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We study the relation of the potential energy landscape (PEL) topography to relaxation dynamics
of a small model glass former of Lennard-Jones type. The mechanism under investigation is the hop-
ping betweem superstructures of PEL mimima, called metabasins (MB). From the mean durations
〈τ 〉 of visits to MBs, we derive effective depths of these objects by the relation Eapp = d ln 〈τ 〉 /dβ,
where β = 1/kBT . Since the apparent activation energies Eapp are of purely dynamical origin, we
look for a quantitative relation to PEL structure. A consequence of the rugged nature of MBs is
that escapes from MBs are not single hops between PEL minima, but complicated multi-minima
sequences. We introduce the concept of return probabilities to the bottom of MBs in order to judge
whether the attraction range of a MB was left. We then compute the energy barriers that were
surmounted. These turn out to be in good agreement with the effective depths Eapp, calculated
from dynamics. Barriers are identified with the help of a new method, which accurately performs a
descent along the ridge between two minima. A comparison to another method is given. We analyze
the population of transition regions between minima, called basin borders. No indication for the
mechanism of diffusion to change around the mode-coupling transition can be found. We discuss
the question whether the one-dimensional reaction paths connecting two minima are relevant for
the calculation of reaction rates at the temperatures under study.

I. INTRODUCTION.

More than thirty years ago, Goldstein [1] proposed to
view a glass-forming system as a point moving in the
high-dimensional landscape of the potential energy V (x).
In this framework he suggested to focus onto the local
minima of the potential energy landscape (PEL), where
the system is supposed to be trapped at low enough tem-
peratures. Via occasional transitions to neighboring min-
ima the system finally relaxes. Owing to the separation of
time scales, one is able to describe many features of glass
formers by properties of only the minima. Stillinger and
Weber [2] formulated this idea in the language of statisti-
cal thermodynamics using the concept of basins. A basin
of a given minimum is defined as the set of configurations
that reach this minimum via their steepest descent path
ẋ = F (x). (We set x and F (x) as shorthands for the mul-
tidimensional vectors all particle positions and all forces,
respectively.) The resulting tiling of configuration space
into different basins allows one to write the free energy
approximately as a function of static properties of min-
ima, i.e. their energies and vibrational frequencies [3, 4].
Knowledge of the thermodynamics is in general not suf-
ficient to predict dynamical properties like diffusion con-
stants or relaxation times. However, experimental [5] as
well as simulated [6, 7, 8] data seem to indicate that
there exists a strong connection between dynamics and
thermodynamics via the Adam-Gibbs relation [9].

Our goal is to reach a quantitative understanding of
the slowing down of dynamics, as expressed by the bulk
long-time diffusion constant D(T ). Mode coupling the-
ory (MCT) [10] predicts a power-law behavior of the form
1/D(T ) ∝ (T −Tc)

γ above the MCT critical temperature
Tc. Since Tc is found to be higher than the glass tran-
sition temperature Tg, the MCT divergence of 1/D(T )

at Tc is not observed in practice. The common expla-
nation for this shortcoming of MCT is that the theory
neglects ‘activated processes’, or ’hopping’, which is sup-
posed to come into play around and below Tc. Indeed
it was proven by Schrøder et al. [11] that in the vicinity
of Tc the time scale of fast local dynamics around single
minima becomes well separated from the time scale of in-
terbasin transitions. Above Tc the common picture sug-
gests that the dynamics are ’entropy-driven’, i.e. char-
acterized by the search for escape directions [12, 13, 14],
since saddles lie far below the instantaneous potential
energy of the system and thus represent no serious bar-
riers [15, 16]. Also different observables like the average
order of saddles [15, 17] and the number of diffusion-
like normal modes [12, 13, 14, 18] seem to indicate that
well above Tc the dynamics is not governed by activated
transitions between adjacent minima. However, in the
multi-dimensional space of particle coordinates, it is not
obvious how to distinguish thermally activated from en-
tropically limited dynamics. One possible way to do this
will be discussed below. For the time being, we use the
term hopping only in a formal sense, meaning that the
trajectory of the system is mapped onto a sequence of
jumps among minima.

Looking for a quantitative link of bulk diffusion D(T )
to PEL properties, we recently investigated hopping dy-
namics on the PEL in greater detail [19]. A priori, tem-
poral and spatial aspects of hopping events have to be
considered, the former in the shape of the waiting time
distribution (WTD) of jumps, the latter by the jump
lengths and directions, and correlations thereof. We
found that strong backward correlations of jumps arise
from the organization of minima into superstructures,
which, following [20], we call metabasins (MB). It had
already been known from previous work [21] that struc-
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tural relaxation corresponds to jumps among MBs rather
than single basins. MBs were identified with the help of a
straightforward algorithm such that close-by minima be-
tween which the system performs several back- and forth
jumps are identified as a single MB. Then, indeed, hop-
ping among MBs was found to be close to a random walk
with a distribution of MB waiting times. Motivated by
this fact, we expressed D(T ) in the simple form,

