water solutions [53]. TIP5P simulations also show

a van der Waals loop in the P −ρ plane at the lowest T accessible with current computation

facilities [25]. This loop indicates the presence of a first-order LL transition. Ref. [25]

estimates that a LL-transition line ends in a LL critical point C ′ located at TC′ = 217±3 K,

PC′ = 340± 20 MPa, and ρC′ = 1.13± 0.04 g/cm3.

In our simulation, water molecules are confined between two infinite smooth planar walls,

as shown schematically in Fig. 1. The walls are located at z = ±0.55 nm, corresponding to

a wall-wall separation of 1.1 nm, which results in ≈ 2−3 layers of water molecules. Periodic

boundary conditions are used in the x and y directions, parallel to the walls.

The interactions between water molecules and the smooth walls are designed to mimic

solid paraffin [54] and are given by [55]

U (∆z) = 4ǫOW

[

(

σOW

∆z

)9

−
(

σOW

∆z

)3
]

. (1)

Here ∆z is the distance from the oxygen atom of a water molecule to the wall, while ǫOW =

1.25 kJ/mole and σOW = 0.25 nm are potential parameters. The same parameter values

were used in previous confined water simulations [54, 56].

We perform simulations for 56 state points, corresponding to seven temperatures T = 220,

230, 240, 250, 260, 280, and 300 K, and eight densities ρ = 0.80, 0.88, 0.95, 1.02, 1.10, 1.17,

1.25, and 1.32 g/cm3 [57]. The range of density values takes into account the fact that the

water-wall interactions prevent water molecules from accessing a space near the walls. Our

determination of ρ is discussed in detail in the next section. The raw “geometric” densities

used are ρ = 0.60, 0.655, 0.709, 0.764, 0.818, 0.873, 0.927 and 0.981 g/cm3.

For each state point, we perform two independent simulations to improve the statistics.

We control the temperature using the Berendsen thermostat with a time constant of 5 ps

[58] and use a simulation time step of 1 fs, just as in the bulk system [25]. For long-range

interactions we use a cutoff of 0.9 nm [36].
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We calculate the lateral pressure P‖ = (Pxx + Pyy)/2 using the virial expression for

the x and y-directions [59]. We obtain the pressure along the transverse direction, P⊥ by

calculating the total force Fwall perpendicular to the wall [39],

P⊥ =
Fwall

LxLy
=

|
∑N

i=1Fi,wall|

LxLy
. (2)

Here, Fi,wall is the force produced by oxygen atom of water molecule i on the wall. Hydrogen

atoms do not interact with the wall. In agreement with the simulations of Ref. [56] using

the TIP4P model for water and the water-wall interaction given by Eq. (1), we find that the

hydrogen atoms of the water molecules near a wall tend to face away from the wall, forming

bonds with other molecules.

III. PROPERTIES OF TIP5P CONFINED WATER

A. Transverse Density Profile

One of the problems when dealing with liquids in a confined geometry is how to define the

density in a consistent way. Using a geometric definition ρ ≡ Nm/LxLyLz (where m is the

water molecule mass) underestimates the effective density since the repulsive interactions

with the walls prevent molecules from coming too close to the walls. Hence we want to

quantify the effective distance L′
z perpendicular to the walls accessible to the water molecules

(Fig. 1), and thus obtain a definition for ρ which is more readily comparable with the density

of a bulk system. To estimate L′
z, we calculate the density profile ρ(z) defined as the density

of oxygen centers at z, shown in Fig. 2 for different temperatures and densities. In all cases

studied, we observe that molecules cannot access the total available space between the walls,

and that the accessible space along the transverse direction does not strongly depend on T

and ρ. Hence we estimate

L′
z = Lz −

σOW + σOO

2
= 0.819 nm (3)

independent of T and ρ; this leads to the effective density

ρ ≡
Nm

LxLyL′
z

. (4)

