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Abstract

Frontal photopolymerization (FPP) provides a versatile method for the rapid fabrication of solid

polymer network materials by exposing photosensitive molecules to light. Dimensional control of

structures created by this process is crucial in applications ranging from microfluidics and coatings

to dentistry, and the availability of a predictive mathematical model of FPP is needed to achieve

this control. Previous work has relied on numerical solutions of the governing kinetic equations

in validating the model against experiments because of the intractability of the governing non-

linear equations. The present paper provides exact solutions to these equations in the general case

in which the optical attenuation decreases (photobleaching) or increases (photodarkening) with

photopolymerization. These exact solutions are of mathematical and physical interest because

they support traveling waves of polymerization that propagate logarithmically or linearly in time,

depending on the evolution of optical attenuation of the photopolymerized material.

∗ Contribution of the National Institute of Standards and Technology, not subject to US copyright.
† Correspondence: james.warren@nist.gov, joao.cabral@nist.gov and jack.douglas@nist.gov

1

http://arxiv.org/abs/cond-mat/0503006v1
mailto:tojames.warren@nist.gov
mailto:joao.cabral@nist.gov
mailto:jack.douglas@nist.gov


I. INTRODUCTION

Photopolymerization is a common method of rapidly forming solid network polymer ma-

terials and it is possible to create intricate three-dimensional structures by selectively poly-

merizing photosensitive materials through masks opaque to light. The conversion process

from a liquid to a solid does not occur uniformly in this fabrication technique because of

the attenuation of light within the photopolymerizable material (PM) and this process is

normally accompanied by non-uniform monomer-to-polymer conversion profiles perpendic-

ular to the illuminated surface [1, 2, 3, 4, 5]. Physically, these conversion profiles propagate

as traveling waves of network solidification that invade the unpolymerized medium exposed

to radiation (generally ultraviolet light, UV) if the process occurs in the presence of strong

optical attenuation and limited mass and heat transfer. The frontal aspect of the polymer-

ization process is apparent in the photopolymerization of thick material sections and has

counterparts in degradation (including discoloration) processes in polymer films exposed to

UV radiation, where the breaking of chemical bonds rather than their formationis often the

prevalent physical process.

Frontal photopolymerization (FPP) is utilized in diverse fabrication processes, ranging

from photolithography of microcircuits to dental restorative and other biomedical materials,

and numerous coatings applications (paints and varnishes, adhesives and printing inks)

[4, 5]. We have recently explored the use of FPP in the fabrication of microfluidic devices

[6, 7, 8, 9, 10].

We emphasize that FPP is a distinct mode of polymerization from thermal (TFP) and

isothermal (IFP) frontal polymerization, which involve autocatalytic reactions. While these

polymerization methods also involve wavelike polymerization fronts, the front propagation

is sustained by the thermal energy released from an exothermic polymerization reaction.

This self-propagating frontal growth can be initiated by a localized heat source (TFP) of by

a polymer network seed (IFP) and has been reviewed by Pojman et al. [11, 12, 13].

Given the complexity of the chemical reactions involved in FPP, a ‘minimal’ field theoretic

model of this process was introduced in previous work based on physical observables relevant

to the fabrication process [7, 14]. Specifically, this FPP model concerns itself with two basic

front properties and their evolution in space and time: (1) the position of the solid/liquid

front, which defines the patterned height and (2) the light transmission of the PM layer. This
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formulation naturally leads to a system of coupled partial differential equations involving

two coupled field variables, the extent of monomer-to-polymer conversion φ(x, t) and the

light attenuation Tr(x, t) as a function of the distance from the illuminated surface x and

time t.

Before describing our mathematical model, we briefly illustrate the physical nature of

FPP through experiments on a model UV polymerizable material, described in Section II

and discussed in Section III. The derivation of this model is reviewed in Section IV and

Section V presents exact solutions of these non-linear equations.

II. EXPERIMENTAL

The photopolymerization experimental setup [15] consists of a collimated light source,

a photomask, a polymer photoresist and a substrate, as depicted in Fig. 1. We choose a

multifunctional thiol-ene formulation (NOA81, Norland Products, NJ) as the photopolymer-

izable material (PM) for this study. This optically clear, liquid PM functions as a negative

photoresist and cures under 365 nm ultraviolet light (UVA) into a hard solid (Shore D

durometer 90 and ∼ 1 GPa modulus). Moreover, thiol-enes polymerize rapidly at ambient

conditions (with minimal oxygen inhibition) and achieve large depths of cure [16, 17, 18, 19].

In previous work, we have characterized the kinetics of FPP of these systems as a function

of PM composition, temperature and nanoparticle loading [7, 14].

The liquid PM was poured into an elastomeric (polydimethylsiloxane, Sylgard 184, Dow

Corning) gasket and covered with a plasma-cleaned glass slide (Corning 2947). The oxygen

plasma was an Anatech-SP100 operating at 80 Pa (600 mTorr), with 60 W for 3 min.

Photomasks were printed on regular acetate sheet transparencies (CG3300, 3M) using a

1200 dots per inch HP Laserjet 8000N printer. The mask consisted of a square array of large

posts (2 mm × 2 mm) and was placed directly over the top glass slide. An aluminum shutter

was placed over the specimen and moved manually, controlling the exposure time of each

post. The light source was a Spectroline SB-100P flood lamp, equipped with a 100 Watt

Mercury lamp (Spectronics), placed at a variable distance (100’s of mm) from the specimen

to adjust the incident intensity. The light intensity was measured with a Spectroline DIX-

365A UV-A sensor and DRC-100X radiometer (both Spectronics) with 0.1 µW/mm2 (10

µW/cm2) resolution. The UV dose administered to each patterned post was calculated as
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FIG. 1: Schematic of the frontal photopolymerization (FPP), depicting a monomer-to-polymer

conversion front induced by light exposure moving towards the bulk polymerizable material (PM).

Our experimental setup consists of a collimated UV source (365 nm), a photomask, and a PM

confined between two surfaces, typically glass and an elastomer sheet.

the product of the incident light intensity I0 ≡ I(x = 0), light transmission Tr of the mask

(∼ 80 %) and glass slide (∼ 94 %), and exposure time t, as UV dose ≡ TrI0t ; x is depth

distance normal to the surface in the PM. Photopolymerization was carried out under a

fume hood at 30 ◦C, with incident light intensity of (2 and 10) µW/mm2; a wide UV dose

window covering 0.04 mJ/mm2 to 180 mJ/mm2 was investigated.

