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Radiation pattern of a classical dipole in a photonic crystal: photon focusing
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The asymptotic analysis of the radiation pattern of a classical dipole in a photonic crystal pos-
sessing an incomplete photonic bandgap is presented. The far-field radiation pattern demonstrates
a strong modification with respect to the dipole radiation pattern in vacuum. Radiated power is
suppressed in the direction of the spatial stopband and strongly enhanced in the direction of the
group velocity, which is stationary with respect to a small variation of the wave vector. An effect
of radiated power enhancement is explained in terms of photon focusing. Numerical example is
given for a square-lattice two-dimensional photonic crystal. Predictions of asymptotic analysis are
substantiated with finite-difference time-domain calculations, revealing a reasonable agreement.

PACS numbers: 42.70.Qs; 42.25.Fx; 42.50.Pq; 81.05.Zx

I. INTRODUCTION

Purcell [1] was the first who pointed out, that the spon-
taneous emission of an atom or a molecule depends on
its environment. Since then, an influence of non-trivial
boundary conditions in the vicinity of an excited atom
on its emissive properties has been the subject of active
research [2, 3, 4]. Important examples of such an influ-
ence are an enhancement and inhibition of the sponta-
neous emission by a resonant environment [1], e.g., mi-
crocavity. These phenomena were first demonstrated by
Goy et al. [5] and Kleppner [6], respectively, and con-
tinue to be the subject of intense research not only due
to their contribution to the better understanding of the
light matter interaction, but, to a great extend, due to
the practical importance of controlling the light emission
process. Light-emitting diodes [7, 8, 9] and thresholdless
lasers [10, 11, 12] are just a few examples, where the light
extraction and the spontaneous emission control by mean
of optical microcavity leads to improved performance.

Dielectric periodic medium, also called photonic crys-
tal [13, 14], is a good example of non-trivial boundary
conditions on electromagnetic field. Such an inhomoge-
neous medium can possess a complete photonic bandgap,
i.e., a continuous spectral range within which linear prop-
agation of light is prohibited in all spatial directions. One
of the consequence is an inhibited spontaneous emission
for the atomic transition frequency inside the complete
photonic bandgap [15, 16, 17]. There are no electro-
magnetic modes avaliable to carry the energy away from
the atom at complete photonic bandgap frequencies. Al-
though an existence of complete photonic bandgap usu-
ally requires a high index (n > 3) dielectric materials
arranged in a three-dimensional (3D) lattice [13, 14], pho-
tonic crystals are proven to be useful artificial materials
to modify the light emission even in the absence of com-
plete photonic bandgap. For example, it was demon-
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strated that the external quantum efficiency of light-
emitting diodes can be significantly improved by intro-
ducing a two-dimensional (2D) photonic crystal [18, 19].
Another example is a highly directive light source em-
ploying a 3D photonic crystal [20, 21].
An intrinsic property of photonic crystals is their com-

plicated photonic band structure, which can be engi-
neered by choosing an appropriate combination of mate-
rials and lattice geometry [13, 14]. Being able to modify
in purpose the emission rate within a specific spectral
range and simultaneously in specific directions could add
a significant flexibility in improving light sources.
A number of papers were devoted to the study of the

spontaneous emission in photonic crystals, considering
emission modification using both classical [22, 23, 24, 25,
26, 27] and quantum [15, 25, 28, 29, 30, 31, 32, 33] for-
malisms. But, to the author knowledge, questions like
modification of the emission rate in a specific direction
and modification of the emission pattern due to the pho-
tonic crystal environment have not been yet addressed.
Special opportunities in controlling directionality of emis-
sion exist within spectral ranges of allowed photonic
bands, where photonic crystals display strong dispersion
and anisotropy. The consequence of anisotropy is the
beam steering effect [34, 35], which in the essence means,
that the group velocity direction of the medium’s eigen-
mode does not necessarily coincide with its wave vector
direction. A beam steering effect known to be a reason
for the number of anomalies in an electromagnetic beam
propagation inside a photonic crystal, which are usually
referred to as superprism or ultrarefractive phenomena
[34, 35, 36]. For example, an extraordinary large or neg-
ative beam bending [36], a beam self-collimation [37, 38]
and the photon focusing [39, 40] were reported. The
last phenomenon is similar to the phonon focusing, phe-
nomenon observed in the ballistic transport of phonons
in crystalline solid [41].
The term phonon focusing refers to the strong

anisotropy of heat flux in crystalline solid. First observed
in 1969 by Taylor et al. [42], phonon focusing is a prop-
erty of all crystals at low temperatures. The term “fo-
cusing” does not imply a bending of particle paths, as in
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the geometrical-optics sense of the term. The physical
reason of the phonon focusing is the beam steering. In
particular, waves with quite different wave vectors can
have nearly the same group velocity, so the energy flux
associated with those waves bunches along certain crys-
talline directions. In some special cases, a heat flux can
display intricate focusing caustics, along which flux tends
to infinity [41]. This happens when the direction of the
group velocity is stationary with respect to a small vari-
ation of the wave vector.

One can expect, that a similar phenomenon takes place
in photonic crystals [39, 40]. An optical cousin of the
acoustic phenomenon opens a unique opportunity to de-
sign a caustics pattern on purpose, enhancing and sup-
pressing emission in specific directions.

In this paper a description of an angular distribution of
radiated power of a classical dipole embedded in a pho-
tonic crystal is presented. It is assumed that only prop-
agating modes of the photonic crystal contribute to the
far-field radiation. The emission process is treated using
an entirely classical model, similar to one in [22, 24]. It
is commonly accepted that a classical description leads
to the same results as an entirely quantum electrody-
namical approach [22, 25]. In the classical description,
the modification of spontaneous emission is due to the
radiation reaction of the back-reflected field on the clas-
sical dipole [43, 44, 45]. Then within the framework of
the Weisskopf-Wigner approximation [31, 46], the spon-
taneous emission rate, Γ, is related to the classical radi-
ated power P (r0) = (ω/2) Im[d∗ · E(r0)] via Γ = P/h̄ω
[44], where d is a real dipole moment, E(r0) is a field in
the system and r0 is the dipole location. A well known
interpretation of the emission rate modification, as the
dipole interaction with the out-of-phase part of the radi-
ation reaction field, follows from that relation [43, 45]. In
the classical picture, a non-relativistic Lamb shift is due
to the dipole interacting with the in-phase part of the
reaction field [45, 47] and it is also seen to be a purely
classical effect [45, 47]. Although, the magnitude of the
anomalous Lamb shift in a realistic photonic crystal is ac-
tively and controversially discussed [28, 29, 30, 32], this
question is out of the scope of this work.