Figure 2(a) shows the effect on ρ(z) of changing ρ at T = 230 K. Since the typical

oxygen-oxygen separation for nearest neighbor in bulk water is 0.28 nm, for the effective
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wall separation L′
z = 0.819 nm one would expect that at most three water layers can be

accommodated between the walls. At ρ = 1.02 g/cm3 and ρ = 1.25 g/cm3, ρ(z) shows three

clear maxima indicating the presence of a trilayer liquid. The two maxima next to the walls

are the result of water-wall interaction. As density decreases below ρ = 1.02 g/cm3, the

central maximum becomes nearly uniform and, at density ρ = 0.95 g/cm3, only the two

maxima located next to the walls remain. This density corresponds to the least structured

liquid. Upon further expansion, the structure of the liquid starts to increase since the

bilayer splits into two sublayers for the lowest density ρ = 0.88g/cm3. As we will see in the

next section, T = 230 K is below the temperature of maximum density (TMD). Hence the

increase in the structure upon expansion corresponds to the anomalous decrease in entropy

upon expansion found in bulk water below the TMD,

(

∂S

∂V

)

T

=

(

∂P

∂T

)

V

= −

(

∂V

∂T

)

P

(

∂P

∂V

)

T

≤ 0. (5)

Figure 2(b) shows the effect on ρ(z) of changing ρ at higher T , T = 300 K. The densities

in Fig. 2(b) are the same as those shown in Fig. 2(a). Similar to findings at T = 230 K, (i)

the liquid at T = 300 K and ρ = 1.25 g/cm3 is characterized by a trilayer structure and (ii)

reducing the density transforms the trilayer liquid into a bilayer liquid at ρ = 0.88 g/cm3.

However, comparison of Fig. 2(a) and r̃efrho-z(b) shows that, at the lowest ρ studied, the

layers of the bilayer structured liquid at T = 300 K do not split into two sub-layers, as is

the case of T = 230 K since T = 300 lies above the TMD. In fact, we find that at T = 230 K

the sublayers present at ρ = 0.88 g/cm3 merge into a single layer at ρ = 0.95 g/cm3, and

the resulting ρ(z) resembles that shown in Fig. 2(b) at ρ = 0.88 g/cm3.

The effect of changing temperature at low density is shown in Fig. 2(c). As discussed

above, at low density and low T we observe a bilayer liquid where the two layers split into two

sublayers. Increasing T smoothes features of the density profile, namely (i) the splitting of

the sublayers disappears, and (ii) the minimum of ρ(z) at z = 0 nm becomes less pronounced

since increasing T increases the entropy. While a bilayer → trilayer liquid crossover is found

upon isothermal compression, isochoric heating does not have such an effect.

Figure 2(d) shows the effect of changing T at the high density, ρ = 1.25 g/cm3. At high

ρ, the molecules are not able to displace perpendicular to the walls and the density profile

is almost T independent. Indeed, the liquid has a trilayer structure at all T studied.
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B. Low Temperature Phase Diagram

Next we test how confinement affects the location in the P − T phase diagram of the LL

phase transition line and the second critical point found in bulk water simulations using the

TIP5P model [25, 38]. To determine the phase behavior, we evaluate P as a function of ρ.

If there is a second LL phase critical point, then it should manifest itself in a van der Waals

“loop” along isothermal paths at low T .

Unlike bulk liquid systems, one must be careful to interpret separately the results in-

volving the lateral pressure P‖ and those involving the transverse pressure P⊥, since the

thermodynamic averages of these quantities will usually be different. Phase separation will

only be apparent in P‖, since the separation of the plates is too small to allow for the exis-

tence of two distinct phases in the transverse direction. In Figs. 3(a) and 3(b), we show P⊥

and the lateral pressure P‖ as functions of density along all seven isotherms.

Since there can be no phase separation in the transverse direction, P⊥ is a monotonically

increasing function of the density (Fig. 3(a)). P‖ is also a monotonic increasing function of ρ,

but as T decreases, the isotherms of P‖ become “flatter” in the region near ρ ≈ 0.95 g/cm3

(Fig. 3(b)). The presence of this region is consistent with the possible existence of a van

der Waals loop at lower T and, therefore, is consistent with the possible existence of a LL

phase transition line ending at a second critical point at a value of T lower than 220 K,

the lowest simulated temperature. At 220 K no phase separation occurs, consistent with

the simulations of bulk water where the same TIP5P potential gives a second critical point

with TC′ = 217 ± 3 K [25]. While we are unable to simulate the temperatures below TC′

of the bulk system, comparison of the lowest T isotherm with that of Ref. [25, 38] suggests

that we will need to go well below the bulk TC′ to see phase separation. Thus our results

suggest that the presence of hydrophobic walls shifts a possible second critical point to lower

T . Along an isothermal path, the critical point can be located by the point where the slope

(∂P/∂ρ)T and curvature (∂2P/∂ρ2)T simultaneously equal zero. We can estimate this point

by plotting the values of the minimum slopes along each isotherm and extrapolating the

slopes to find the T at which the slope is zero. This estimate yields critical temperature

TC′ ≈ 162± 20 K (Fig. 4).