Upon UV light exposure, imaged areas become insoluble to selective solvents ethanol and

acetone, which are used to develop the pattern. Compressed air and a succession of alter-

nating ethanol/acetone rinses are employed until the unpolymerized material is thoroughly

removed. The resulting pattern has well defined dimensions but is still a ‘soft’ solid. A flood

UV exposure (for about 50 times the patterning dose), completes the crosslinking process

of the material into a hard solid, largely preserving its dimensions. The topography of the

resulting photopolymerized structure was mapped by stylus profilometry, using a Dektak 8

profilometer (Veeco, CA), equipped with a 12.5 µm stylus and operating at 10 mg force.

For post heights beyond the profilometer 1 mm limit, a caliper (Digit-cal MK IV, Brown &

Sharpe) was utilized. Measurement uncertainty ranged from 5 % to 10 %, depending on the

pattern height. A typical profilometer scan of two arrays of posts exposed to increasing UV
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doses is shown in Fig. 2. The resulting patterned dimensions range from approximately 70

to 1000 µm in height.

FIG. 2: Topography map of an array of FPP squares obtained by stylus profilometry. The exposure

time for each square was defined by a shutter system and was varied linearly in 30 s intervals,

totaling 10 min. The resulting heights h(t), however, increase in a strongly non-linear fashion,

apparently leveling off at long exposures. The incident intensity was 1.8 µW/mm2 and the UV

dose window sampled was (0.05 to 10) mJ/mm2.

In order to explore the spatio-temporal variation of the light intensity upon photocuring,

a second series of experiments were devised. The transmission of PM samples of different

thickness was monitored as a function of time during the conversion process. The PM was

confined between transparent glass slides with spacers of defined thickness; this assembly was

placed between the UV source and the radiometer and the transmitted light intensity was

recorded as a function of time. Sample thickness was limited to 1 mm due to light attenuation

and sensor sensitivity to the actinic wavelength. The effective sample transmission Tr(x, t)

was obtained from the recorded intensity I(x, t) and the Beer-Lambert relation Tr(x, t) ≡

(I(x, t)/I0)/Tr(glass)
2 = exp [−µ̄(x, t)x], after subtracting the attenuation due to the glass

slides (2 × 1 mm); x is the sample thickness (a constant in this experiment) and t is the

exposure time.

III. FRONTAL POLYMERIZATION INDUCED BY LIGHT

We first establish the basic nature of the frontal photopolymerization (FPP) based on

experimental evidence. The propagation of a planar monomer-to-polymer conversion front,

emanating from the illuminated surface, is depicted in Fig. 1. A topographic map of arrays

of FPP fronts measured by profilometry is shown in Fig. 2. The interface between the
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polymerized solid and the liquid pre-polymer, characteristic of frontal polymerization, is

evident after ‘development’ (selective washing away of the unpolymerized material) of the

pattern. The height dependence of exposure dose (the product of exposure time t and

light intensity I0) was obtained from a series of experiments and characterizes the FPP

frontal kinetics. Results for the PM studied, for a light dose window of a few millijoues per

square centimeter to 20 J/cm2, at 30 ◦C are shown in Fig. 3a. We define ‘front position’

h(t) in a straightforward way as the measured thickness of the solidified material after UV

exposure and development (washing away the unsolidified PM). This criterion is a natural

choice for rapid prototyping and fabrication using FPP. Also, in practical applications, it is

useful to express results in terms of light dose, rather than exposure time. The validity of

interchanging dose and t depends on the reaction kinetics independence of I0, which applies

to the PM in the conditions studied [7].

The optical transmission of this specific PM decreases during photocuring and this process

is captured in Fig. 3b for a series of specimens with different thickness. There is clearly a

drop in Tr upon photopolymerization indicating partial photodarkening. The figure inset

shows the thickness-dependent transmission before (‘initial’) and after (‘final’) a long UV

exposure (until Tr reaches a plateau), in the usual Beer-Lambert representation. Other

photoresists ‘photobleach’ during the process, due to consumption of a strongly absorbing

species (generally the photoinitiator), or may remain virtually ‘invariant’ (with constant light

transmission) upon conversion. The experimental results presented in Fig. 3 characterize

the general nature of FPP and illustrate the kinetics of its observables, front position h(t)

and transmission Tr(x, t), in a ‘photodarkening’ material.

IV. FRONTAL PHOTOPOLYMERIZATION (FPP) MODEL

Photopolymerization begins with the absorption of light, which generates the reactive

species responsible for chain initiation. The addition of a strongly light-absorbing photoini-

tiator modifies the optical properties of the medium and its consumption in the course of

network formation, in conjunction with network formation and the formation of photopoly-

merization by-products, leads to an evolving optical attenuation. The consumption of the

photoinitiator alone can be expected to lead to a reduction of the optical attenuation in

the UV frequency range (‘photobleaching’), but the resulting polymer network can have an
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FIG. 3: Experimental FPP results for an illustrative ‘partial photo-darkening’ polymerization.

(a) Front position dependence on UV dose (light intensity exposure time) showing an initial

logarithmic dependence followed by a crossover. The inset is a linear plot. (b) Optical transmission

(up to 365 nm) variation during photocuring for PM samples of constant thickness. The inset

depicts the log transmission as a function of thickness for the ‘initial’ (before conversion) and

final (‘full conversion’) stages of photopolymerization, where the simple Beer-Lambert law holds,

yielding the asymptotic µ0 and µ∞ attenuation coefficients.
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increased optical attenuation so that the net optical attenuation can increase upon pho-

topolymerization (‘photodarkening’). Moreover, the addition of nanoparticle additives will

also change the optical properties of the medium from those of the unfilled material in a non-

trivial fashion.[14] We thus develop a model of photopolymerization that does not presume

either photobleaching or photodarkening as a general consequence of photopolymerization.

The nature of the polymerization front development has distinct features in these physical

situations that we discuss in separate sections below after summarizing our general model.