D(T ) =
a2

6N 〈τ(T )〉
, (1)

with the mean waiting time 〈τ(T )〉 and the effective jump
length a(T ). With this ansatz, we anticipated that wait-
ing times would carry the major part of the temperature
dependence. Indeed, a(T ) turned out to be constant for
T < 2Tc, which is why we dropped the argument of a(T ).
Eq. 1 constitutes an important step towards the under-
standing of diffusion in supercooled liquids: it suffices to
look for the physics behind MB waiting times, spatial
details of hopping being expressed by a single constant.
A simple model for hopping dynamics has been dis-

cussed by Bouchaud and coworkers [22]. They consider
the relaxation from traps of depths E with distribution
ρ(E), and escape rates γ(E, T ) = γ0 exp(−βE). When
ρ(E) ∝ exp(−E/Tx), the WTDs assume power-law tails
ψ(τ) ∝ τ−α(T ) with exponents α(T ) = 1 + T/Tx. The
consequence is the divergence of the mean waiting time
at temperature Tx. In our recent paper, we observed
that the WTDs of a binary Lennard-Jones system are
in conformance with this kind of power-law decay [19].
As a consequence of such slowly decaying WTDs, the
mean value 〈τ(T )〉 was found to be dominated by the
few, very long waiting times. In other words, the tem-
perature dependence of D(T ) follows alone from the du-
rations of trapping in the very stable MBs. These results
were obtained for small binary Lennard-Jones mixtures of
N = 65 particles. For a macroscopic system, which, due
to its dynamic heterogeneity [23], contains many slow and
fast subsystems in parallel, this implies the dominance of
slow regions in the temperature dependence of D(T ).
The logical continuation along this line of thinking is

to relate MB lifetimes to the PEL topography. The most
prominent characteristics of a MB is, of course, its en-
ergy ǫMB, which is defined as the lowest energy of all its
constituent minima. It is then natural to introduce the
mean MB lifetime 〈τ(ǫMB;T )〉 at constant ǫMB. Knowl-
edge of 〈τ(ǫMB;T )〉, together with the population of MBs,
p(ǫMB;T ), is sufficient to calculate 〈τ(T )〉 and thus D(T ),
as we will show now. We write

〈τ(T )〉 =

∫

dǫMB 〈τ(ǫMB;T )〉ϕ(ǫMB;T ), (2)

where ϕ(ǫMB;T ) is the distribution of MBs visited at tem-
perature T . We will see that this decomposition can be
achieved by a detailed analysis of the hopping dynamics.
Since p(ǫMB;T ) denotes the probability that at a given
time the system is in a MB with energy ǫMB, it is propor-
tional to ϕ(ǫMB;T ) and the time 〈τ(ǫMB;T )〉 the system

remains in MBs of this energy. With the appropriate
normalisation one gets

p(ǫMB;T ) =
〈τ(ǫMB;T )〉

〈τ(T )〉
ϕ(ǫMB;T ). (3)

From Eqs. 1, 2 and 3, it immediately follows the repre-
sentation

D(T ) =
a2

6N

〈

1

〈τ(ǫMB;T )〉

〉

T

. (4)

Here, 〈...〉T denotes the canonical time average (w.r.t.
p(ǫMB;T )), while 〈...〉 is the average over MBs. Hence,

{〈τ(ǫMB;T )〉 , p(ǫMB;T )} → 〈τ(T )〉 → D(T ), (5)

where the second implication has been established in our
recent paper [19]. The population p(ǫMB;T ) is related to
the single-basin population p(ǫ;T ), a purely static quan-
tity, which has been extensively discussed in the litera-
ture [3, 4, 7]. It has turned out for Lennard-Jones mix-
tures that the number density Geff(ǫ) of minima is ap-
proximately gaussian. Thus, the population of minima,
p(ǫ;T ) ∝ Geff(ǫ)e

−βǫ, could be expressed by three pa-
rameters describing global PEL structure. In the present
paper, we focus on 〈τ(ǫMB;T )〉, our goal being to deduce
it from PEL structure. If this succeeds, we have estab-
lished the following connection,

local + global PEL structure→ long-time dynamics,

which, in our opinion, pushes the understanding of diffu-
sion in supercooled liquids a step further.
We proceed as follows. We first compute MB lifetimes

from ordinary simulation, and later compare them to the
prediction from PEL structure. First, we characterize the
relaxation from four single, randomly selected MBs. By
an exhaustive sampling of these MBs, we will be able to
get some first insights into MB topology. Second, many
MBs of fixed energy are considered and their lifetimes
〈τ(ǫMB;T )〉 are calculated. Third, we relate MB lifetimes
to PEL structure, by quantifying the MB depths, or ef-
fective barriers, which determine the temperature depen-
dence of 〈τ(ǫMB;T )〉. The physical scenario which will
emerge from the results of this paper implies that MBs
can be regarded as traps, surrounded by high barriers.
It turned out from exhaustive explorations of PEL con-
nectivity [24] that due to the high dimensionality of con-
figuration space the number of escape paths from every
minimum is enormous. Thus, one may anticipate that the
effective barrier to leave a specific MB results as a com-
plex superposition of individual escape paths. Therefore,
enormous numerical effort is required to quantify their
multitude for many different MBs.
Note that the whole analysis will be carried out in the

spirit of activated barrier crossing. The extent to which
this is present in supercooled liquids is quite disputed
in literature. However, we will show that for tempera-
tures in the landscape-influenced regime below 2Tc, the
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apparent activation energy

Eapp(ǫMB;T ) =
d

dβ
ln 〈τ(ǫMB;T )〉 , (6)

can indeed be identified with PEL barriers much larger
than kBT which the system encounters when leaving a
MB. Thus, together with Eq. 4, we will find that the acti-
vated escape out of deep traps is the physical mechanism
behind diffusion.
To our knowledge, such a connection between dynam-

ics and PEL barriers has never been established for a
fragile glass former. In contrast, for SiO2, the apparent
activation energy of diffusion below Tc could be related
to the simple breakage of Si−O bonds [25, 26].
The organization of the paper is as follows. In sec-

tion II, we provide the details of our simulation, and de-
scribe the interval bisection method to identify MBs. Sec-
tion III deals with the computation of apparent activa-
tion energies from relaxation dynamics. The correspond-
ing energy barriers will be addressed in section V, after
introducing our technique for finding transition states
(section IV). In section VI, we independently demon-
strate that barriers and associated reaction paths indeed
govern relaxation. Finally, we discussion further aspects
of our results in section VII and conclude in section VIII.