Figures 3(c) and 3(d) show the T -dependence of P⊥ and P‖ for different densities. P⊥(T )

is a monotonic function of T for all ρ. Similar behavior is observed for P‖(T ) at large ρ.
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However, for 0.88 g/cm3 ≤ ρ ≤ 1.17 g/cm3, the isochores in the P‖−T plane display minima,

indicating the presence of a TMD line, defined as the locus of points where (∂P/∂T )V = 0

[55]. For T < TMD, water confined between hydrophobic walls is anomalous, i.e., it becomes

less dense upon cooling. A TMD line has also been found in TIP5P bulk water simulations

[25]. Comparison of Fig. 3(c) and Fig. 2(a) of Ref. [25] shows that the TMD locus in confined

water shifts to lower T . We also plot the TMD for bulk water (from Ref. [25]) and confined

water in Fig. 5. A +40 K temperature shift in the TMD of confined water overlaps these loci.

Thus the effect of the hydrophobic walls in our system seems to be to shift the P − T phase

diagram by ∆T ≈ −40± 5 K with respect to bulk water. This is consistent with the second

critical point shifting to lower T .

Figure 6 shows the calculated potential energy for the lowest simulated temperature

T = 220 K. We note two minima for the densities around ρ = 0.88g/cm3 and ρ = 1.39g/cm3

respectively. Since the free energy F is given by

F = K + U − TS, (6)

where K, U , and S are the kinetic energy, potential energy and entropy respectively, at

small T an extremum in U suggests an extremum in F . Hence the emergence of two minima

at small T further supports the possibility of two stable liquids at low and high densities

respectively.

IV. STATIC STRUCTURE

A. Radial Distribution Function

In Sec. II we studied the structure of water along the direction perpendicular to the walls.

To aid in comparing the structural properties with those of bulk water, we next focus on

the lateral oxygen-oxygen radial distribution function (RDF) defined by

g‖(r) ≡
1

ρ2V

∑

i 6=j

δ(r − rij)

[

θ

(

|zi − zj |+
δz

2

)

− θ

(

|zi − zj | −
δz

2

)]

. (7)

Here V is the volume, rij is the distance parallel to the walls between molecules i and j, zi

is the z-coordinate of the oxygen atom of molecule i, and δ(x) is the Dirac delta function.

The Heaviside functions, θ(x), restrict the sum to a pair of oxygen atoms of molecules
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located in the same slab of thickness δz = 0.1 nm. The physical interpretation of g‖(r) is

that g‖(r)2πrdrδz is proportional to the probability of finding an oxygen atom in a slab of

thickness δz at a distance r parallel to the walls from a randomly chosen oxygen atom. In

a bulk liquid, this would be identical to g(r), the standard RDF.

Figure 7(a) shows the effect on g‖(r) of increasing ρ at low T . At low ρ, the bilayer liquid

is characterized by a RDF that resembles the RDF of bulk water at ρ = 0.99 g/cm3 [60],

with maxima at r ≈ 0.28, 0.45, and 0.67 nm. The well-defined maxima and minima in both

ρ(z) (Fig. 2(a)) and g‖(r) (Fig. 7(a)) indicate that at low-T and low-ρ the liquid is highly

structured, with a structure parallel to the walls similar to corresponding bulk liquid water

at low density [61]. As ρ increases, the liquid becomes less structured as indicated by the

decreasing height of the second and third peaks of g‖(r), and by the disappearance of the

sublayers in ρ(z) (Fig. 2(a)). A comparison of g‖(r) at ρ = 1.25 g/cm3 with the g(r) for bulk

water at high density from Ref. [61] shows that the distributions are very different. However,

we find that if we calculate g‖(r) for only −0.17 nm ≤ z ≤ 0.17 nm (which corresponds to

the location of the central layer), then g‖(r) at low-ρ and high-ρ resemble g(r) for bulk water

at both low and high densities respectively. Thus the evolution of the structure parallel to

the walls of the central layer mimics the structural changes when going from low-density

bulk water to high-density bulk water.