The kinetic model of FPP [7, 14] conceives of the photopolymerization process in terms

of a coarse-grained field theoretic perspective. The state of the material is assumed to be

characterized by field variables that describe the extent to which the material is polymerized

and the spatially and temporally dependent optical attenuation evolves in response to the

photopolymerization process. While this model has mathematical similarities with classic

theories of photo-polymerization [20, 21], it directly focuses on observable properties of

FPP rather than the concentration of the various chemical species involved. The main

variables of interest in the kinetic model are the FPP front position h(t), as defined, for

example, by the solid/liquid interface, the light transmission Tr(x, t) of the PM layer and

the optical attenuation constants (µ0, µ∞) of the monomer and the fully converted material,

respectively. The extent of polymerization φ(x, t) is then introduced as an ‘order parameter’

describing the extent of conversion of the growing polymerization front. The field variable

φ(x, t) describes the average ratio of photopolymerized to unpolymerized material at a depth

x (the illuminated surface defines the coordinate origin) into the PM and satisfies the limiting

relations φ(x, t → 0) = 0 (no polymer) and φ(x, t → ∞) = 1 (full polymerization) for

all x > 0. The second field variable Tr(x, t) describes the optical transmission of the

photopolymerizable medium of thickness x at time t. This coarse-grained description of

the photopolymerization front propagation has analogies with phase-field descriptions of

ordering processes such a crystallization and dewetting where propagating fronts are also

observed [22, 23].

The evolution of the photopolymerization process is modeled by introducing appropriate

rate laws for the specified minimal set of field variables [7, 14]. The rate of change of φ(x, t)

is taken to be proportional to the optical transmission Tr(x, t), the amount of material
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available for conversion and the reaction conversion rate K,

∂φ(x, t)

∂t
= K [1− φ(x, t)]Tr(x, t) (1)

Once photopolymerization has commenced, the material is considered to be a two-

component system (consisting of reacted and unreacted material) whose components do

not generally have the same optical attenuation coefficient µ. The non-uniformity of the

conversion profile will generally give rise to an effective attenuation factor µ̄(x, t), which

depends on thickness during conversion. Only before photocuring and near full conversion

µ̄(x, t) becomes constant. In our mean-field model, we postulate that the material can be

described using a spatially varying and temporally evolving average optical attenuation,

µ̄(x, t) ≡ µ0 [1− φ(x, t)] + µ∞φ(x, t),

where (µ0) and (µ∞) are the attenuation coefficients of the unexposed monomer and fully

polymerized material, respectively. The variation leads to an evolution in the light intensity

(or transmission) profile with depth according to the generalized Beer-Lambert relation,

∂Tr(x, t)

∂x
= −µ̄(x, t)Tr(x, t), (2)

where the usual Beer-Lambert law for a homogeneous material, Tr(x, t) = exp(−µ̄x), is

recovered for short and long times as µ̄(x, t → 0) = µ0 and µ̄(x, t → ∞) = µ∞.

Specific boundary conditions must be specified in order to solve such differential equa-

tions. Initially φ(x, 0) = 0, while at the incident surface of the sample (x = 0), we have no

attenuation, thus Tr(0, t) = 1. These are sufficient to determine unique solutions to Eqs.

(1) and (2). We should also note that we can quickly solve Eq. (1) when x = 0 to obtain

φ0(t) ≡ φ(0, t) = 1− exp(−Kt), (3)

an expression for the polymerized fraction at the edge of the sample that is independent of

all model parameters except K.

The idealization of FPP evolution modeled by Eqs. (1) and (2) neglects the fact that

numerous chemical components are actually generated in the course of photopolymerization

and ignores the presence of additives and impurities that are often present in the photopoly-

merizable material. Additionally, it assumes simple chemical kinetics, defined by a single

constant K. Thus, it is not clear a priori whether such a simple order parameter treatment
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of FPP is suitable. Judgement of the adequacy of our approach must be decided by com-

parison to measurements performed over a wide range of conditions. We next consider the

final basic observable property of the FPP process, the position of the photopolymerization

front.

As in ordinary gelation, we can expect solidification to occur once φ exceeds a certain

‘critical conversion fraction’ φc (≪1). Since the liquid material can be simply washed away

after any exposure time, the height h(t) at which φ(x, t) = φc indicates the surface of the

photopolymerized material after curing and washing. This defines the position of FPP front

in a concrete way and we adopt it below. Our previous measurements have shown that φc

tends to be rather small [φc ∼ O(0.01)] in our thiol-ene photopolymerizable material [7, 14]

and this property is expected to be rather general. A small φc can be understood from the

fact that solidification in polymerizing materials [24] (e.g., ‘superglue’) normally involves a

combination of glass formation and gelation, since the glass transition temperature strongly

increases upon polymerization of a low molecular weight monomer. Accordingly, we adopt

the representative value φc = 0.02 in our discussion below.

Equations (1) and (2) define a system of non-linear partial differential equations

whose solution depends on three material parameters: the short and long-time atten-

uation coefficients, as well as the conversion rate K. The former two parameters can

be measured independently with a series of transmission measurements of unpolymer-

ized and fully polymerized specimens of different thicknesses. K is determined by the

polymerization chemistry and is a structural variable, yet both can be obtained as fit-

ting parameters. The former has been the focus of much of the previous research

[17, 18, 19, 20, 21, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], and is not discussed in the

present paper.

The coupled non-linear differential Eqs. (1) and (2) have not yet been solved analytically,

apart from special limits that are briefly summarized in the next section. These exactly

solvable cases include ‘total photobleaching’ where µ0 > 0 and µ∞ = 0 and ‘photo-invariant

polymerization’ in which the optical properties of the medium do not change in the course

of polymerization (i.e., µ0 = µ∞ ≡ µ̄). Front propagation is quite different in these different

physical situations and we briefly describe the nature of FPP in these limiting cases, and

then explore the full solution in some other physically relevant cases, where we identify those

basic features of FPP that can be recognized experimentally. Rytov et al. [25] is one of
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few previous papers to study these different types of FPP, both by analytic modelling and

experiment. This work, however, had to introduce rough approximations to obtain estimates

of front properties.

