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Cyclic Topology in Complex Networks
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We propose a cyclic coefficient R which represents the cyclic characteristics of complex networks.
If the network forms a perfect tree-like structure then R becomes zero. The larger value of R
represents that the network is more cyclic. We measure the cyclic coefficients and the distributions
of the local cyclic coefficient for both various real networks and the representative network models
and characterize the cyclic structures of them.
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During a recent few years, complex networks have re-
ceived considerable attentions [1]. They appear in a vari-
ety of system such as biological [2, 3, 4], social [5, 6, 7, 8],
informational [9, 10], and economic [11] systems. Such
complex networks are characterized by some topologi-
cal and geometrical properties such as small world, high
degree of clustering, and scale-free topology. The small-
world property denotes that the average path length L
which is the average shortest path length between ver-
tex pairs in a network, is small. It grows logarithmically
with the network size N . The clustering structure in a
network is measured by the clustering coefficient C which
is defined as the fraction of pairs between the neighbors
of a vertex that are the neighbors of each other. The
high degree of clustering indicates that if vertices A and
B are linked to vertex C then A and B are also likely to
be linked to each other. These two properties were real-
ized by small-world network (SWN) model [12] in which
randomly selected vertex pairs are linked by short-cuts.
The scale-free (SF) topology reflects that the degree dis-
tribution P (k) follows a power law, P (k) ∼ k−γ , where
degree k is the number of edges incident upon a given
vertex and γ is the degree exponent. An evolving model
introduced by Barabasi-Albert (BA) [13] well illustrated
the SF property. Such network is called the SF network.

Recently, many efforts have been done to elucidate
the structural properties of complex networks. The hi-
erarchical structure appears in some real networks and
has been clarified by power-law behavior of the clus-
tering coefficient C(k) as a function of the degree k
[14, 15, 16, 17, 18, 19]. This indicates that the net-
works are fundamentally modular and it is the origin of
the high degree of clustering of complex networks. Also,
it was recently found that many real networks include
statistically significant subnetworks, so-called motifs, in
their structures [20, 21, 22].

Especially, the recent studies for the topological prop-
erties of complex networks have attracted much atten-
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tion to the loop (cyclic) structure. The presence of loops
has some effect on the delivery of information, transport
process, epidemic spreading behavior [23], and etc. With
respect to a tree-like topology, loops provide more paths
along which the information or virus can propagate. A
cycle of order k can be defined as a closed loop of k
edges. That is, graphically a triangle is a cycle of order
3, while a rectangular is a cycle of order 4. A tree which
can not form a closed loop can be regarded as a cycle of
infinite order. The clustering coefficient counts the tri-
angle structure only. Meanwhile there are many cycles
of higher order which is larger than 3 in complex net-
works so that it is necessary to investigate the cycles of
higher order for the characterization of the cyclic struc-
ture. Some previous studies [24, 25, 26, 27] in which
cycles of order 4 or 5 were considered, are good trials to
explain the loop structure of higher order.
In this paper, we survey the cyclic topology in complex

networks by introducing a new quantity R which char-
acterizes the degree of circulation in the systems. We
consider the cycles of all order starting from three up to
infinity to define the quantity R. By monitoring the val-
ues of R and its distribution, the cyclic topology of the
networks is analyzed for both several real networks from
technological to social systems and the network models
such as SWN and BA models.
We introduce a new quantity R to measure how cyclic

is a network and call it the cyclic coefficient. At first,
the local cyclic coefficient ri for a vertex i is defined as
the average of the reciprocal of the size of loops which
are formed by a vertex i and its two neighboring vertices,
i.e.,

ri =
2

ki(ki − 1)

∑

<lm>

1

Si
lm

(1)

where ki is the degree of a vertex i and < lm > is all the
pairs of the neighbors of the vertex i. Si

lm is the smallest
size of the closed path that pass through a vertex i and
its two neighbor vertices l and m. If vertices l and m
is directly connected to each other then the vertices i,
l, and m form a triangle. It is a cycle of order 3 and
Si
lm has a value three which is the smallest value of S.
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FIG. 1: (a) A typical example for the cyclic coefficient. The
cyclic coefficient of filled circle is obtained by r• = 0.13. The
two sample networks with same network size N = 25 and
different cyclic coefficient are shown in (b) and (c) where R
= 0 and R = 0.29, respectively.