A general expressions for the field and emission rate
of the point dipole radiating in an arbitrary periodic
medium are reviewed in sections II and III, respectively.
The evaluation of the asymptotic form of the radiated
field is given in section IV. In section V, an angular dis-
tribution of radiated power is introduced. A modification
of radiation pattern is discussed in terms of photon fo-
cusing in section VI. A numerical example of an angular
distribution of emission power radiated from the point
isotropic light source is presented in section VII for the
case of a two-dimensional square lattice photonic crys-
tal of dielectric rods in air. Summary is given in section
VIII.

II. NORMAL MODE EXPANSION OF DIPOLE

FIELD

In this paper, a general linear, non-magnetic, dielectric
medium with arbitrary 3D periodic dielectric function,
ε(r) = ε(r + R), is studied. Here R is a vector of the
direct Bravais lattice, R =

∑
i liai, li is an integer and

ai is a basis vector of the periodic lattice. It is assumed
that a medium is infinitely extended in space and that
no absorption happens. In general, presented approach
is valid for any inhomogeneous, non-absorbing medium,
for which a dispersion relations can be found in the form,
ω = ω(k), numerically or analytically. Here k is the wave
vector.
In Gaussian units, Maxwell’s equations in such a

medium have a form

∇×E = −
1

c

∂H

∂t
, (1)

∇×H =
1

c
ε(r)

∂E

∂t
+

4π

c
J, (2)

∇ · [ε(r)E] = 0, (3)

∇ ·H = 0. (4)

Here, the electric (magnetic) field is denoted by E (H),
c is a speed of light in vacuum. An electromagnetic field
is produced by a current source J and the charge den-
sity is zero, ρ ≡ 0. Then one can choose the transverse
(Coulomb) gauge for the vector potential A in the form
[46]:

∇ · [ε(r)A] = 0. (5)

The absence of the charge density implies that the scalar
potential ϕ is zero. The electric and magnetic fields can
be written in terms of the vector potential A via:

E = −
1

c

∂A

∂t
, (6)

H = ∇×A. (7)

Combining equations (6-7) with Maxwell’s equations (1-
4) one obtains the wave equation for the vector potential
A:

∇×∇×A+
1

c2
ε(r)

∂2
A

∂t2
=

4π

c
J. (8)

In what follows, a simplest form of the current density J

is taken:

J(r, t) = −iω0dδ(r− r0)e
−iω0t (9)

for a harmonically oscillating dipole with a frequency ω0

and a real dipole moment d, located at the position r0

inside a photonic crystal, switched on at t = 0.
The field of an arbitrary light source embedded in a

periodic medium can be constructed by a suitable super-
position of the medium’s eigenwaves:
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A(r, t) =
∑

n

∫

BZ

d3knCnk(t)Ank(r). (10)

Here Ank(r) and Cnk(t) are the Bloch eigenvector and
the time-dependent amplitude coefficient of the eigen-
wave (n,k), respectively. The form of the amplitude co-
efficient is defined by the particular nature of the light
source. The integration is performed over the first Bril-
louin zone (BZ) of the crystal and the summation is car-
ried out over different photonic bands, where n is the
band index.
Eigenwaves Ank(r) satisfy the homogeneous wave

equation

∇×∇×Ank −
ω2
nk

c2
ε(r)Ank = 0 (11)

and also fulfill the orthogonalization, normalization and

closure conditions given by:

∫

V

d3rε(r)Ank(r)A
∗

n′k′(r) = V δnn′δ(k− k
′), (12)

∫
d3kAnk(r)A

∗

nk(r
′) = Iε⊥δ(r− r

′), (13)

where ωnk is the Bloch eigenfrequency, V is the volume
of the unit cell of the crystal, ∗ denotes the complex con-
jugate and Iε⊥ is the identity operator on the subset
of the ε-transverse vector functions as defined in [46].
The Bloch eigenvector Ank(r) obeys the gauge condition
∇ · [ε(r)Ank(r)] = 0 and are therefore transverse with
respect to this gauge. Equations (12-13) ensure that the
eigenvectors Ank(r) form a complete set of orthonormal
ε-transverse functions. Here any vector that satisfies the
ε-transverse gauge condition (5) is called “ε-transverse”
[22].

The amplitude coefficients Cnk(t) can be easily obtained from the wave equation (8). Substituting (10) into the
wave equation (8) and using the homogeneous wave equation (11), one obtains

∑

n

∫

BZ

d3kn

(
∂2Cnk(t)

∂t2
+ ω2

nkCnk(t)

)
ε(r)Ank(r) = 4πcJ(r, t)

Then taking the inner product between every term of
this equation and an eigenvector An′k′(r), i.e., multiply-
ing by A

∗

n′k′(r) and integrating over the unit cell of the
crystal, one finally obtains the differential equation for
the amplitude coefficients Cnk(t)

∂2Cnk(t)

∂t2
+ ω2

nkCnk(t) = −i
4πcω0

V
(A∗

nk(r0) · d) e
−iω0t,

where the orthogonality of the eigenvectors (12) and a
specific form of the source term (9) were taken into ac-
count. Then assuming initial conditions Cnk(0) = 0, one
has the following solution of this differential equation

Cnk(t) = −i
4πcω0

V

(A∗

nk(r0) · d)

(ω2
nk − ω2

0)
e−iω0t. (14)

Finally, the electromagnetic field radiated by a point
dipole located at r0 can be represented in terms of Bloch
normal modes as:

A(r, t) = −i
4πcω0

V

∑

n

∫

BZ

d3kn
(a∗nk(r0) · d)

(ω2
nk − ω2

0)