V. EXACT FORMAL SOLUTION OF KINETIC EQUATIONS IN LIMITING

CASES

A. Total Photobleaching

(µ0 > 0 and µ∞ = 0)

The initiator of the photopolymerization reaction often absorbs light strongly and the

absorption of radiation can expected to lead to a reduction of the optical attenuation upon

UV radiation through the chemical degradation of this reactive species. If this was the only

species contributing to the optical attenuation of the medium, then the photopolymerized

material would become increasingly transparent to light, becoming perfectly transparent to

the radiation at infinite times. This is evidently an idealized model of photopolymerized

materials, but most theoretical discussions of photopolymerization [4, 5, 25, 26, 27, 28, 29,

30, 31, 32, 33, 34] are restricted to this limiting case based on the assumption that the PM

initiator dominates the optical attenuation.

The case of perfect optical absorption is one of the few cases in which an exact solution

can be expressed in terms of elementary functions, and this solution is instructive into basic

features of FPP. In this case, the PM has a positive attenuation constant (µ0 > 0) and the

attenuation of the polymerized material equals, µ∞ = 0. In this case, Eqs. (1) and (2) can

be easily solved to find that the conversion fraction φ(x, t) for perfect photobleaching equals

[14]

φ(x, t) =
1− exp(−Kt)

1− exp(−Kt) + exp(µ0x−Kt)
. (4)

Note that this expression reduces to Eq. (3) when x = 0, and that the conversion fraction is

defined solely for x > 0. Eq. (4) was obtained long ago by Wegscheider [20], but the physical

interpretation of these equations differs in his treatment which models the concentration of

reactive species, rather than the extent of photopolymerization.

Equation (4) can be written equivalently in terms of the coordinate z moving with the
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front as,

φ(z, t) = 1/ [1 + exp(µ0z)] =
1

2

(

1 + tanh
(

µ0z

2

))

(5)

z = x− xf , xf = [Kt + ln [1− exp(−Kt)]] /µ0, (6)

where xf is the inflection point of the front that propagates in space as the front advances.

This position can also be identified in this model by a mathematically equivalent condi-

tion φ = 1/2, and the front position can thus can be defined by a (unique) maximum in

−∂φ(x, t)/∂x = φx,
∂2φ

∂x2

∣

∣

∣

∣

∣

xf

= 0. (7)

The position xf is particularly applicable as a definition of the interface location if optical

methods are used to probe the position of the front. Alternatively, as described in the

previous section, it is sometimes more useful to define the front position by a ‘critical’ value

of the order parameter φ(x, t) = φc (e.g., value of φ at which the material becomes a solid).

This front definition [7, 14, 35] leads to a travelling wave solution whose displacement also

obeys Eq. (6).

Indeed, if we define a new coordinate zh = x − h(t), and insist that φ(zh = 0) = φc, we

determine h(t) as,

h(t) = xf +
1

µ0

ln

(

1

φc

− 1

)

. (8)

Using the representative value of φc = 0.02 introduced above, we plot h(t) in Fig. 5.

The offset between our two interface position choices is then µ0(h − xf ) ≈ 3.892, for this

example.

Equation (6) implies that φ(x, t) evolves as a propagating sigmoidally-shaped front whose

position is defined by xf . Since this profile will be compared with φ profiles for the general

solution of Eqs. (1) and (2) below, we plot φ(z) in Figure 4 (the photo-invariant profile is

discussed in the following section).

The position of this front xf (defined here by the inflection point, or φ = 1/2) is shown in

Fig. 5. At long times (t ≫ K−1), the front translates linearly in time with a constant velocity

K/µ0. Linear front propagation has commonly been reported in experimental studies of FPP

kinetics (e.g., [25]).

At early times the position of the inflection point lies outside the polymerizing sample.

Specifically, Eq. (3) implies φ(0, t) = 1 − exp(−Kt), which can be less than φ = 1/2, the
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FIG. 4: Conversion fraction φ as a function of z for both total photobleaching (solid) and photo-

invariant polymerization (dotted), with µ0 = 1.0 mm−1.

value of φ at the inflection point. The inflection point appears after an induction time,

τ =
ln 2

K
, (9)

which explains the intercept of the interface position shown in Fig. 5.

From our definition of the position of the FPP front, the width of the front ξ can be

correspondingly defined as the reciprocal of the magnitude of φx at the front position,

ξ ≡ 1/ |φx(xf )| (10)

This definition is suitable for any symmetric front shape for which φ(x, t) ≈ 1/2 at the

inflection point and we note that φ(xf , t) exactly equals 1/2 for total photobleaching.
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FIG. 5: Plots of xf [mm] (emerging after an induction time Kt ≈ 1) and h(t) [mm] (emerging

with little induction time at Kt → 0) as a function of Kt for both total photobleaching (solid) and

photo-invariant polymerization (dotted), for µ0 = 1.0 mm−1. At late times the total photobleaching

position has a linear slope, corresponding to a front velocity of K/µ0

The light transmission Tr is similarly exactly calculated as a function of either (x, t) or

(z, t) as

Tr(x, t) = [1− exp(−Kt) + exp(µ0x−Kt)]−1 ; (11)

Tr(z, t) =
φ(z)

1− exp(−Kt)
(12)

This expression reduces to the Beer-Lambert relation, Tr(x, t → 0+) = exp[−µ0x] for the

photopolymerizable material at short times and Tr(x, t) itself frontally propagates into the

medium with increasing time. [Tr(x, t) for air is unity in our model so that Tr(x < 0, t) ≡ 1.]
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All of space thus becomes ‘transparent’ to radiation (i.e., µ = 0) in the limit of infinite

times for total photobleaching, i.e., Tr(x, t → ∞) = 1. We plot Tr(x, t) for representative

dimensionless times Kt in Fig. 6.

FIG. 6: Time evolution of Tr(x, t) as a function of x for both total photobleaching (dotted) and

photo-invariant polymerization (solid), for µ0 = 1.0 mm−1. The total photobleaching case is shown

for dimensionless times of Kt = 1, 5, 10, 15 and 20 (moving from left to right). At long times and

large x, the slope of lnTr approaches 1/µ0, while for x → 0 the slope of lnTr approaches 1/µ∞

[see Eq. (2)].
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B. Photo-Invariant Polymerization

(µ0 > 0 and µ∞ = µ0)

Another important limit of our FPP model involves the situation in which the optical

attenuation of the polymerized medium is taken to be unchanged from the pure monomer.