II. SIMULATION DETAILS.

A. General.

In the present work, we investigate a binary mixture
of Lennard-Jones particles (BMLJ), as recently treated
by two groups [17, 27]; see also [28]. It is characterized
by the interaction potentials

Vαβ(r) = 4ǫαβ [(σαβ/r)
12 − (σαβ/r)

6]

with the parameter set N = NA + NB = 52 + 13 =
65, σAB = 0.8σAA, σBB = 0.88σAA, ǫAB = 1.5ǫAA,
ǫBB = 0.5ǫAA, rc = 1.8. Linear functions were added
to the potentials to ensure continuous forces and ener-
gies at the cutoff rc. These modifications of the original
potential by Kob and Andersen [28] are necessary for the
simulation of small systems. We use Langevin molec-
ular dynamics simulations (MD) with fixed step size,
λ2 = 0.0152 = 2kBT∆t/mζ, equal particle masses m,
friction constant ζ set to unity, and periodic boundary
conditions. Units of length, mass, energy, and time are
σAA, m, ǫAA, and mζλ2/2ǫAA, respectively. However,
we will omit these units, for convenience. The mode-
coupling temperature is Tc = 0.45 ± 0.01 in this model
system (compare [28]). For the analysis of dynamics from
the PEL perspective it is essential to use small systems,
as has been stressed in the literature [21, 29, 30]. On
the other hand, naturally, the system should not be too
small in order to avoid major finite-size effects. For the
BMLJ, N ≈ 60 turns out to be a very good compro-
mise [17, 21, 27], whereas N ≤ 40 already causes large

finite-size effects [3]. Here we choose N = 65, since the
BMLJ60 system has a stronger tendency to be trapped
in crystalline configurations. We stress here that the re-
sults obtained for the BMLJ65 system show no finite-size
related artifacts. For example, D(T ) of the BMLJ1000
is identical to D(T ) of the BMLJ65 above Tc, see Fig. 4.
In the temperature range studied, we found that the be-
havior of a BMLJ130 system largely resembles that of
two independent copies of a BMLJ65. Thus, the general-
ization of the present work to larger systems should not
bear any pitfalls.
Interestingly, the BMLJ65 relaxation becomes

Arrhenius-like for low temperatures. Since we have
no equilibrium runs of our BMLJ1000 below Tc it is
unclear whether the Arrhenius behavior of the BMLJ65
down to T = 0.4 is a finite-size effect. A possible
explanation is that the lower end of the PEL is reached
(located at ǫmin ≈ −302, see Fig. 3), preventing further
increase of barriers. In turn, this may be related to the
fact that cooperative regions cannot grow any further
in the BMLJ65, i.e. structural optimization - which
happens upon cooling - finally comes to an end. Since
we work above Tc, our key results are not affected by
this argument.

B. Interval bisection.

By regularly quenching the MD trajectory x(t) to the
bottom of the basins visited at time t, as proposed by
Stillinger and Weber, we obtain a discontinous trajec-
tory ξ(t). A problem from the standpoint of simula-
tions is to resolve the elementary hopping events. Since
computer time prohibits to calculate the minimum ξ(t)
for every time step t, we normally find ourselves in the
situation of having equidistant quenched configurations
ξ(ti), ti = i∆t, with, say, ∆t = 105 MD steps. If
the same minimum is found for times ti and tj , we
need not care about transitions in the meantime, be-
cause no relaxation has occurred there. If, in contrast,
ξ(ti) 6= ξ(ti+1), we must not expect ξ(ti+1) to be the di-
rect successor of ξ(ti), since many other minima could
have been visited between ti and ti+1. Therefore, further
minimizations in this time interval are necessary. For
reasons of efficiency, we apply a straightforward interval
bisection method, which locates transitions to an accu-

racy of 1 MD step: provided ξ(t
(0)
start) 6= ξ(t

(1)
start), (a) set

t(0) ← t
(0)
start, t(1) ← t

(1)
start, (b) reconstruct the trajectory

x(t) at time t(2) = (t(0) + t(1))/2, (c) calculate ξ(t(2)),
(d) if ξ(t(2)) = ξ(t(0)), set t(0) ← t(2), else set t(1) ← t(2),
(e) repeat (b)-(d) until t(1)− t(0) = 1 MD step. Repeated
application of the interval bisection to a simulation run
x(t) finally gives all relevant transitions. Note that the
determination of all transitions including the numerous
recrossings of basin borders would require minimization
for every MD step! The interval bisection method thus
may oversee back- and forth motions between minima
which, in any event, are irrelevant for relaxation. Al-
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though computationally demanding, the above method
has proved most efficient for resolving the relevant de-
tails of hopping on the PEL and is predestined for the
construction of metabasins (see below).