× ank(r)e
ikn·(r−r0)e−iω0t, (15)

where the Bloch theorem, Ank(r) = ank(r)e
ikn·r, have

been used.
The integrand in (15) has a pole at ω2

nk = ω2
0 , and the

integral is singular. This is a typical behavior for any

resonance system, where dissipation is neglected. The
standard way to regularize the integral is to add a small
imaginary part to ω2

0 . The result of the integration then
becomes dependent on the sign of this imaginary part.
The criterion for determining the sign will be discussed
below. A regularized integral (15) reads

A(r, t) = −i
4πcω0

V

∑

n

∫

BZ

d3kn
(a∗nk(r0) · d)

(ω2
nk − ω2

0 − iγ)

× ank(r)e
ikn·(r−r0)e−iω0t. (16)

III. SPONTANEOUS EMISSION RATE

A light source situated in an inhomogeneous medium
is immersed in its own electric field emitted at an earlier
time and reflected from inhomogeneities in the medium.
By conservation of energy, the decay rate at which en-
ergy is radiated is equal to the rate at which the charge
distribution of the source does work on the surrounding
electromagnetic field. For an arbitrary current density J,
the radiated power is given by [48]:

P (t) = −

∫

V

d3rJ(r, t) · E(r, t), (17)

where V is a volume containing a current density source
J and it is related to spontaneous emission rate via Γ =



4

'

dk

!

nk

!

nk

+ d!

V

nk

k

n

d


nk

d

2

k

FIG. 1: Diagram showing the relations between k-space and
coordinate space quantities. Iso-frequency contours for fre-
quencies ωnk and ωnk + dω are presented.

P/h̄ω0 [44]. For the time-averaged radiated power, one
has

P = −
1

2
Re

[∫

V

d3rJ∗(r, t) · E(r, t)

]
, (18)

or, specializing to a point dipole (9)

P =
ω0

2
Im [d∗ ·E(r0)] . (19)

A well known interpretation of the emission rate modifi-
cation follows from this relation. Emission rate is mod-
ified due to the dipole interaction with the out-of-phase
part of the radiation reaction field [43, 45].
Consider an excited molecule or atom at a position

r0 in a photonic crystal. Assuming that the presence
of the molecule does not change the band structure of
the crystal, the only possible mode it can emit in, is an
eigenmode of the photonic crystal. In the classical ap-
proach, the molecule is modeled by a point dipole d (9).
The radiation reaction field will be given by the normal
mode expansion (16), which is valid for any point r in the
crystal, which is distinct from (but as close as required
to) the dipole location r0. Such a choice of the radiation
reaction field corresponds to the Weisskopf-Wigner ap-
proximation [31, 46]. Then the radiated power (emission
rate) (19) of a classical dipole in a photonic crystal is
given by:

P = Im

[
2πω3

0

V

∑

n

∫

BZ

d3kn
|Ank(r0) · d|

2

(ω2
nk − ω2

0 − iγ)

]
. (20)

where equation (6), relating E = −(1/c)∂A/∂t, was
used. This integral can be converted to a two-
dimensional integral over the iso-frequency surface in k-
space. With the aid of the integral representation

1

x− iγ
= −

1

i

∫
∞

0

dτe−ixτ−γτ , (21)

one can transform the integral (20) to the form:

P = Im

[
i
2πω3

0

V

∑

n

∫

BZ

d3kn |Ank(r0) · d|
2

×

∫
∞

0

dtei(ω
2

0
−ω2

nk
)t

]
. (22)

Now, making use of the time-reversal symmetry of the
Maxwell’s equations, which for a periodic medium im-
plies that ωn,k = ωn,−k [13], one can rewrite the time
integral in (22) to obtain

∫
∞

0

dtei(ω
2

0
−ω2

nk
)t =

1

2

∫
∞

−∞

dtei(ω
2

0
−ω2

nk
)t = πδ(ω2

0−ω2
nk).

Then, changing the integration variable to the eigenfre-
quency ωnk by use of the relations |∇kωnk| dk = dωnk

and d3kn = dkd2kn, where d
2
kn is an element of the iso-

frequency surface ωnk = ω0 (Fig. 1), equation (22) can
be transformed to:

P =
2π2ω3

0

V

∑

n

∫
d2kn

∫
dωnk

|Ank(r0) · d|
2

|∇kωnk|
δ(ω2

0−ω2
nk),

where one can carry out the integration over the eigen-
frequency ωnk to obtain finally

P =
π2ω2

0

V

∑

n

∫
d2kn

|Ank(r0) · d|
2

|Vnk|
, (23)

where, Vnk = ∇kωnk, the group velocity of the eigen-
wave (n,k) is introduced.
Formula (23) gives the total time-averaged radiated

power of a dipole situated inside a photonic crystal
[22, 24]. This result agrees with fully quantum electro-
dynamical result for spontaneous emission rate of a two-
level atom within the Weisskopf-Wigner approximation
[46].

IV. ASYMPTOTIC FORM OF DIPOLE FIELD

In this section, a radiating dipole field is analyzed in
the radiation zone. For that, an asymptotic form of the
integral (16) is evaluated and analyzed. In what follows,
an asymptotic analysis of the Green’s function developed
by Maradudin [49] for the phonon scattering problem is
used.
Using the integral representation (21) one can rewrite

(16) as

A(r) =
4πcω0

V

∑

n

∫

BZ

d3kn

×

∫
∞

0

dτ (a∗nk(r0) · d)ank(r)e
iFnk(τ), (24)

where

Fnk(τ) = kn · (r− r0)− τ(ω2
nk − ω2

0) (25)

and a limit γ → 0 was taken.
In a typical experiment |x| = |r− r0| ≫ λ, where λ is

the wavelength of the electromagnetic wave. For large |x|
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an exponential function in the integral (24) will oscillate
very rapidly and one can use the method of stationary
phase to evaluate the integral.
The principal contribution to the integral comes from

the neighborhood of those points in τ - and k-space where
the variation of Fnk(τ) is the smallest. This means that
one can set the gradient of the function Fnk(τ) in k-space
equal to zero as well as the derivative of the function with
respect to τ . This gives the conditions

∂Fnk

∂τ
= ω2

nk − ω2
0 = 0, (26)

∇kFnk = x− τ∇kω
2
nk = 0. (27)

Equations (26-27) determine the values of τ and kn

around which the principal contributions to the integral
(24) arise. These points are called stationary points. Fur-
ther, the stationary points are denoted by τν and k

ν
n.