This situation is a reasonable approximation if the monomer is the predominant component

of the photopolymerizable material and if its optical properties (and density) are insensitive

to conversion. In this photo-invariant polymerization case, the conversion fraction equals

φ(x, t) = 1− exp[−K exp(−µ0x)t]. (13)

As in the previous limiting case, note that this expression reduces to Eq. (3) when x = 0.

(Curiously, 1−φ(x, t) is the Gumbel function [36] of extreme value statistics.) Eq. (13) can

be written in the coordinate frame z of the moving front as,

φ(z, t) = 1− exp[− exp(−µ0z)] (14)

z ≡ (x− xf ), xf =
ln(Kt)

µ0

, (15)

and we have plotted φ(z) and xf for this limiting case in Figs. 4 and 5. We note that xf is

the position of the inflection of φ(x, t), and φ = 1− e−1 ≈ 0.632 at this point. We see from

this plot that φ(x, t) once again has an invariant sigmoidal shape.

As before, we define the height h(t) of the FPP front by the condition φ(h, t) = φc:

φc = 1− exp[−K exp(−µ0h)t] (16)

and we infer that the height h(t) of the front grows logarithmically with time [see Eqn. (15),

and [7]]

h(t, µ0, K, φc) =
ln(t/τ)

µ0

(17)

τ(K, φc) ≡
ln[1/(1− φc)]

K
(18)

This logarithmic front movement is contrasted with the linear frontal kinetics of the perfect

photobleaching case. The expression for h(t) in Eq. (17) is restricted to t > τ since the

solidification front does not form instantaneously with light exposure, but grows at x = 0
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as dictated by Eq. (3). Thus, an induction time τ is required for φ to first approach φc

and for the front to begin propagating. The magnitude of the induction time depends on

the selected threshold φc, becoming much larger for xf as φc approaches φ at the inflection

point, φf [see Eq. (18)]. Notice that the slope of the ln(t) factor, describing the growth

of h(t) in Eq. (17), depends only on the optical attenuation µ0 rather than the rate of

reaction and that the intercept governing the initial front growth is governed by τ , which in

turn depends on the rate constant, optical intensity and φc. Such travelling wavefronts with

a logarithmic displacement in time occur in diverse contexts [37, 38]. Our measurements

of FPP with a thiol-ene photopolymerizable material have generally indicated logarithmic

front displacement over appreciable time scales (see Fig. 3 and [7, 14]).

The transmission Tr(x, t) does not evolve in time for photo-invariant polymerization;

Tr(x, t) simply decays exponentially with depth (x) according to the Beer-Lambert relation,

Tr(x, t) = exp(−µ0x). This invariance with time is contrasted in Fig. 6 with the wave-like

propagation of Tr(x, t) in the photobleaching case, corresponding to the invasion of the

polymerizable material of attenuation µ0 by an optically transparent medium.

It is important to realize that Eq. (17) describes the initial FPP growth process for an

arbitrary optical attenuation of the polymerized material (µ0 > 0). Moreover, Eq. (17)

describes the long time asymptotic growth provided that µ0 is replaced by its non-vanishing

counterpart µ∞ for the fully polymerized material. These extremely useful approximations

arise simply because µ(x, t) is slowly varying in these short and long time “fixed-point”

limits. The crossover between these limiting regimes can be non-trivial and is addressed

below. In many practical instances, however, the time range is restricted to the initial stage

governed by Eq. (17).

C. General FPP solution

Previous investigations of FPP have relied on numerical solutions of the governing kinetic

equations in comparison to FPP measurements validating the model. These treatments were

sufficient to demonstrate a good consistency between the model and experiment [7, 14], but

many aspects of the model are difficult to infer in the general case without a full analytic

treatment of the problem.

First, we define the transform variables θ = − ln(1− φ) and δ = − ln(Tr). Eqs. (1) and
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(2) are then rewritten as
∂θ

∂t
= Ke−δ, (19)

and
∂δ

∂x
= µ∞ − (µ∞ − µ0)e

−θ. (20)

We now take the x-derivative of Eq. (19) and the t-derivative of Eq. (20) and subtract the

resulting equations obtaining
∂2

∂x∂t
(δ − θ) = µ∞

∂θ

∂t
. (21)

This equation can be integrated directly, yielding

∂

∂x
(δ − θ) = µ∞θ + c1, (22)

where c1(x) is an arbitrary function of x. We now impose the first of two boundary condi-

tions: namely that at t = 0, φ = 0 for all x so θ(x, 0) = 0, while δ(x, 0) = µ0x. This implies

that c1(x) = µ0, a constant. If we now insert Eq. (20) into Eq. (22) we find

∂θ

∂x
= (µ∞ − µ0)

(

1− e−θ
)

− µ∞θ, (23)

which again can be integrated. This integration gives

x =
1

µ∞

∫ θ

θ0

dθ′

λ (1− e−θ′)− θ′
, (24)

where we define λ ≡ 1 − µ0/µ∞ and impose the second boundary condition θ0 = Kt (see

Eq. 3.) Note that θ0 is the dimensionless time introduced above. An expression for θ is

obtained by defining the auxiliary function, Jλ(θ),

Jλ(θ) ≡
∫ θ

1

dθ′

λ (1− e−θ′)− θ′
. (25)

Although Jλ(θ) is non-standard, it can be readily determined as with other, more familiar,

special functions. The existence of an inverse function of Jλ(θ) is guaranteed if λ < 1,

which is assured by the physics of the problem (since this restriction simply implies µ0 > 0).

Insight into Jλ(θ) is found by noting that for large values of its argument, Jλ(θ) is well

approximated by,

Jλ(θ) ≈ Jλ(C) + ln |λ− C| − ln |λ− θ|. (26)

where C ≫ 1 is a point of expansion. For small values of the argument we can develop

another expansion about c ≪ 1

Jλ(θ) ≈ Jλ(c) +
ln(c)

1− λ
−

1

1− λ
ln θ. (27)
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For much of the range of its arguments,

(Jλ(θ)− const) ∝ ln(θ).

We can now rewrite Eq. (24) as

µ∞x = Jλ(θ)−Jλ(Kt). (28)

Eq. (28) fully solves the problem, since we can now write θ(x, t) formally as

θ(x, t) = Jλ
−1(µ∞x+ Jλ(Kt)); φ(x, t) = 1− e−θ. (29)

Note that the dependencies upon x and t are fully separated, implying a functional invariance

in the propagation of the φ interface’s shape. We explore this invariance in detail below.