If there does not exist any paths that connect vertices l
and m except for the path through the vertex i, then the
vertices i, l, and m form a tree. In this case, there does
not exist any loop pathing through the three vertices i,
l, and m. It is the cycle of infinite order and the value
of Si

lm becomes infinity. For an example as shown in
Fig. 1 (a) the local cyclic coefficient r• of a vertex • is
given as r• = 0.13 with S•

12
= 3, S•

23
= 4, S•

13
= 5, and

S•
14 = S•

24 = S•
34 = ∞.

The cyclic coefficient R is the average of ri over all
the vertices, R = 〈ri〉 which has a value between zero
and 1/3. R=0 means that a network has a perfect tree-
like structure in which no loops is formed. Meanwhile
if all the neighbor pairs are connected to each other i.e.,
the clustering coefficient becomes C = 1, and R=1/3.
Figure 1 (b) and (c) show two examples with R=0 and
R=0.29 for N = 25, respectively. Thus the larger is the
cyclic coefficient R, the more cyclic is the architecture
of the network. The cyclic coefficient R could be a good
quantity to identify the degree of circulation in a complex
network.

In order to characterize the cyclic topology in real net-
works we have measured the cyclic coefficient R for sev-
eral real networks [28] appearing in biological, techno-
logical, and social systems. In the measurement, we ex-
cluded the isolated vertices and focused on the entirely
connected part of the network.

First, we consider the protein network [3] which is com-
posed of 1458 proteins. It has 1948 identified direct phys-
ical interactions. The proteins and the direct interactions
are considered as vertices and edges, respectively. Figure
2 (a) shows the histogram of the distribution P (r) of the
local cyclic coefficient. About 60% of the total vertices
have r = 0 and P (r) has small value for all the range
0 < r ≤ 1/3, resulting in small value R ≈ 0.06, which
indicates that there are very little loops and the network
constitutes a tree-like structure. Thus a tree-like topol-
ogy of the protein network pictured in the reference [3]
is well quantified by our cyclic coefficient.

Second, the physical internet network [9] at the inter-
domain (Autonomous System(AS)) level is considered.
Each domain, composed of hundreds of routers and com-
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FIG. 2: The probability distribution of local cyclic coefficient
for four real networks, (a) protein network, (b) Internet net-
work, (c) math co-authorship network, and (d) movie actor
collaboration network.

puters, acts as a vertex and an edge is drawn between two
domains if there is at least one route that connects them.
The network at the AS level, as of 15th September 1999
is composed of both 5746 ASs and 11017 edges. R ≈ 0.16
is obtained in this network. From the distribution of the
local cyclic coefficient r (Fig. 2 (b)), we found that the
most vertices have a value among r = 0, r = 0.25, and
r = 1/3. That is, the vertices with a tree structure are
dominant (r = 0) and the most of the rest form loops of
small size (3 or 4).
Third, we consider the network of scientific collabora-

tions in the field of mathematics published in the period
1991-1998 [6], in which the vertices are the scientists.
They are connected if they write a paper together. The
total number of vertices and edges are 57516 and 143778
respectively. The value of cyclic coefficient is R ≈ 0.19.
Figure 2 (c) shows the probability distribution of r. It
has the first peak at r = 0.33, which indicates that cy-
cles of order 3 dominate in the networks. distinguishing
from the protein and internet networks where the tree-
like structure dominates.
Finally, the movie actor collaboration network [5] is

constituted of 9865 vertices and 273412 edges. The ver-
tices are the actors and two vertices are connected if the
corresponding actors have acted in the same movie to-
gether. Figure 2 (d) shows that the distribution of r has
a maximum value at r = 0.33, which reflects the high
degree of clustering in social networks. Meanwhile the
vertices with r = 0 almost do not exist in contrast to the
case of the other networks. This explains that the movie
actor network is more cyclic with large value of R = 0.29.
From the results of the above four examples, we have

found that both the well clustered parts and non clus-
terd parts coexist in the real networks especially in the
math co-authorship network. The probability distribu-
tion P (r) is not uniform. Instead, there are a few peaks
at certain values of r such as r = 0 or r = 1/3. It
means that most of the vertices have triangle structure
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FIG. 3: The cyclic coefficient R(p) (circle) and the clustering
coefficient C(p)(square) for the SW network model. The data
is normalized by the R(0) and C(0) which are 0.283 and 0.5
respectively for a regular network. The distribution of local
cyclic coefficient for the random network (p = 1) is shown in
the inset.