Assuming that value of the eigenvector ank(r) is approx-
imately constant ank(r) ≈ a

ν
nk(r) for τ close to τν and

for the wave vectors close to k
ν
n, the integral (24) is re-

duced to the sum of the integrals in the vicinities of the
stationary points (τν ,k

ν
n) [49, 50]

A(r) ≈
4πcω0

V

∑

n

∑

ν

(aν∗nk(r0) · d) a
ν
nk(r)

×

∫

kν

n

d3kn

∫

τν

dτeiFnk(τ), (28)

Here an extra summation is over all possible solutions of
Eqs. (26-27).
Due to Eq. (26) the principal contribution to

the asymptotic behavior of A(r) comes from the iso-
frequency surface in k-space defined by ω2

nk = ω2
0 or

equivalently defined by ωnk = ω0 (eigenfrequency ωnk

is positive and real). At the same time, due to Eq. (27)
the portion of the iso-frequency surface ωnk = ω0, which
contributes to the asymptotic field, is the portion near
the point on this surface where the gradient ∇kω

2
nk is

parallel to x. One can express the latter condition in an
alternative fashion. Equation (27) can be simplified as:

x = 2τωnkVnk,

where Vnk = ∇kωnk is the group velocity of the eigen-
wave (n,k). So, equation (27) just says that the principal
contribution to the asymptotic behavior of the field A(r)
at large |x| = |r− r0| ≫ λ comes from the neighborhood
of the points kν

n on the iso-frequency surface ωnk = ω0 at
which the eigenwave group velocity is collinear to obser-
vation direction x. Since τ is positive by definition (21),
V

ν
nk and x should not only be collinear, but should point

in the same direction as well, i. e., x ·Vν
nk > 0.

Assuming that the major contribution comes from the
regions near the stationary points, one makes a little error
by extending the integration in (28) over all space

A(r) ≈
4πcω0

V

∑

n

∑

ν

(aν∗nk(r0) · d) a
ν
nk(r)

×

∫
∞

−∞

d3kn

∫
∞

−∞

dτeiFnk(τ). (29)

Then, the integral over τ is simply given by Dirac δ-
function:

∫
∞

−∞

dτeiτ(ω
2

0
−ω2

nk
) = 2πδ(ω2

0 − ω2
nk)

and one can further convert the volume integration in k-
space to an integral over the iso-frequency surface ωnk =
ω0. In fact, by using the relations |∇kωnk| dk = dωnk and
d3k = dkd2k, and integrating over the eigenfrequency
ωnk, the volume integration over k transforms to:

∫
∞

−∞

d3kne
ikn(r−r0)δ(ω2

0−ω2
nk) =

∮
∞

−∞

d2kn
π

ω0

eikn·(r−r0)

|Vnk|
,

where Vnk = ∇kωnk is the group velocity of the eigen-
wave (n,k). So, the asymptotic form of the field A(r) is
given finally by:

A(r) ≈
4π2c

V

∑

n

∑

ν

(aν∗nk(r0) · d) a
ν
nk(r)

|Vν
nk|

×

∮
∞

−∞

d2kne
ikn·(r−r0), (30)

where the comparatively slowly varying function Vnk

was replaced by its value at stationary point kν
n and was

taken outside the integral over k.
To evaluate the integrals in Eq. (30) the analysis of

the form of the iso-frequency surface in the vicinity of
one of the stationary points, kν

n, should be done. It is
convenient to introduce the local curvilinear coordinates
ξi with the origin at the stationary point and with one of
the coordinate aligned perpendicular to the iso-frequency
surface, e.g., ξ3. One can expand function h (ξ1, ξ2) =
kn · x̂ near the stationary point as:

h (ξ1, ξ2) = k
ν
n · x̂+

1

2

2∑

i,j=1

αν
ijξiξj

+
1

6

2∑

i,j,k=1

βν
ijkξiξjξk +O (ξ1, ξ2)

4
, (31)

where

αν
ij =

(
∂2h

∂ξi∂ξj

)

ν

, βν
ijk =

(
∂3h

∂ξi∂ξj∂ξk

)

ν

and x̂ is a unit vector in the observation direction. All
derivatives are evaluated at the stationary point kν

n.
The result of the integration in (30) depends on the lo-

cal topology of the iso-frequency surface near the station-
ary point. One can generally classify the local topology
of the surface by its Gaussian curvature. The Gaussian
curvature K is the product of the two principal curva-
tures (inverse radii, K1 and K2) at a point on the sur-
face, i.e., K = K1K2. The points on an iso-frequency
surface can be elliptical, hyperbolic and parabolic. If the
Gaussian curvature K > 0, the corresponding point on
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the iso-frequency surface is called elliptical, and if K < 0
it is called hyperbolic. For a complex surface, such as
the iso-frequency surface in figure 2-left, the regions with
positive and negative Gaussian curvature alternate. The
surface is parabolic at the borders between regions with
curvatures of opposite signs, e.g, convex and saddle. The
lines along which the curvature changes its sign are called
parabolic lines. The Gaussian curvature at a parabolic
point is equal to zero.
Further, the analysis of the asymptotic form of the

integral (30) is undertaken, when the stationary points
are elliptical or hyperbolic. Then in the close vicinity of
such a stationary point the following expansion holds:

h (ξ1, ξ2) = k
ν
n · x̂+

1

2

2∑

i,j=1

αν
ijξiξj , (32)

where only quadratic terms in the expansion (31) were
kept. By choosing the orientation of the local coordi-
nates ξ1 and ξ2 along the main directions of the surface
curvature at that point kn = k

ν
n, one can diagonalize the

matrix αν
ij . Then

h (ξ1, ξ2) = k
ν
n·x̂+

1

2

(
αν
1ξ

2
1 + αν

2ξ
2
2

)
, αν

1 = αν
11, α

ν
2 = αν

22.