We can also solve for Tr, using the formal solution to Eq. (2)

Tr(x, t) = exp
{

−
∫ x

0

dx′ [µ0(1− φ(x′, t)) + µ∞φ(x′, t))]
}

. (30)

Remarkably, this can integrated to fully solve the problem:

Tr(x, t) =
λφ+ ln(1− φ)

λφ0 + ln(1− φ0)
=

λφ+ ln(1− φ)

λ(1− e−Kt)−Kt
. (31)

The solutions for the basic measurable variables φ(x, t) and Tr(x, t) are now formally com-

plete. Using any simple mathematical software the above solutions can be implemented,

solved and plotted.

1. Shape of the interface

Based on our experience with the two limiting cases of total photobleaching and pho-

toinvariant polymerization, we expect the interface shape to be sigmoidal. We now analyze

the solution in an effort to determine its general properties, without reference to particular

parameter choices. We know that φ(x, t) should increase at any fixed position as t increases.

From Eq. 23 we can easily find ∂φ/∂x as,

∂φ

∂x
= µ∞(1− φ) [λφ+ ln(1− φ)] . (32)

Since λ ≤ 1 and µ∞ > 0, we see that ∂φ/∂x is always less than 0. This is our first observation

about the shape of the curve: its slope is such that φ monotonically decreases as x increases.
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Our second observation comes from Eq. (3), where we see that φ0 = φ(0, t) rises from 0 to

1 as t increases, while φ(x → ∞) approaches 0. We also note that since φ monotonically

decreases as x increases, φ0 is the time-independent maximum value of φ. This property

derives from the invariance of φ(x) interface shape in time (see below).

As for the two limiting cases, the shape can be further examined by computing the

inflection point of φ, e.g. the extremum of ∂φ/∂x:

∂2φ

∂x2
∝ λ(1− 2φf)− 1− ln(1− φf ) = 0, (33)

where φf is the value of φ at the inflection point. It is interesting that the value of φf at

the inflection point can be determined by an equation involving elementary functions, while

the determination of the position of this point, xf , requires the use of our auxiliary function

Jλ. If we desire, we can compute θf using θf = − ln(1− φf). Note that for physical values

of λ < 1, there is only one solution to Eq. (33). This unique value of φf can exceed the

maximum value of φ, which occurs, as noted above, at φ(0, t). In this case the plot of φ(x, t)

has no inflection point. Once the induction time t > − ln(1 − φf)/K has passed, then the

inflection point exists for positive values of x.

Thus, we have a detailed picture of the interface profile characteristics:

1. The maximum value of φ(x, t) at any given time is always at x = 0, and this maximum

value, φ0 = φ(0, t), rises in time as φ0 = 1− exp(−Kt) .

2. Both φ and ∂φ/∂x approach 0 when x → ∞.

3. ∂φ/∂x < 0 for all values of x, thus φ decreases monotonically with increasing x.

4. There is a single extreme value of the slope ∂φ(x, t)/∂x. This extremum is found when

φ = φf as dictated by Eq. (33), but only when t > − ln(1− φf)/K.

This description outlines precisely the sort of sigmoidal shape we expected based on our

physical understanding of the system.

20



2. Position of the interface

We next explore the properties of the above solution for φ(x, t) in as much generality as

possible. Eq. (28) is particularly illuminating, since it can be rewritten as

z ≡ x− x∗ =
1

µ∞

Jλ(θ)− x0 (34)

x∗ = x0 −
1

µ∞

Jλ(Kt), (35)

where we now see that the shape of the interface is invariant in time, as it was in the limiting

cases, and propagates with the position x∗(t). Indeed, we can invert Eq. (34) and write

θ(z) = − ln(1− φ(z)) = J −1

λ (µ∞(z + x0)) (36)

While we are free to choose any value of the offset of the interface position x0, several

choices present themselves. One is the position of the inflection point xf , defined by the

solution to Eq. (34) with θ = θf , found from Eq. 33. If we set x∗ = xf we then have the

formal equations describing the interfacial positions,

x0 =
1

µ∞

Jλ(θf ), (37)

xf =
1

µ∞

(Jλ(θf )−Jλ(Kt)) (38)

We can get more insight into the properties of this inflection point by calculating the solution

to Eq. (33) for all λ ∈ (−∞, 1]. Both θf and φf vary over a fairly narrow range, as is seen

in Fig. 7, where φf ∈ [0.5, 0.797] and θf ∈ [ln 2, 1.594].

As was done in the limiting cases, we can also define the “height function” h(t), by

choosing a particular value of φ = φc which marks the interface position. With this choice,

and the relation θc = − ln(1− φc), we then have the formal expressions

x0 =
1

µ∞

Jλ(θc), (39)

h(t) =
1

µ∞

(Jλ(θc)−Jλ(Kt)) . (40)

The only difference between xf and h is the fixed ‘offset’

h(t)− xf =
1

µ∞

(Jλ(θc)− Jλ(θf )) . (41)
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FIG. 7: Plot of θf (solid upper curve) and φf (dotted lower curve) as a function of λ. In the limit

λ → −∞, φf → 0.5 and θf → ln 2.

3. Induction time

In our study of the limiting cases, we found an induction time when φ(x, t) first exceeded

φf (at the inflection point) or φc (the physically selected interface position). In general,

regardless of what convention we choose for the interface position, the induction time will

be simply the solution to φ0 = φ∗, where φ∗ is the value of φ at the interface φf or φc. Using

Eq. (3) this is simply

τ =
− ln(1− φ∗)

K
(42)

Because of this induction time, and the different values of φ∗ used in our definitions of

xf and h, these functions can actually behave quite differently at early times. Typically
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we select φc ≪ 1, and thus, for this case, the induction time will be relatively short on

experimental time scales, τ ≈ φc/K. On the other hand, our computation of the range of

φf ∈ (0.5, 0.797) implies a range in τ ∈ (0.693, 1.594). These values of τ are between 35 and

80 times larger than induction times established using a typical choice of φc = 0.02.