or tree structure with the neighbor vertices. That is, the
neighbor vertices in the well clustered parts have high
connections each other while in the other parts there are
no clustering at all. Thus by measuring the distribution
of local cyclic coefficient we can understand the details
of cyclic structure in the complex networks.
We have considered the cyclic coefficient R for two rep-

resentative models of complex networks, the SWN [12]
and the BA model [13]. The algorithm of the SWNmodel
is the following: Consider a one-dimensional lattice of N
vertices with periodic boundary conditions, i.e., a ring
and connect each vertex to its first m neighbors. The
small-world model is then created by randomly rewiring
each edge of the lattice with probability p, moving one
end of that edge to a new location chosen randomly
from the lattice, except that self-connections and dupli-
cate edges are created. This rewiring process introduces
pNm/2 shortcuts which connect vertices that are in long-
range and by varying p the transition between a regular
lattice (p = 0) and random network (p = 1) [29] can be
shown.
Figure 3 shows the plot of the normalized clustering co-

efficient C(p)/C(0) and the cyclic coefficient R(p)/R(0)
as a function of the rewiring probability p with the net-
work size N = 10000 and m = 4. The clustering coeffi-
cient stays almost unchanged for p < 0.01 and drops to
almost zero at p = 1. It is the characteristics of SWN
with the high degree of clustering for p < 0.01. The
cyclic coefficient R(p) also keeps up the value of R(0) for
p < 0.01 while decreases to a finite value at p = 1. The
finite value of R(1) comes from the contribution of the
loops for all orders. The inset of Fig. 3 shows the prop-
erties of the random network (p = 1). As shown in the
inset, the cyclic distribution has a peak at r = 0.11 with
R ≈ 0.11. It is interesting that P (r) is almost zero for
both r = 0 and r = 1/3.
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FIG. 4: The distribution of local cyclic coefficient for the BA
model

We also measure the cyclic coefficient for the BA model
[13]. The BA model is carried out as the following: Start
with a small number N0 of vertices and no edges. At
every time-step, a new vertex with m (<= N0) edges
is added where the m edges link the new vertex to m
different vertices already present in the system. The ver-
tices to which the new vertex is connected are chosen
with the preferential attachment rule in which the prob-
ability Π for a vertex i to be connected with a new ver-
tex depends on the degree ki of the vertex i, such that
Π(ki) = ki/

∑
j kj . We have obtained R ≈ 0.17 with the

network size N = 10000 for the BA model. As shown in
Fig. 4, the distribution of the local cyclic coefficient in
the BA model shows a poisson-like shape having a peak
at r = 0.16. It represents the random nature of the lo-
cal circulation in the BA networks. However, in the real
networks given above the cyclic distributions do not fol-
low the poisson-like shape and have a peak at r = 0 or
r = 1/3 . There is almost no mechanism to form a trian-
gle or tree structure in the BA model, in contrast to the
case of the real networks.
The network size N , mean degree 〈k〉, clustering co-

efficient C, cyclic coefficient R, the probability distribu-
tion with r = 0 P (0) (tree structure), and with r = 1/3
P (1/3) (cyclic structure of loops with length three) are
summerized in Table I for the considered networks.
In conclusion, we have evaluated the degree of circu-

lation in complex networks by introducing the cyclic co-
efficient R. It inclueds the total effect of all the sizes of
the loops. If the network forms a perfect tree-like struc-
ture, R becomes zero. The value of cyclic coefficient is
in between zero and 1/3. The larger is the cyclic coeffi-
cient, the more cyclic becomes a network. We measured
the cyclic coefficients for various real complex networks
and the representative network models. For the protein
network of biological system the cyclic coefficient is small
which reflects that the protein network is tree-like, while
for the movie actor collaboration network of social sys-
tem we found that the cyclic coefficient is large and its
structure is more cyclic. Also by measuring the proba-
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TABLE I: For both four real networks and two network model, we summarized the various data of network size N , mean
degree 〈k〉, clustering coefficient C, cyclic coefficient R, the probability distribution with r = 0 P (0) (tree structure), and with
r = 1/3 P (1/3) (cyclic structure of loops with length three).

Network N 〈 k 〉 C R P (0) P (1/3)

protein interactions 1458 2.67 0.07 0.06 0.60 0.04

Internet 5746 3.83 0.24 0.16 0.38 0.19

math co-authorship 57516 5.00 0.48 0.19 0.24 0.35

movie actor collaborations 9853 54.95 0.58 0.29 0.01 0.34

random network (p = 1) 10000 4 0.0003 0.11 0 0

BA network 10000 6 0.006 0.17 0 0

bility distribution of the local cyclic coefficient, we could
classify the details of the cyclic structure of the complex
networks. Thus the cyclic coefficient and its distribution
help us to understand the cyclic structures of the com-

plex networks. It is interesting to keep in surveying the
cyclic coefficient for other various complex networks.
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