(33)
With such a choice of local coordinates in k-space, the
product Kν

nk = αν
1α

ν
2 determines the Gaussian curvature

of the iso-frequency surface at the stationary point kn =
k
ν
n.

Using expansion (33) the asymptotic form of the field (30) is now given by:

A(r) ≈
4π2c

V

∑

n

∑

ν

(aν∗nk(r0) · d)a
ν
nk(r)

|Vν
nk|

eik
ν

n
·x

∮
∞

−∞

dξ1dξ2 exp

(
i |x|

2

(
αν
1ξ

2
1 + αν

2ξ
2
2

))
. (34)

The integral in Eq. (34) is calculated simply to be

∫
∞

−∞

dξ exp
(
i
xα

2
ξ2
)
=

√
2π

x |α|
exp

(
−
iπ

4
sign (α)

)
(35)

and an asymptotic form of the vector potential (15) at the position r far from the dipole is given by

A(r, t) ≈
∑

n

∑

ν

exp
(
−i
(
ω0t+

π

4
(sign(αν

1) + sign(αν
2))
)) c

V

(Aν∗
nk(r0) · d)A

ν
nk(r)

|Vν
nk|

8π3

|Kν
nk|

1/2
|r− r0|

(36)

where A
ν
nk(r) = a

ν
nk(r)e

ikν

n
·r and summation is over all stationary points with x ·Vν

nk > 0.

According to the Eq. (36) the electromagnetic field in-
side photonic crystal represents a superposition of several
diverging waves, the number of which equals the number
of stationary phase points on the iso-frequency surface
ωnk = ω0 (Fig. 2-left). Each of these waves has its own
shape and its own propagation velocity. One comment is
important here, the asymptotic expansion (36) describes
an outgoing wave (kν

n · x > 0) only if the corresponding
group velocity is an outward normal to the iso-frequency
surface ωnk = ω0 at point k

ν
n. It can happen, however,

that the group velocity becomes an inward normal for
some frequencies and regions of k-space (Fig. 2-left). In
such a case the dot product kν

n · x is not positive in the
asymptotic expansion (36) and the expansion describes
incoming waves. In such a situation, one should change
the sign of the small imaginary part γ in regularized equa-
tion (16) [49]:

A(r) = −i
4πcω0

V

∑

n

∫

BZ

d3kn
(a∗nk(r0) · d)

(ω2
nk − ω2

0 + iγ)

× ank(r)e
ikn·(r−r0) (37)

and proceed as it has been describe above (24-36), but
using the integral representation

1

x+ iγ
=

1

i

∫
∞

0

dτeixτ−γτ (38)

instead of (21).

V. ANGULAR DISTRIBUTION OF RADIATED

POWER

In this section, the angular dependence of the dipole
radiated power (23) is introduced.
Using the definition of the solid angle, dΩnk =

d2k cosϕ/ |kn|
2
, where dΩnk is the solid angle subtended

by the surface element d2kn, ϕ is the angle between the
wave vector kn and the group velocity Vnk = ∇kωnk

(Fig. 1), on changing the integration variables, one can
modify equation (23) to the form

P =
∑

n

∫ 4π

0

dΩnk

(
π2ω2

0

V

|Ank(r0) · d|
2

|Vnk|

|kn|
2

cosϕ

)
, (39)
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FIG. 2: Iso-frequency and wave contours. Left: The central
region of the iso-frequency contour for normalized frequency
Ω = ωd/2πc = d/λ = 0.569 of an infinite square lattice 2D
photonic crystal made out of dielectric rods placed in vacuum.
Rods have the optical index 2.9 and radius r = 0.15d, where
d is the period of the lattice (see Sec. VII for details). The
stationary points, k1, k2 and k

3, corresponding to the same
observation direction x̂ are indicated. Right: Corresponding
wave contour with folds. The shaded and black regions show
how two equal solid angle sections in coordinate space (right)
map to widely varying solid angle sections in k-space (left).
The wave and group velocity vectors with numbers illustrate
the folds formation of the wave contour.

where the function enclosed in the brackets defines the
radiated power of the dipole per solid angle in k-space

dP

dΩnk
=

π2ω2
0

V

|Ank(r0) · d|
2

|Vnk|

|kn|
2

cosϕ
. (40)

To derive the angular distribution of radiated power in
the coordinate space, one should change the integra-
tion variables in (39) from the k-space to the coordinate
space.
The k-space distribution of the radiated power (40) is a

function of the k-space direction, given by the polar, θnk,
and azimuthal, φnk, angles of the wave vector kn. The
direction of energy propagation in a non-absorbing peri-
odic medium coincides with the group velocity direction
[51]. Whereas the coordinate space angular dependence
of the radiated power is given by the corresponding group
velocity direction in the coordinate space (θ, φ). Here θ
and φ are the polar and azimuthal angles of the group
velocity in coordinate space. The k-space to the coor-
dinate space transformation may be expressed formally
as

cos θ = f(cos θnk, φnk), (41)

φ = g(cos θnk, φnk), (42)

where the functions f and g are determined from the
components of the group velocity vector Vν

nk ‖ x̂, where
x̂ is a unit vector in the observation direction. The Ja-
cobian of the transformation (41-42)

Jnk =
∂f

∂ cos θnk

∂g

∂φnk
−

∂f

∂φnk

∂g

∂ cos θnk
(43)

k

n

'

'

!

nk

V

nk

d


nk

d

2

k

d


jK

nk

j

�1=2

FIG. 3: Diagram to derive the relation between solid angles
in the k-space and coordinate space. The iso-frequency con-
tour for frequency ωnk is presented. The Jacobian of the
transformation (41-42) is given by the ratio dΩ/dΩnk. By
the definition of the solid angle, the solid angle in k-space is
dΩnk = d2k cosϕ/ |kn|

2, while the corresponding solid angle
in coordinate space is dΩ = d2k |Knk|. That gives the Jaco-
bian Jnk = |kn|

2 |Knk| / cosϕ. Here ϕ is an angle between the
wave vector and the group velocity vector. d2k is the surface
element of the iso-frequency surface.

relates a small solid angle in the coordinate space with
the corresponding solid angle in k-space via

dΩ = d(cos θ)dφ = Jnkd(cos θnk)dφnk = JnkdΩnk. (44)

According to the results presented in the Section IV, dif-
ferent wave vectors can result in the group velocity with
same direction in coordinate space. That means that the
following equation

dΩν
nk =

1

Jν
nk

dΩ

should hold for each stationary wave vector, which sat-
isfies x̂ ·Vν

nk > 0. Changing the integration variables in
(39) one should then sum individual contributions from
all these wave vectors:

P =
∑

n

∑

ν

∫ 4π

0

dΩ

(
π2ω2

0

V

|Aν
nk(r0) · d|

2

Jν
nk |V

ν
nk|

|kν
n|

2

cosϕ

)
,

(45)
The geometrical relationship between solid angles in

k-space and coordinate space (Fig. 3) results in the fol-
lowing formula for the Jacobian (43)

Jν
nk = |kν

n|
2 |Kν

nk| / cosϕ.