4. Approximations to the front position

It is useful to obtain approximate expressions for Eq. (34). At early times we can develop

an approximation solely for h, since xf is undefined at early times. Using Eq. (27) we obtain

the explicit estimate

h(t) ≈
1

µ0

ln
(

Kt

θc

)

; θc < Kt ≪ 1 (43)

Thus, an early time log-linear plot of h(t) will yield a slope of 1/µ0. Note that this expression

is exact for the case of photo-invariant polymerization, as comparison with Eq. (18) reveals.

At long times, we can develop a general expression for an approximate form to x∗ using

Eq. (26). Thus, we introduce an expansion for the limit C ≫ 1,

x∗ ≈ x0 − c1 +
1

µ∞

ln |λ−Kt| (44)

where c1 = [Jλ(C) + ln |λ− C|]/µ∞.

We recall, however, the limiting case where µ∞ = 0 (total photobleaching) yields,

x∗ = x0 +
1

µ0

[

Kt + ln
(

1− e−Kt
)]

, (45)

x0 =
1

µ0

ln

(

1

φ∗
− 1

)

, (46)

which has a linear x∗ ∝ t behavior at long times. This seems quite different from the

logarithmic behavior given above for the general expression. How can this be understood?

In the limit µ∞ → 0, we have that λ → −∞. For any non-zero value of µ∞ the logarithmic

behavior the approximate form must dominate at long times. However there will always be

an intermediate time (perhaps a very long time if |λ| is large!) when Kt ≪ |λ|, and in this

case we can expand the ln |λ−Kt| ≈ ln |λ| −Kt/λ to obtain linear behavior.

x∗ ≈ x0 − c1 +
Kt

µ0 − µ∞

+
ln |λ|

µ∞

; 1 ≪ Kt ≪ |λ| (47)

Now that we have a “general” solution to our kinetic equations, we examine the specific

cases of partial photodarkening and partial photobleaching.
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D. Illustration of general solution: partial photobleaching vs. photodarkening

The limits of perfect photobleaching and photo-invariant polymerization are ideals that

only approximately arise in practice. In general, the optical attenuation of the polymerizable

material is always greater than zero and can either increase or decrease upon conversion.

It is possible that the reactive products generated by the photoinitiator or the poly-

merization of the monomer increase the optical attenuation so that the polymerized mate-

rial becomes increasingly opaque to radiation with increasing time: partial photodarkening

(µ∞ > µ0). We find that this is a common situation in our FPP measurements, regardless

of the presence of nanoparticles, or temperature variations [7, 14]. For this case we choose

the realistic model parameters: µ0 = 1 mm−1, µ∞ = 5.0 mm−1, K= 1 s−1. As mentioned

before, we select the representative value for φc = 0.02.

The spatio-temporal variation of the conversion fraction φ(x, t) is shown in Fig. 8 and

its the derivative −∂φ(x, t)/∂x is shown in Fig. 9. (Since the slope is negative definite, we

plot its magnitude −∂φ/∂x). We see the development of a well defined advancing front as in

the perfect photobleaching and photo-invariant limits, discussed above. We compare these

results with other choices of the parameters below.

In contrast to photodarkening, we also consider the case where µ∞ is small: partial

photobleaching (µ∞ < µ0). Specifically, we keep all other parameters the same but reduce

µ∞ by a factor of 10. Thus, µ∞ = 0.5 mm−1, implying λ = −1. The behavior of this

system should then be somewhere between the partial photoinvariant case and the total

photobleaching limit.

Note that the frontal kinetics of FPP is specified by only 4 basic model parameters in the

framework of our model: µ0, µ∞, K and φc. The attenuation coefficients can be determined

independently with a set of Tr vs. thickness experiments of the neat and fully polymerized

material (Fig. 3). K may be determined by the time (or dose) dependence of the Tr, for

various thicknesses. Finally, the solidification conversion threshold φc is obtained by fitting

measurements of height as a function of dose to our theory.

We next consider a comparative analysis of the FPP front cases. The extent of polymer-

ization conversion fraction φ propagates as a shape invariant waveform, after an induction

period. The time evolution of φ for partial photodarkening is illustrated in Fig. 8 with

parameters λ = 0.8 and µ∞ = 5.0. We find from Eq. 33 that φf = 0.755605, and therefore
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FIG. 8: Evolution of the conversion φ with time for partial photodarkening (parameters in text),

plotted (going up and leftward) at Kt =0.1, 0.5, 1.0, 1.40897, 5, 20, 50, 100, 1000, and 10000.

θf = − ln(1 − 0.755605) = 1.40897. Accordingly, the shape of ∂φ/∂x, plotted in Fig. 9, is

invariant for Kt > 1.40897 and simply propagates to the right as t increases. For the partial

photobleaching case we find θf = 0.852606 and φf = 0.573697. This shape invariance is best

understood and appreciated by transforming φ into the moving coordinate z of the front

(as in Fig. 4), which is shown below. First, however, we consider the time dependence of

the position of the front. As before, the location of the peak in ∂φ/∂x defines x = xf(t)

[Eq. (38)]. We now see why xf is also a suitable alternative choice for the position of the

FPP front (particularly if optical methods are used to locate the interface experimentally).

Evidently, the peak height and shape of ∂φ/∂x are invariant after the peak first appears at

Kt > θf .
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FIG. 9: Evolution of −∂φ/∂x in time for partial photodarkening, shown (going up and left to

right) at Kt =0.1, 0.5, 1.0, 1.40897, 5, 20, 50, 100, 1000, and 10000.

The time-invariant nature of the front propagation of φ in the moving frame is illustrated

in Fig. 10. We observe that the φ(z) profiles are sigmoidal and independent of time when

plotted with respect to the transformed variable z = x − h(t). All curves intersect when

φ = φc, explaining the overlap at low values of φ(z).