III. ACTIVATION ENERGIES FROM

METABASIN LIFETIMES.

A. Metabasin lifetime construction.

As said above, stable configurations in the supercooled
liquid are rarely due to single minima on the PEL, but
mostly correspond to groups of strongly correlated min-
ima. While the system is trapped in such a MB for a long
time, a small number of minima is visited over and over
again. This is well reflected by the time series of poten-
tial energies, ǫ(t) = V (ξ(t)) [19, 21]. In this section, we
will dwell on the computation of mean MB lifetimes, (i)
for single, selected MBs, and (ii) averaged over MBs of
a given energy ǫMB, thus yielding 〈τ(ǫMB;T )〉. The indi-
vidual MBs of (i) correspond to long-lived MBs and thus
represent typical MBs which govern the temperature de-
pendence of 〈τ(T )〉.
For the grouping of minima into MBs and the resulting

determination of their lifetimes from a regular simulation
run, we use the following, straightforward algorithm [21].

(a) determine the regions [t∗i , t
†
i ] where t

∗
i is the time of

the first and t†i the time of the last occurrence of mini-
mum ξ(ti), (b) any two regions overlapping by less than

τmol are cut so that [t∗i , t
†
i ] ∩ [t∗j , t

†
j ] = ∅, where τmol is a

small molecular time-scale, (c) any two regions overlap-

ping by more than τmol are combined to [t∗i , t
†
i ] ∪ [t∗j , t

†
j ],

(d) the lifetimes of MBs are defined by the regions after
step (c), (e) the MB energy ǫMB is defined as the lowest
energy of minima visited during the MB lifetime.
A few comments on the procedure are in order. Time

regions in (a) are determined by the interval bisection
method which yields the time of transition from one min-
imum to another with an accuracy of one MD step. Step
(b) is motivated by the observation that recrossings of a
basin border during a transition are very probable. If we
ignore this fact, i.e. set τmol = 0, step (c) would merge
nearly all regions and we would end up with unphysically
long MBs. Instead, we use τmol = 40, which is the basin
equilibration time obtained from energy autocorrelation.
Since the durations of transitions are of the same order
of magnitude as τmol, this is a sensible choice. However,
we found that the results for MB lifetimes are not very
susceptible to the precise value of τmol. Step (c) itself
is the realization of the MB concept. It is important to
note that, different from [21], we will treat all MBs on
the same footing here, no matter if they are short-lived
or long-lived.
So far, the MB lifetime construction rests upon single

trajectories, which only partially reflect the configura-
tion space topology. In section V, the MB concept will

0.0 0.5 1.0 1.5 2.0 2.5

2

4

6

8
Eapp(1)=6.7±0.3

Eapp(2)=5.3±0.3

Eapp(3)=5.2±0.2

Eapp(4)=4.9±0.3

1/T

log<τ i(T)>

FIG. 1: Mean lifetimes of four low-lying, randomly selected
metabasins, computed from repeated escape runs (ǫMB =
−301.64,−300.47,−300.16, and −300.74, from top to bot-
tom). The number of runs are 85,59,175, and 105, from top
to bottom. Arrhenius fits work well in the temperature range
T ≤ 1 ≈ 2.2Tc, the corresponding activation energies are
given in the figure. Curves have been shifted vertically by
0.5(4− i) orders of magnitude for better inspection.

be given a more precise, static definition, based on the
return probability to the ground minimum.

B. Activation Energies for Single MBs.

As noted above, the temperature dependence of D(T )
is dominated by the long-lived MBs. Generally, these are
low-lying MBs, i.e. deep traps in the PEL. Since different
MBs differ in their stability, a statistical treatment will
be needed. As a first step, however, we restrict ourselves
to the investigation of single MBs.
The relaxation times computed in this section do not

stem from regular, linear simulation runs, but are ob-
tained by artifically placing the system in a specific MB
and waiting for its escape (’escape runs’). The above
algorithm for the MB lifetime construction implicitly as-
sumes that MBs finally have been left. In other words,
the algorithm may not be used to determine the time
where to stop the simulation due to successful escape.
Fortunately, we can avoid running into this paradoxi-
cal situation by judging from an independent criterion
whether an escape has been completed: if the distance
of the instantaneous minimum to the starting position is
greater than dmax = 4, returning to the original basin can
practically be excluded (see section V for a justification
of dmax = 4). Then, by applying the MB construction al-
gorithm to the escape run, we obtain the lifetime of the
MB.
We analyzed four low-lying (ǫMB < −300), randomly
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selected MBs in greater detail. By repeated starts from
the bottom of the MBs, we computed the mean lifetimes
〈τi(T )〉 as a function of temperature. From Fig. 1, we
see that the relaxations from all MBs follow nicely an
Arrhenius law. We note that, due to starting at minima,
a short intra-basin equilibration time (τmol = 40, from
energy autocorrelation) has been subtracted from the raw
〈τi(T )〉.
The fact that an Arrhenius form of 〈τ(ǫMB;T )〉 is ob-

served indicates that the barriers do not change any fur-
ther upon lowering temperature. Put differently, MBs
serve as traps surrounded by barriers with heights around
Eapp(i) = d ln 〈τi(T )〉 /dβ. We will see in section V that
this is indeed correct. Since Eapp(i)/kBTc > 10, this im-
plies a strongly activated dynamics near Tc.