Then, equation (45) can be transformed to the form:

P =

∫ 4π

0

dΩ

(
∑

n

∑

ν

π2ω2
0

V

|Aν
nk(r0) · d|

2

|Vν
nk| |K

ν
nk|

)
, (46)

whereVν
nk = ∇kωnk is the group velocity andKν

nk deter-
mines the Gaussian curvature of the iso-frequency surface
at the stationary point kn = k

ν
n. Finally, the radiated
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power of the dipole per solid angle in coordinate space is
given by the function enclosed in the brackets in (46)

dP

dΩ
=
∑

n

∑

ν

π2ω2
0

V

|Aν
nk(r0) · d|

2

|Vν
nk| |K

ν
nk|

. (47)

Formula (47) provides a simple route to calculate an
angular distribution of radiated power of the point dipole
(9) inside a photonic crystal. It can be interpreted as a
decay rate, at which the dipole transfers energy to the
electromagnetic waves with the group velocity in the ob-
servation direction. Then, (dΓ/dΩ) = (dP/dΩ)/h̄ω0 is
related to the probability of the radiative transition of
an excited atom with emitting a photon traveling in the
given observation direction.
Basically, formulae (46-47) involve calculations of the

Bloch wave vectors kν
n, ending at the iso-frequency sur-

face ωnk = ω0, the corresponding group velocity vectors
V

ν
nk, the Gaussian curvature of the iso-frequency surface

Kν
nk and the local coupling strength of the dipole mo-

ment with a Bloch eigenwave (n,k), given by the factor
|Aν

nk(r0) · d|. The primary difficulty in obtaining the co-
ordinate space distribution of radiated power (dP/dΩ)
(47) is that the wave vector, the group velocity and the
Gaussian curvature are all functions of the k-space di-
rection. Whereas an angular dependence of the radiative
power (dP/dΩ) is given by the corresponding group ve-
locity direction (θ, φ). To calculate the radiated power
(dP/dΩ) (47) one should take an inverse of the map-
ping (41-42). This inverse is not necessarily unique. In
the case of multiple stationary points (26-27), one direc-
tion (θ, φ) results from several different k-space directions
(θk, φk) (Fig. 2). This requires that the inversion of the
mapping (41-42) must be done point-by-point.
As a simple exercise, formula (47) is applied here to

calculate an angular distribution of power radiated by a
dipole in free space. The wave vector and the group ve-
locity in free space are parallel and their values are simply
given by |k| = ω0/c and c, respectively. The Gaussian
curvature of the iso-frequency surface is a square of the
inverse wave vector 1/ |k|2. And the appropriate normal
modes are plane waves

Ank(r) =

√
V

(2π)3
eik·rânk,

where ânk is a polarization vector orthogonal to the wave
vector k. Then, the radiated power is given by (47)

(
dP

dΩ

)

free

=
1

8π

ω4
0

c3
|d|

2
sin2 θ (48)

yielding the usual results for radiation pattern in free
space [48].

VI. PHOTON FOCUSING

The factor |Aν
nk(r0) · d|

2
in relation (47), giving the

coupling strength of dipole moment with the photonic

crystal eigenmode at the dipole position, can display a
complex angular behavior, which depends on eigenmode
structure and dipole orientation with respect to the crys-
tal lattice. To study the net result of the influence of the
photonic crystal on the radiation pattern of the emitter,
it is instructive to model an isotropic light source pro-
ducing a uniform distribution of wave vectors. Moreover,
an isotropic point source is usually a good model for a
common experimental situation of emitters with random
distribution of dipole moment (dye molecules [52, 53, 54],
quantum dots [52, 55], etc.). Then, the radiated power
(47) should be averaged over the dipole moment orienta-

tion, which simply yields a factor of |d|2 /3

(
dP

dΩ

)

i

=
∑

n

∑

ν

(2πc)3

V ω2
0

|Aν
nk(r0)|

2

|Vν
nk| |K

ν
nk|

. (49)

Here the result was normalized to the radiated power
in free space. Now, the factor |Aν

nk(r0)|
2
gives a field

strength at the source position and has no angular de-
pendence. So, the radiation pattern of a point isotropic
emitter is defined by

(
dP

dΩ

)

i

∼
∑

n

∑

ν

|Vν
nk|

−1
|Kν

nk|
−1

. (50)

The radiated power (50) is proportional to the inverse

group velocity, |Vν
nk|

−1, and to the inverse Gaussian cur-

vature, |Kν
nk|

−1 of iso-frequency surface. A large en-
hancement of emission rate is expected when the group
velocity is small. This can be interpreted as a conse-
quence of the long interaction time of the emitter and
the radiation field [56, 57, 58]. In a similar fashion, a
small Gaussian curvature formally implies an enhance-
ment of radiated power along a certain observation di-
rection. While spontaneous emission enhancement due
to a small group velocity involves non-linear interaction
of radiation and emitter, the enhancement due to a small
Gaussian curvature is a linear phenomenon related to the
anisotropy of the photonic crystal and is a result of the
beam steering effect. Being a measure of the rate, with
which emitter transfers energy in photons with a given
group velocity, radiated power (50) will be enhanced if
many photons with different wave vectors reach the same
detector. The enhancement of the radiated power, which
is due to the small Gaussian curvature is called photon

focusing [39, 40] and has a major influence on radiation
pattern of a point source in a photonic crystal.
The physical picture of the photon focusing can

be illustrated in the following manner (Fig. 2). An
iso-frequency surface of an isotropic and homogeneous
medium is a sphere. There is only one stationary point
with x̂ · Vν

nk > 0 and thus only one wave propagating
in the given direction. Figure 2-left is an example of a
part of the actual iso-frequency contour of a 2D photonic
crystal made out of dielectric rods placed in vacuum (see
Sec. VII for further details). The anisotropy of the crys-
tal implies a complex non-spherical iso-frequency surface,
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which can have several stationary points with x̂·Vν
nk > 0