Since xf(t) and h(t) are both important measures of FPP frontal kinetics, we compute

these observable quantities in Fig. 11 for all four cases: total photobleaching (solid, λ =

−∞), partial photobleaching (long-dash, λ = −1.0), photoinvariant (dotted, λ = 0), and

partial photodarkening (short-dash, λ = 0.8). In all cases, the interface evidently appears

after its (dimensionless) induction time Kt = − ln(1 − φ∗), where φ∗ = φc = 0.02 for the

height h (group emerging near Kt → 0), while φ∗ = φf for the inflection point front position
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FIG. 10: Conversion φ(z) as a function of the coordinate in the moving frame of the front z

for 4 different cases: total photobleaching (solid, λ = −∞), partial photobleaching (long-dash,

λ = −1.0), photoinvariant (dotted, λ = 0), and partial photodarkening (short-dash, λ = 0.8). The

plots were chosen so that they intersect at φ = φc. The profiles are time-invariant.

xf (group emerging near Kt ≈ 1), where φf is found from Eq. (33). Note that the vertical

offset between xf and h is the constant x0 dictated by Eq. (38). All the examples shown

reach xf , h ∝ lnKt at late times (near where Kt > |λ|), except for total photobleaching,

which remains in linear growth kinetics at late times.

As in the total photobleaching case, we see that the FPP front position (as defined by the

inflection point) is insensitive to crossover effects since this feature develops at late times

(see Fig. 11). The displacement in time is logarithmic after a short induction time. The

front position h(t) ≡ x(φ = φc), as defined by a ‘critical’ conversion (here, φc = 0.02), does
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FIG. 11: Front position xf (emerging from theKt-axis nearKt ≈ 1) and h (emerging asKt → 0) as

a function ofKt. We show all 4 cases: total photobleaching (solid, λ = −∞), partial photobleaching

(long-dash, λ = −1.0), photoinvariant (dotted, λ = 0), and partial photodarkening (short-dash,

λ = 0.8). The interface appears after its induction time Kt = − ln(1− φ∗), where φ∗ = φc = 0.02

for the plots of h while φ∗ = φf for the case of xf .

exhibit a noticeable crossover. As anticipated from Eq. (5), the front position h(t) moves

logarithmically at ‘short’ times where µ̄(x, t → 0) ≈ µ0 and crosses over to a slope determined

by µ̄(x, t → ∞) ≈ µ∞, respectively, as the monomer interconverts to a polymerized network.

In the partial photodarkening case, the front moves faster initially (∝ 1/µ0) and slows down

(∝ 1/µ∞) at later times. The situation occurs in the case of partial photobleaching.

The evolution of the light intensity is sensitive to the evolution of the optical attenuation

and is thus particularly interesting and informative about the nature of the front develop-
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ment. The transmission Tr(x, t) (dimensionless intensity profile) as a function of depth for

various curing times is plotted in Fig. 12 for both sets of parameters. The initial profile

is simply Tr = e−µ0x, and it decreases in the manner given by Eq. (31). In the short and

long time limits, we see that the usual Beer-Lambert law holds and the intensity decays

exponentially in x, with attenuation coefficients µ0 and µ∞, respectively. At intermediate

times, there is a crossover between these two asymptotic regimes. Note that an attempt

to fit experimental transmission results with the simple Beer-Lambert law would result in

an unphysical ( 6= 1) intercept for infinitely thin films, symptomatic of the necessity of ac-

counting for the variation in µ in the course of photopolymerization. This is how we first

recognized the importance of partial photodarkening in our former measurements [7, 14].

Figures 10–12 summarize our findings for the conversion φ(z) and light attenuation

Tr(x, t) profiles, frontal kinetics (using both inflection xp and height h criteria) for the four

cases illustrated: total and partial photobleaching, photoinvariant and partial photodarken-

ing polymerization. We see from this comparative discussion that, while the properties of

polymerization front propagation in the unpolymerized material are general, the shape of

the fronts φ and Tr and the time development of the front position (linear and logarithmic,

induction time) depends on the evolution of the optical attenuation upon polymerization.

VI. CONCLUSIONS

We have exactly solved a model frontal photopolymerization (FPP) that directly ad-

dresses the kinetics of the growth front position and the change in optical attenuation in

time under general circumstances. This model involves an order parameter φ(x, t) describing

the extent of conversion of monomer to polymer (solid) and the extent of light attenuation,

Tr(x, t). Many aspects of the photopolymerization process derive from the changing char-

acter of the optical attenuation µ in the course of PM exposure to light, and we illustrate

how this effect can lead to significant changes in the kinetics of front propagation.

The optical attenuation of the photopolymerizable material leads to non-uniformity in

the extent of polymerization. Solidification develops first at the boundary when the polymer

conversion becomes sufficiently high and then a front of solidification invades the photopoly-

merizable material in the form of a wave. We find that the interface between the solid and

liquid is described by a polymerization density profile φ(z) whose shape is invariant in
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FIG. 12: Transmission Tr(x, t) as a function of position at the late time of Kt = 10.0, for 4

different cases: total photobleaching (solid, λ = −∞), partial photobleaching (long-dash, λ =

−1.0), photoinvariant (dotted, λ = 0, and partial photodarkening (short-dash, λ = 0.8). The

slopes exhibit the expected crossover from 1/µ0 to 1/µ∞. The frontal character of Tr(x, t) is

illustrated in Fig. 6 and Figs. 4 and 5 of [14].

time. The time dependence of the front movement and the shape of φ(z) depend on the

change of the optical attenuation accompanying polymerization. The position of the front

is established using one of two methods: by specification of a critical value φc for which

solidification occurs (a convenient definition for photolithography where the liquid material

is simply washed away after photo exposure) or by determination of the inflection point in

φ(z). We find that the initial frontal growth kinetics are logarithmic in time, governed by

the optical properties of the unconverted material and are followed by a transient crossover.
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Front displacement in this crossover regime is complex, as it depends on whether conversion

decreases or increases the optical attenuation. At long times, the front displacement becomes

universally logarithmic in time (excluding the case of “perfect photobleaching” where the op-

tical attenuation after UV exposure exactly vanishes and fronts propagate linearly in time),

but it may take an (impractically) long time for this asymptotic behavior to be reached.

Many of the asymptotic properties of the general case of evolving optical attenuation that

we describe in our model are captured in a simplified model in which the optical attenuation

is assumed to be a positive, non-vanishing constant: photo-invariant polymerization.

Our general treatment of photopolymerization has been found to quantitatively describe

frontal growth in both neat [7] and nanoparticle filled [14] photopolymerizable materials

(thiol-ene copolymers) and to capture the effect of temperature (through a single rate pa-

rameter) [14]. This description provides a predictive framework for controlling the spatial

dimension of photopolymerizable materials for microfluidics and other applications, where

the rapid microfabrication of solid structures is required.
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