C. Activation Energies vs. MB energies.

As a further step, we analyze the mean relaxation time
from MBs with the same energy, 〈τ(ǫMB;T )〉; see Eq. 2.
Clearly, the low ǫMB are not populated at high tempera-
tures so that regular simulation does not yield 〈τ(ǫMB;T )〉
over a wide temperature range. We therefore artificially
place the system in the desired MBs (in the lowest min-
ima ǫMB thereof) and measure the escape times as a func-
tion of temperature. Averaging over many different MBs,
we obtain 〈τ(ǫMB;T )〉. Results are shown in Fig. 2 as
a function of ǫMB. Below T = 1, all relaxation times
display Arrhenius behavior. Thus the apparent activa-
tion energies Eapp(ǫMB;T ) are temperature independent.
In the following we will therefore omit the second argu-
ment. Thus, we can write

〈τ(ǫMB;T )〉 = τ0(ǫMB)e
βEapp(ǫMB). (7)

As expected, the properties of MBs as expressed by
Eapp(ǫMB) depend on their ground state energy ǫMB.
We can interpret Eapp(ǫMB) as the mean effective depth

of MBs at ǫMB. Since the lower end of the energy land-
scape is reached at ǫ ≈ −302 no deeper traps exist (com-
pare Fig. 3, see also [50]). A simple statement for the
depths of traps would follow if the rims of all traps
were at the same level ǫth. The consequence would be
Eapp(ǫMB) = ǫth − ǫMB, for all ǫMB < ǫth. This simple sce-
nario is ruled out by the data, see Fig. 2(b). Actually,
a more complicated energy dependence of Eapp(ǫMB) is
expected from the very fact that the system - despite its
small size - is not a completely cooperative unit, see the
discussion in section VII.
The fact that we still observe Arrhenius-like relaxation

in Fig. 2 indicates that the variation of trap depths at
constant ǫMB is not large, compare Eapp(i) from Fig. 1.
Otherwise, Eapp(ǫMB) would increase upon decreasing
temperature, due to the more and more dominant, ex-
tremely deep traps. In contrast, trap depths at constant
ǫMB seem rather well defined by ǫMB, which suggests the
existence of some underlying topological principle.

0.0 0.5 1.0 1.5 2.0 2.5

2

4

6

8
log <τ|εMB ;T>

1/T

-301.6
-300.4
-298.5
-297.5
-294.5
-291.6
-288.6
-280.0

   εMB

(a)

-300 -295 -290 -285
0

2

4

6
Eapp(εMB)

εth−ε

(b)

-300 -295 -290 -285

1.0

1.5

2.0

log τ0(εMB)

εMB

(c)

εMB

-280 -280

FIG. 2: (a) Arrhenius plot of mean MB lifetimes 〈τ (ǫMB; T )〉,
for different ǫMB. A MB equilibration time of τmol = 40 was
subtracted. Straight lines are fits of the form Eq. 7. (b) ap-
parent activation energies Eapp(ǫMB). (c) prefactors τ0(ǫMB).
Curved lines are interpolations of the data.

As seen from Fig. 2(c), the prefactor τ0(ǫMB) has no
strong dependence on ǫMB. From high energies, it de-
creases at most an order of magnitude and seems to level
off below ǫMB = −297. Hence, for the range of ener-
gies that dominate 〈τ(T )〉 at low temperatures, it can
be considered constant within error bars. In contrast to
Eapp(ǫMB), we will not be able to deduce τ0(ǫMB) from
PEL structure. Its weak variation is therefore quite for-
tunate.
We will now analyze the second factor of the integrand

in Eq. 2, ϕ(ǫMB;T ). It is shown in Fig. 3. Interestingly,
the variation of ϕ(ǫMB;T ) is much weaker for low T as
the variation of p(ǫMB;T ). From Eqs. 3 and 7, one con-
cludes that the constancy of the distribution ϕ(ǫMB;T )
is equivalent to having Eapp(ǫMB) = ǫth − ǫMB, with some
constant ǫth. Since this simple behavior is not present,
one must still have a residual temperature dependence of
ϕ(ǫMB;T ).
Concerning p(ǫMB;T ), the weak temperature depen-

dence of its first moment for the three lowest tempera-
tures is simply related to the probing of the lower end of
the PEL. Actually, it turns out that p(ǫMB;T ) is, within
statistical error, identical to the corresponding distribu-
tion of minima p(ǫ;T ). One would expect this for high
ǫMB, because no pronounced MBs are observed there.
Considering a deep MB with many minima, this will
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10

1/T

<εMB(T)>

ε0-βσ2 σ2(T)

1/T

ϕ(εMB;T)

p(εMB;T)

ϕ(εMB;T)

p(εMB;T)

(b) (c)

-305 -300 -295 -290 -285 -280
0.00

0.05

0.10

0.15

0.20

0.25

ϕ(εMB;T)

εMB

T=0.4

T=1.0

T=0.6

(a)

T=0.5

FIG. 3: (a) distribution ϕ(ǫMB;T ) of MB energies, for four
temperatures. (b) Mean energies, from ϕ(ǫMB;T ) and from
p(ǫMB;T ). (c) Variances of the distributions ϕ and p. Poly-
nomial fits to the data are shown in (b) and (c). Straight
lines are predictions for p from an ideally gaussian distribu-
tion Geff(ǫMB) (mean ǫ0, variance σ2). Deviations are due to
reaching the lower end of the PEL, i.e. the deepest amorphous
minima.

equally effect no large difference between p(ǫMB;T ) and
p(ǫ;T ). The reason is that the group of minima near
ǫMB carry the largest part of the population. Since they
are close to ǫMB, transferring their weight to ǫMB when
computing p(ǫMB;T ) has little effect.