(Fig. 2-left). Several waves can propagate in a given di-
rection inside a photonic crystal. It is illustrative to con-
struct the wave surface in coordinate space. To construct
the wave surface one should plot a ray in the observation
direction x̂ starting from the point source position and
having the length of the group velocity |Vν

nk|. An ex-
ample of the wave contour is presented in figure 2-right.
The existence of multiple stationary point implies that
the wave surface is a complex multivalued surface pa-
rameterized by wave vector kn. Figure 2 illustrates how
this can result in a fold of the wave surface.
In the vicinity of the parabolic point with zero Gaus-

sian curvature an iso-frequency surface is flat. That im-
plies, that a very large number of eigenwaves with wave
vectors in the vicinity of a parabolic point have nearly
the same group velocity, contributing to the energy flux
in the direction parallel to that group velocity. In the
figure 2, it is illustrated by mapping two equal solid an-
gle sections along different observation direction in the
coordinate space onto the corresponding solid angle sec-
tions in k-space [59]. The black solid angle section in
coordinate space maps onto a single smaller solid angle
section in k-space implying a “defocusing” of the energy
flux. The shaded solid angle section in coordinate space,
which crosses three different branches of the wave con-
tour, maps onto two different and larger solid angle sec-
tions in k-space implying enhancement (“focusing”) of
the energy flux in this group velocity direction. This re-
sults in strongly varying angular distribution of emission
intensity with sharp singularities (caustics).

VII. NUMERICAL EXAMPLE: 2D PHOTONIC

CRYSTAL

In this section the theoretical approach developed in
the previous sections is applied to the numerical calcu-
lation of the radiation pattern of a point source placed
inside a 2D photonic crystal. A point source is situated
inside the crystal and it produces an isotropic and uni-
form distribution of wave vectors kn with the frequency
ω0.
An infinite 2D square lattice of dielectric rods in vac-

uum (Fig. 4) is considered in the case of in-plane propa-
gation. Consequently, the problem of an electromagnetic
wave interaction with a 2D photonic crystal is reduced
to two independent problems, which are called TE and
TM, when the electric or magnetic field is parallel to the
axis of the rods. In the illustrative example presented
in this section, all numerical calculations have been per-
formed for TM modes of the crystal. The photonic band
structure of the crystal made of the rods with the re-
fractive index n = 2.9 is presented in the figure 4. The
band structure has been calculated using the plane wave
expansion method [60].
In the figure 5 iso-frequency contours of the crystal are

presented for two frequencies belonging to the first pho-
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FIG. 4: Photonic band structure of TM modes for the square
lattice photonic crystal with refractive index of the rods n =
2.9, the lattice constant d and radius of the rods 0.15d. The
frequency is normalized to Ω = ωd/2πc = d/λ. c is the speed
of light in vacuum. Insets show the first Brillouin zone of the
crystal with the irreducible zone shaded light gray (left) and
a part of the lattice (right).

FIG. 5: Iso-frequency contours of the square lattice photonic
crystal for the normalized frequencies Ω = 0.31 (dashed line)
and Ω = 0.34 (solid line). Parabolic point are marked by the
black dots. The first Brillouin zone of the lattice is plotted
in order to show the spatial relation between zone boundary
and iso-frequency contours.

tonic band (Fig. 4). To plot an iso-frequency contour,
the photonic band structure for all wave vectors within
the irreducible BZ was calculated and then the equation
ω(k) = ω0 was solved for a given frequency ω0. Fre-
quencies have been chosen below (Ω = 0.31) and above
(Ω = 0.34) the low edge frequency of the stopband in
the ΓX direction of the crystal. The iso-frequency con-
tours below and above the stopband edge frequency show
an important difference. As the frequency stays below
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the stopband, an iso-frequency contour is closed and al-
most circular (Fig. 5). The corresponding wave contour
(see Section VI for definition) is presented in the figure
6. To calculate the group velocity, the plane wave ex-
pansion method [60] and the Hellmann-Feyman theorem
were used. The group velocity |Vν

nk| and the Gaussian
curvature |Kν

nk| of the iso-frequency contours are rela-
tively slow function of the wave vector. The Gaussian
curvature does not vanish for any wave vector. This im-
plies a small anisotropy in the energy flux inside the crys-
tal.

To find how a radiated power varies in coordinate
space, one should calculate the group velocity and the
Gaussian curvature on the iso-frequency contour ω(k) =
ω0 as functions of an angle in coordinate space. As the
wave contour is single valued function, the inverse of the
mapping (41-42) from k-space to coordinate space is one-
to-one and can be easily done. In the figure 7 the polar
plot of radiated power is presented, which shows small
amount of anisotropy. The angular distribution of the
radiated power possesses four-fold rotational symmetry
of the crystal.

With increase of the frequency up to the stopband, the
topology of the iso-frequency contour abruptly changes.
The stopband developed in the ΓX direction and the
iso-frequency contour becomes open (Fig. 5). This
topology changes result in complex contour with al-
ternating regions of different Gaussian curvature sign.
Parabolic points, where the Gaussian curvature vanishes,
are marked by black dots in the figure 5. As it has been
discussed in section VI, vanishing curvature results in
the folds of the wave contour. The wave contour cor-
responding to the iso-frequency Ω = 0.34 is presented
in the figure 8. A pair of the parabolic points in the
first quarter of the Brillouin zone results in a cuspidal
structure of the wave contours in the first quarter of the
coordinate space. This dramatically increases anisotropy
of the energy flux.