The effect of increasing the density at T = 300 K is shown in Fig. 7(b). The main effect of

compression is to “redistribute” the molecules parallel to the walls. At ρ = 0.88 g/cm3, g‖(r)

is similar to the distribution shown in Fig. 7(a) at the same density, which resembles g(r)

for low-density bulk water. However, the maxima and minima in g‖(r) are less pronounced

at T = 300 K. At intermediate ρ, g‖(r) becomes very close to 1 for r > 0.45 nm. As density

increases up to ρ = 1.25 g/cm3, a weak peak appears at r ≈ 0.9 nm and a maximum occurs

at 0.55 nm. Furthermore, the first maximum of g‖(r) becomes wider and the first minimum

shift towards r ≈ 0.4 nm. The resulting g‖(r) at high ρ and high T has many features of g(r)

for bulk water obtained experimentally at T = 268 K [61]. For example, the oxygen-oxygen

g(r) in Ref. [61] shows a weak peak at r ≈ 0.9 nm, a clear maximum at 0.61 nm, and the

first minimum is located at r ≈ 0.41 nm. Furthermore, a shoulder in the first maximum of

g(r) develops at high density which is consistent with the increase of the width of the first

peak of g‖(r) in Fig. 7(b) as ρ increases.

To complete the comparison of the structure of confined water with the structure of bulk
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water, we also evaluate the T -dependence of g‖(r). In Fig. 7(c), we show g‖(r) for various

T at ρ = 0.88 g/cm3. The effects of increasing T at low ρ are similar to those observed in

Fig. 7(a) when increasing ρ at low T . More specifically, the minima and maxima of g‖(r)

become less pronounced as T increases and g‖(r) becomes flatter for r > 0.5 nm. We note

that similar changes are also found in ρ(z) when (i) increasing T at low ρ (Fig. 2(a)) and

(ii) increasing ρ at low T (Fig. 2(c)).

Figure 7(d) shows the effect of T on g‖(r) when the density is fixed at ρ = 1.25 g/cm3.

The effects of increasing T at high ρ (Fig. 7(d)) are similar to the effects of increasing ρ at

a high T (Fig. 7(b)). More specifically, the first minimum of g‖(r) shifts to a larger r and

becomes less pronounced, while the second and third peaks located at 0.45 nm and 0.7 nm,

respectively, merge and form an intermediate peak at r = 0.55 nm. This suggests that as ρ

increases at high T , the preferred distance between second neighbors increases (parallel to

the walls) and local tetrahedral order decreases. The emergence of a peak at 0.55 nm on

heating at 1.25 g/cm3 is in contrast to the behavior of bulk water, where the disappearance

of the peaks at 0.45 and 0.7 nm gives rise to nearly featureless behavior of g(r) beyond the

first peak (see, e.g., Ref. [62]). Hence at high T , confinement gives rise to structure that

would not be present in bulk systems, presumably because molecules orient relative to the

walls. It is interesting to note that, as shown in Sec. 2, there is almost no change in ρ(z) with

T , indicating that the rearrangement of the molecules parallel to the walls has no effect, on

average, on the organization of molecules perpendicular to the walls.

B. Static Structure Factor

Next we calculate the lateral static structure factor S‖(q), defined as the Fourier transform

of the lateral radial distribution function g‖(r),

S‖ (q) =
1

N

∑

i,j

〈

ei~q.(~ri−~rj)
〉

, (8)

where the q-vector is the inverse space vector in the xy plane and r is the projection of

the position vector on the xy plane. The structure factor will be particularly useful for

comparison with the crystal structure in Sec. VI, where distinct Bragg peaks in S‖ (q) appear.

Figures 8(a) and 8(b) show the effect of density on the lateral structure factor S‖(q)

for T = 230 K and T = 300 K. The structure factor of low-density and low-temperature
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confined water is similar to bulk water. The presence of a “pre-peak” in S‖ (q) at low ρ can

be attributed to the existence of pronounced tetrahedral order in the low-temperature liquid.