As a consistency check, we use the data from Fig. 2
and 3 to reproduce 〈τ(T )〉 indirectly via Eq. 2 (denoted
〈τ(T )〉

ind
). The match with 〈τ(T )〉 is not completely triv-

ial since the data for 〈τ(T )〉 and ϕ(ǫMB;T ) were gathered
from a linear simulation run, while 〈τ(ǫMB;T )〉 results
from selected MBs of certain ǫMB, where the system has
been artificially placed. As shown in Fig. 4, the agree-
ment of 〈τ(T )〉 and 〈τ(T )〉

ind
is good for T ≤ 1 within the

possible accuracy. Note that there is no free fit parameter
between them. The deviation at T = 2 can be explained
by the fact that 〈τ(ǫMB;T )〉, above T = 1, and especially
for the high ǫMB, departs from Arrhenius behavior, see
Fig. 2(a).

So far, all barriers or trap depths have been derived
indirectly, from the temperature dependence of waiting
times. A link to the PEL structure is still lacking. For
instance, the activation energiesEapp(i) of this section are
expected to reflect the local topography of the selected

0.0 0.5 1.0 1.5 2.0 2.5

1/T

2

4

6 log 1/D(T) + log a2/6N

log <τ(T)>

log <τ(T)>ind

log 1/D(T)+ log a2/6N
( N=1000 )

FIG. 4: Arrhenius plot of the mean waiting time 〈τ (T )〉 versus
the indirectly determined counterpart, 〈τ (T )〉

ind
. For compar-

ison, we also show the inverse one-particle diffusion constant
1/D(T ) multiplied by a constant (a2 = 1.0), see [19]. Error
bars are of the order of the symbol size. Also included is the
1/D(T ) for the BMLJ1000 system.

MBs. Indeed, they can be identified from the barriers of
escape paths, as will be demonstrated in section V.
First of all, the barriers between neighboring minima

are of great interest. These are known once we have in
hand the corresponding transition states.

IV. NON-LOCAL RIDGE METHOD FOR

FINDING TRANSITION STATES.

A. Description of the method.

We now describe how to determine transition states
(TS) from the simulation, by what we call the (non-
local) ridge method. The principle idea is that TSs are
local minima of basin borders. They can be pictured
as the lowest points of mountain ridges on the PEL. If
the system crosses a basin border at time t, the steep-
est descent path starting from x(t) should end up in a
TS, see [31]. In practice, however, the descent will de-
viate from the ridge due to numerical error, finally end-
ing up in the minimum ξ0 ≡ ξ(t−) or ξ1 ≡ ξ(t+). As
a way out, we let the system perform two descents in
parallel, on either side of the basin border, as schemati-
cally depicted in Fig. 5. More specifically, if a transition
happened at time t, interval bisection yields the config-
urations x(t) ≡ y0 and x(t + 1 MD step) ≡ y1. From
these, by further interval bisection on the straight line
between y0 and y1, the distance to the border may be
further reduced if necessary, resulting in two configura-
tions, again called y0 and y1. Close as they are, they still
belong to different basins. If we now let descend y0 and
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FIG. 5: Sketch of the TS search with the ridge method.

y1 in parallel, they first move along the ridge towards
the transition state until they finally bend off to their re-
spective minima. This separation is clearly not wanted,
so from time to time we reduce their distance by inter-
val bisection. After a few iterations (descents+interval
bisection) the vicinity of the transition state is reached
in most cases. We then use a short minimization of the
auxiliary potential Ṽ = 1

2 |F (x)|
2 followed by a few steps

of Newton-Raphson type, which bring the search for the
TS to a quick convergence. Besides a vanishing force, the
resulting configuration ζ has a Hessian matrix with one
negative eigenvalue. After small displacements along the
corresponding eigenvector, one reaches the adjacent min-
ima via steepest descent. This yields the reaction path
(RP) ζ(s), where s is a curvilinear parameter. We set
ζ(0) = ζ, ζ(s0) = ξ0, and ζ(s1) = ξ1, where either s0 or
s1 is negative.

It can happen, though, that no saddle between y0 and
y1 is found, but that the interval bisection locates a third
minimum. The basin border splits into two at this point,
and no direct saddle between the initial and final mini-
mum is available. Thus, we also have to split the descent
along the basin border into two processes and then con-
tinue separately. If the two descents are successful with-
out further bifurcations, we are finished and have the
optimum reaction path which takes a detour via a third
minimum. In such a situation, the RP is clearly not very
useful. It has to be stressed that bifurcations are no ar-
tifacts of the ridge method, but a topological feature of
some basin borders on the PEL. Fortunately, as a sig-
nature of strong anharmonicity, they are quite rare and
happen to occur only in the high-energetic regions of the
PEL. For the escapes from long-lived MBs, they are of
no importance.

A similar algorithm is described in the literature [31],
which, instead of minimization and interval bisection,
uses local maximization between y0 and y1 to prevent
the configurations from moving apart. Although compu-

tationally less expensive, this method is not appropriate
for our purpose. As an effect of the high dimensional-
ity, the local shape of the PEL around y0 and y1 gives
no direct clue to the membership to basins. When de-
scending, one may thus loose the important property of
y0 belonging to the basin of ξ0 and y1 belonging to that
of ξ1. This effect has indeed been reported in [31].