The folds in the wave contours yields that inverse of
the mapping (41-42) from k-space to coordinate space
is not one-to-one any more. To apply the formula (50)
to calculate an angular distribution of radiated power
in such a case, one should proceed as follows. At first,
the Gaussian curvature as a function of the wave vector
should be calculated. Then, wave vectors and group ve-
locities corresponding to the parabolic points on the iso-
frequency surface should be found. An inversion of the
mapping (41-42) should be calculated separately for each
of the branches of the wave contour. The total radiated
power is a sum of the different contributions from these
branches. In the figure 9 the polar plot of radiated power
(50) corresponding to the normalized frequency Ω = 0.34
is presented. The energy flux is strongly anisotropic for
this frequency, showing relatively small intensity in the
directions of the stopband, and infinite intensity (caus-
tics) in the directions of the folds.

To substantiate this behavior, finite difference time do-
main (FDTD) calculations were done [61, 62]. The sim-
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1.0

1.0

−1.0
−1.0

[01℄

[10℄

V

nk

FIG. 6: Wave contour corresponding to the normalized fre-
quency Ω = 0.31. The group velocity is plotted in the units
of the speed of light in vacuum. High symmetry directions of
the square lattice are specified.

[11℄[01℄

[10℄

1.52.0 1.0 0.5

Intensity (a.u.)

FIG. 7: Angular distribution of radiative power correspond-
ing to the normalized frequency Ω = 0.31. High symmetry
directions of the square lattice are specified.

ulated structure was a 50 × 50 lattice of dielectric rods
in vacuum. The crystal is surrounded by an extra 5d
wide layer of a free space. The simulation domain was
discretized into squares with a side ∆ = d/32. The total
simulation region was 1920 × 1920 cells plus 8-cell wide
perfectly matched layer (PML) [63]. The point isotropic
light source was modeled by a soft source [61, 62] with a
homogeneous spacial dependence and sinusoidal tempo-
ral dependence of the signal. All FDTD calculations was
performed with a commercial tool [64].

In figure 10 the map of the modulus of the Poynting
vector field is shown. The point source is placed in the
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FIG. 8: Wave contour corresponding to the normalized fre-
quency Ω = 0.34. The group velocity is plotted in the units
of the speed of light in vacuum. The directions corresponding
to the folds of the wave contour are shown.
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6.0 4.0 2.0

FIG. 9: Angular distribution of radiative power corresponding
to the normalized frequency Ω = 0.34. The directions of
infinite radiative power (caustic) coincide with the directions
of the folds of the wave contour (Fig. 8).

middle of the crystal. The field map is shown for one
instant time step. The snap-shots were captured after
10000 time steps, where the time step was 4.38× 10−17 s
(0.99 of the Courant value). The structure of the crystal
is superimposed on the field map. From figure 10 one can
see, that the emitted light is focused in the directions co-
inciding with the predicted directions of the folds (black
lines).

In figures 11-13, a more complicated example of the
anisotropy of a photonic crystal is presented. Iso-
frequency contours for three frequencies belonging to the

FIG. 10: FDTD calculation. Map of the modulus of the
Poynting vector field for a 50×50 rod photonic crystal excited
by a point isotropic source with the normalized frequency
Ω = 0.34. The location of the crystal in the simulation is
shown together with asymptotic directions of photon focus-
ing caustics.

second photonic band of the crystal are plotted in the fig-
ure 11. While iso-frequency contours for the normalized
frequencies Ω = 0.55 and Ω = 0.58 have non-vanishing
Gaussian curvature for all wave vectors leading to only
limited anisotropy of the energy flux, the iso-frequency
contour for the normalized frequencies Ω = 0.565 displays
several parabolic points. Moreover, the iso-frequency
contour consists of two branched with slightly different
shapes (solid and dashed lines in the figure 11). Two
branches yield two wave contours with cuspidal folds in
coordinate space (Fig. 12). Applying the formula (50) to
the radiative power calculation, one should sum over con-
tributions coming from all branches of the wave contours
in coordinate space. An angular distribution of radiative
power for the normalized frequencies Ω = 0.565 is pre-
sented in the figure 13. Within the first quarter of the co-
ordinate space, four caustics with infinite radiated power
present in the energy flux corresponded to four parabolic
points on two branches of the iso-frequency contours.

VIII. SUMMARY

In this paper, by analyzing a dipole field in the ra-
diation zone it was shown, that the principal contribu-
tion to the far-field of the dipole radiating in a photonic
crystal comes from the regions of the iso-frequency sur-
face in the wave vector space, at which the eigenwave
group velocity is parallel to observation direction x̂. It
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FIG. 11: Iso-frequency contours of the square lattice photonic
crystal for the normalized frequencies Ω = 0.55 (dotted line),
Ω = 0.565 (solid and dashed line) and Ω = 0.58 (dashed-
dotted line). Two branches of the iso-frequency contour of
Ω = 0.565 is plotted as solid and dashed lines. Parabolic
point are marked by the black dots. The first Brillouin zone
of the lattice is plotted in order to show the spatial relation
between zone boundary and iso-frequency contours.

was also shown that anisotropy of a photonic crystal re-

veals itself in the strongly non-spherical wave front lead-
ing to modifications of both far-field radiation pattern
and spontaneous emission rate. By systematic analysis
of the Maxwell equations a simple formula to calculate
an angular distribution of radiated power due to a point
dipole placed in a photonic crystal was derived. The for-
mula only involves calculations of the wave vectors, the
group velocity, the coupling strength of the dipole mo-
ment with the field and the Gaussian curvature on the
iso-frequency surface corresponding to the frequency of
the oscillating dipole. That can be done by simple plane
wave expansion method and is not computationally de-
manding. A numerical example was given for a square-
lattice 2D photonic crystal. It was shown by applying
developed formalism and substantiated by FDTD calcu-
lations, that if a dipole frequency is within a partial pho-
tonic bandgap, a far-field radiation pattern is strongly
modified with respect to the dipole radiation pattern in
vacuum, demonstrating suppression in the directions of
the spatial stopband and enhancement in the direction
of the group velocity, which is stationary with respect to
a small variation of the wave vector.
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