At high ρ or high T , this feature is reduced, as the molecular order becomes less tetrahedral

and core repulsion dominates. This behavior is similar to bulk water, but with a shift to

lower densities. We show the evolution of S‖(q) as a function of T for two different densities

ρ = 0.88 g/cm3 and ρ = 1.25 g/cm3 in Figs. 8(c) and 8(d). The structure of low-temperature

water for ρ = 0.88 g/cm3 is similar to low-density water. When the temperature is increased,

the repulsive region of the potential begins to dominate and tetrahedrality is reduced. The

first two peaks in the structure factor merge to form a single peak (Fig. 8(c)). However, at

high density ρ = 1.25 g/cm3, a change is temperature does not change the structure factor

significantly (Fig. 8(d)). Similar behavior is seen in bulk water [63].

V. DYNAMICS

Thus far, we have seen that if a LL transition exists for confined water, it is shifted to

lower T than for bulk water, and that the tetrahedral order that gives rise to this behavior is

also suppressed. Hence it is natural to consider whether the dynamic properties of confined

water exhibit the same temperature shift found for the thermodynamic properties relative

to bulk water. For example, how is the maximum in diffusivity under pressure shifted under

confinement? To compare with the bulk system, we calculate the lateral mean square dis-

placement (MSD). We can evaluate the diffusion coefficient D from the asymptotic behavior

of the lateral MSD using the Einstein relation

〈r2‖〉 = 2dDt, (9)

where 〈r2‖〉 is the mean square displacement parallel to the walls over a given time interval

t, and d is the system dimension [64]. Since we calculate the diffusion only in the lateral

directions, d = 2.

Figures 9(a) and 9(b) show the dependence of the lateral MSD on ρ at fixed T = 230K

and T = 300K. We also plot the dependence of the lateral MSD on T for two different tem-

peratures in Figs. 9(c) and 9(d), using a log-log scale to emphasize the different mechanisms

seen on different time scales:

(i) An initial ballistic motion, where the lateral MSD is a quadratic function of time,
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〈r2‖(t)〉 ∼ t2.

(ii) An intermediate “flattening” of the lateral MSD, due to the transient caging of

molecules by their hydrogen bonded neighbors. This effect is most noticeable at the

lowest T studied, and does not occur at high T .

(iii) Long time scales on which particles diffuse randomly, and so 〈r2‖(t)〉 ∼ t.

To determine whether there is an anomaly in the density dependence of D, we plot D

along isotherms, in Fig. 10(a) for confined water and in Fig. 10(b) for bulk water. For

T <
∼ 250 K, we find that D has a maximum at ρ ≈ 1.05 g/cm3. In bulk water, a similar

behavior is found, but at T ≈ 290 K, 40 K higher than the confined system. Moreover,

this shift in a dynamic anomaly is consistent with the shift of thermodynamic anomalies.

Qualitatively, the maximum in D can be understood as a competition between weakening or

breaking of hydrogen bonds under pressure [65] (which increases D) and increased packing

(which reduces D).

We next study the effect of confinement on the rotational motion of water molecules. The

rotational motion was analyzed by calculating the rotational autocorrelation time for all the

state points and are compared with the rotational autocorrelation time for bulk water for

few state points. The rotational autocorrelation function C1(t) is defined as

C1(t) ≡
1

N

〈

N
∑

i=1

~ei(t).~ei(0)

〉

, (10)

where ~ei(t) is the unit dipole vector of molecule i at time t. For large times, C1(t) can be

fit with a stretched exponential function

C1(t) = Ae(−t/τ)β (11)

where A, β ≤ 1 are constants and τ = τ(ρ, T ) is the orientational autocorrelation time,

which depends on both density and temperature. In Fig. 11, we show C1(t) for different

temperatures and densities. Figure 12(a) shows the inverse of the orientational autocorrela-

tion time which is proportional to the rotational diffusion. For a comparison with the bulk

water rotational diffusion, τ−1 is also shown in Fig. 12(b). Both the translational diffusion

constant [Fig. 10(a)] and the inverse of the orientational autocorrelation time [Fig. 12(a)]

show similar behavior. Similar results have been found for bulk water with the SPC/E
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potential [66]. For low temperature, the maxima occur at the same density for D and τ−1.

However at high temperatures (T ≥ 260K), where the D is a monotonically decreasing

function of density, τ−1 has a maximum and a minimum similar to its bulk counterpart

[Fig. 12(b)].