In the literature, plenty of methods exist dealing with
the computation of transition states. One kind of them
starts from the knowledge of the initial and final mini-
mum [32, 33, 34, 35]. After a more or less educated guess
for an initial trial RP, one iteratively improves the RP
according to some prescription, e.g., the minimization of
an action functional. Two sources of erroneous results
have to be addressed in this connection. First, the two
minima in question have to be true neighbours. This can
only be verified by locating two points close to the basin
border, e.g. by interval bisection of the initial trial path.
The numerical cost is not small; for our ridge method, for
instance, about one third of the calculation time is con-
sumed by fixing y0 and y1 (depending on the minimiza-
tion interval of the MD run). Second, the iterative path
optimization may become stuck in a local extremum, due
to an unfortunate choice of the initial path.

The other kind of TS search methods start from an ini-
tial minimum and climb up to a transition state guided
by the shape of the PEL. Just walking against the force,
however, would be a fatal strategy, as one can see by
turning the PEL upside down: ending up in a TS is
numerically impossible, since one quickly runs into one
of the PEL singularities (two or more identical particle
positions). Eigenvector-following algorithms [36] over-
come this defocussing of steepest ascent paths by walk-
ing into the direction of negative local PEL curvature.
The ’activation-relaxation technique’ by Mousseau and
coworkers, in contrast, steps against the force in the
direction leading away from the minimum, while de-
scending the PEL perpendicular to that direction [37].
A drawback of the latter methods is that the choice
for the next TS to mount is not well under control.
From the minimum, a starting direction is chosen, ei-
ther by purely random displacements or by some hard-
sphere-like particle moves [24]. Unfortunately, the num-
ber of escape directions from a minimum is generally
very large (at least O(Nd) as we found in the BMLJ65),
whereas the majority of these is dynamically inaccessible
at low T . Hence, eigenvector-following and activation-
relaxation techniques yield many TSs which only negli-
gibly contribute to relaxation rates. Striving for the sim-
ulation of low-temperature hopping dynamics based on
these methods [27, 38, 39], one may suffer a considerable
reduction of efficiency.

We finally mention two complementary means of
studying energy barriers. The ’lid’ algorithm, proposed
by Schön and coworkers [40], is able to find upper bounds
for the depths of single basins. By performing random
walks below different potential energy thresholds and by
regular minimizations, one is able to compute the ele-
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FIG. 6: Comparison of transition states, obtained via the
ridge method, with minima of the auxiliary potential Ṽ .
Starting points for saddle computations lay close to basin bor-
ders. Main plot: histogram of Ṽ -saddle minus TS energies.
Inset: histogram of indices of Ṽ -saddles.

vation necessary for transitions to neighboring minima.
From a more theoretical perspective, Schulz has speci-
fied a relation between transition rates and the overlap
of vibrations in neighbouring basins [41].

B. Comparison to Ṽ -saddles.

The advantage of the ridge method is that we defi-
nitely find the relevant barrier for a transition, i.e. a
first order saddle on the basin border next to the point
where the border was crossed. In contrast, the method
using the auxiliary potential Ṽ = 1

2 |F (x)|
2 as applied

in recent studies [15, 16, 17, 30] has two major draw-

backs. First, the Ṽ minimization locates saddles (we

call them Ṽ -saddles), even if they are not accessible ki-
netically. This is because the expression F †HF is not
positive (H = H(x) denotes the Hessian of V (x)), i.e.

Ṽ -minimization can climb up to a saddle. Second, one
obtains higher-order saddles and, most frequently, non-
stationary points (shoulders). These configurations are of
no use to us because we specifically analyze paths over the
lowest barriers on basin borders, i.e., transition states.
To shed more light on the interrelation of TSs and Ṽ -

minima, we minimized Ṽ by steepest descent, starting
from configurations x(t) only if ξ(t) 6= ξ(t + 1 MD step)

(like y0 in Fig. 5). In other words, we calculated Ṽ -
saddles exactly at transition times. If this yielded the cor-
rect TSs, our more time-consuming ridge method would
be clearly useless. The difference ∆ǫ = ǫṼ − ǫTS specifies

the overestimation of the true barrier by the Ṽ -saddle. It
may also happen that the index of the Ṽ -saddle is differ-
ent from one. The distributions of ∆ǫ and the index are
shown in Fig. 6 (T = 0.5). Obviously, the Ṽ -saddles con-
siderably overestimate barriers and the correct TSs are
only found very rarely. Moreover, most of the Ṽ -saddles
have an index different from one, i.e. are no TSs at all.

In turn, the energy of the TS is never undersold by a
Ṽ -saddle. In conclusion, Ṽ -saddles turn out to have the
undesired quality of being decorrelated from the relevant
TSs, i.e., from the barriers that control relaxation (see
section VI).