VI. CRYSTALLIZATION OF TIP5P CONFINED WATER

Bulk TIP5P water crystallizes within the simulation time at higher densities and, for a

given density, the crystallization time has a minimum at T = 240 K [25]. We next investigate

whether crystallization occurs in confinement, and whether the structure differs due to

the surface effects. It has been found experimentally that water confined in hydrophobic

carbon nanopores does not crystallize, even at very low temperatures [10]. However, the

crystallization of confined water is seen in some simulations [46, 47]. We find that our

system crystallizes to what appears to be a trilayered ice structure at high density and

that the resultant ice has a density ρ = 1.32 g/cm3. A similar crystallization appears in

simulations when an electric field is applied in a lateral direction [48]. The surface in this

kind of simulation exhibits the embedded crystal structure of silica, where the oxygen and

silicon atoms are arranged in out-of-registry order. This suggests that the crystalline form

we find in confinement does not depend on the morphology of the surface. We show the

structure of the ice and the static lateral structure factor in Fig. 13.

To investigate whether confined water crystallizes in the same crystalline form when the

separation between the plates is different, we repeat our simulation for a plate separation

of 0.7 nm, and again the system crystallizes at T = 260 K. The system crystallizes into a

monolayer ice, also seen in simulations in Ref. [47]. The ice structure and its lateral static

structure factor are shown in Fig. 14. The density of monolayer ice is ρ = 0.93 g/cm3 . We

list the temperature, pressure, and potential energy for these crystals in Table I.

VII. CONCLUSIONS

We have systematically investigated the effect of confinement on TIP5P water between

two parallel smooth hydrophobic plates, separated by 1.10 nm. We found that the overall

phase-diagram is shifted to lower temperature and lower density compared to bulk TIP5P
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water by ∆T ≈ −40K. The shift to lower temperature compared to the bulk water can be

understood qualitatively. Since the confinement walls do not form any hydrogen bonds with

water molecules the average number of hydrogen bonds per molecule in confined system is

smaller than in bulk water. This is analogous to having bulk water at high temperatures.

We do not see a LL phase transition for the state points we have been able to simulate,

but we do see a pronounced inflection in the P − ρ isotherms (Fig. 3), which is consistent

with a LL phase transition at lower T . Since the phase diagram is shifted ≈ 40 K lower

in temperature, our results are consistent with the possibility that there indeed is a LL

transition at a temperature too low to simulate. This shift of thermodynamics qualitatively

agrees with the theoretical predictions of Ref. [45]. The structure of confined water is similar

to the structure bulk water at a lower density, and shows a similar evolution of the structure

with changes in density and temperature. At a given temperature, as the density increases,

water changes from a bilayer liquid (at low density) to a trilayer liquid (at high density). We

find that the confinement affects the translational diffusion as well as the rotational motion

of water molecules. The rotational diffusion anomaly precedes the translational diffusion

anomaly, just as occurs for bulk water.

We were able to crystallize water for a few state points. It crystallizes spontaneously to

a trilayer ice at T=260K. Monolayer ice was formed when the separation between the plates

was decreased to 0.7 nm. The crystalline structures are different from the polymorphs of

bulk water, and should be relevant for confined water.
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TABLE I: Thermodynamic properties of the crystals formed at T = 260K

Plate Separation (nm) Pressure (MPa) Potential Energy (kJ/mol)

0.7 –90.30 –39.86

1.1 652.89 –44.08
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FIG. 1: Schematic of the simulated system. Water molecules are confined between two smooth

hydrophobic plates in an xy plane, separated by Lz = 1.1 nm. The figure also indicates L′
z, the

effective length of confinment of the water molecules.
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and (b) bulk water. Inverse autocorrelation time for confined water follows a similar behavior as

bulk water, but temperature shifted by ≈ 40 K to lower T .
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FIG. 13: Trilayer ice with Lz = 1.1 nm and ρ = 1.32 g/cm3 formed when the system is cooled

from T = 320 K to T = 260 K. (a) A lateral snapshot. (b) Lateral structure factor.
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FIG. 14: Monolayer ice with Lz = 0.7 nm and ρ = 0.93 g/cm3 spontaneously formed at T = 260 K.

(a) A lateral snapshot and (b) top view. (c) Lateral structure factor.
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