C. Population of Basin Borders.

After Angelani and coworkers [15, 16], the mean in-

dex of Ṽ -saddles vanishes at Tc. Therefore, as they have
argued, dynamics above Tc is dominated by saddles, in
that there are always some unstable directions available
which allow the system to relax, without traversing an
additional energy barrier. Passing Tc, the mechanism
suffers a drastic change, and abruptly, one is faced with
an index of ca. zero, i.e., saddles have to be reached
via thermal activation. Since the preceeding subsection
may cast some doubts on the significance of Ṽ -saddles,
we now want to discuss an alternative analysis of the way
the population of minima versus unstable configurations
evolves upon decreasing temperature. More specifically,
we determine the population of basin borders,

pBB(T ) =
1

Z(T )

∫

dB

∫

dxe−βV (x)δ(x − B), (8)

where integration is over the non-crystalline part of con-
figuration space, also in the partition function Z(T ), and
B runs over all basin borders of the PEL. This expression
is impractical in numerical simulation; one may rather
ask if, for some instantaneous configuration x, there is
a basin border nearby. In this case, small random dis-
placements (length δ ∈ IR, direction ω ∈ IR

Nd, |ω| = 1)
possibly lead into another basin, i.e. ξ(x) 6= ξ(x + ωδ).
This kind of PEL analysis has been recently carried out
by Fabricius and Stariolo [42]. One calculates

pBB(T ; δ) = 〈P (ξ(x) 6= ξ(x+ ωδ))〉T,ω , (9)

which is the probability that random disturbances ωδ will
cause crossings of basin borders at temperature T . The
brackets denote the canonical plus the average over the
random directions ω. One obtains the behavior

pBB(T ; δ)→ const× pBB(T )δ, δ → 0 (10)

(the constant is set to unity for convenience). The valid-
ity of Eq. 10 is demonstrated in the left inset of Fig. 7,
where pBB(T ; δ)/δ has been calculated as a function of δ.
We find that pBB(T ; δ)/δ is constant within statistical er-
ror below δ = 1.2. As an orientation, the typical distance
between neighboring minima is larger than 2.0, whereas
intra-MB neighbors on average are less than 1.0 apart.
The main part of Fig. 7 shows results for pBB(T ) in

an Arrhenius plot, with δ = 0.7. Over the whole tem-
perature range considered, pBB(T ) is Arrhenius-like. The
apparent activation energy is ca. 1.8, which is small in
comparison with the typical values observed for MB life-
times. However, the temperature dependence becomes
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placement of ca. 0.09 per particle. Left inset: dependence on
δ of pBB(T ), for T = 0.5 and T = 0.6. Right inset: pBB(T )
plotted linearly against T .

stronger if we impose the constraint of a minimum dis-
tance between neighbouring minima (data not shown).
In this way, we eliminate the fast intra-MB transitions,
which have small barriers.
In any event, pBB(T ) features no noticeable change in

behavior when approaching and crossing Tc. In a differ-
ent graphical representation (see right inset) one might
wrongly conclude that pBB(T ) disappears at some finite
temperature. Stated differently, the data suggest that
the increasing timescale separation upon cooling happens
rather smoothly, with no distinctly new physics emerging
near Tc. This is in qualitative agreement with the work
of Schrøder et al. [11], who use the incoherent scattering
functions from hopping dynamics ξ(t) to deal with the
separation of intra- and interbasin dynamics. There, the
initial short-time decay of scattering functions (quanti-
fied by the so-called non-ergodicity parameter) is nothing
else than a measure for the population of basin borders.

V. ENERGY BARRIERS FROM PEL

TOPOLOGY.

A. Return Probabilities and Metabasin Definition.

With the tools of interval bisection and TS search, we
are now in the position to analyze the escapes from MBs
in full detail. When a MB is left, we first resolve all min-
ima visited during the escape. Second, all corresponding
TSs and, if desired, reaction paths are calculated. An ex-
ample is shown in Fig. 8. The successive RPs were spliced
together to a long, multi-minima RP ζ(s). One might
take the energy profile, V (ζ(s)), depicted in the figure,
for one of the common cartoons of a PEL. However, it
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=

FIG. 8: Potential energy along the reaction path ζ(s), which
was calculated from the dynamics during 105 MD Steps, at
the end of a typical MB of life span 8× 106 MD Steps. The
mapping of s to time is non-linear. The small barriers for
s < 5 belong to fast intra-MB transitions. pback denotes the
probability of returning to the bottom of the MB. As a com-
parison, the potential energy at that temperature (T = 0.5)
fluctuates around −249.3± 6.1.

rests upon real data. Berry and coworkers have produced
similar charts for the relaxation of small atomic clusters
towards their global minima [39, 43]. For s < 5 one can
see the typical back-and-forth hopping among the ground
minima of the MB. Obviously, the corresponding barriers
are not large compared to kBT = 0.5. The escape starts
at s = 5. The first minimum reached is very unstable as
expected from the small backward barrier. Indeed, if we
repeatedly start in this minimum and perform a number
of short simulation runs (here: 99) with different random
numbers, the system will return to the bottom of the MB
with probability pback = 98% and leave the range of at-
traction only rarely. Thus, the escape is far from being
complete at this stage. Going to the next minimum, the
return probability decreases, but does not drop to zero.
We say that the system is free if pback is smaller than
50%. As the outcome of this investigation, we obtain
the energy barrier surmounted before the minimum with
pback < 50% was reached, see below. The exits from other
long-lived MBs mostly look the same as in the example,
while the escape in one jump is not common. In other
words, MBs usually have the form of a funnel with some
ledges on the walls [20, 44]. Minima with pback > 50%
are said to belong to the MB. This criterion is reminis-
cent of the definition of dynamic bottlenecks introduced
by Chandler and coworkers [45].

An interesting property of a MB is its diameter d. It
is defined as the maximum distance between its minima.
For the MBs found in the simulation at T = 0.5, the
distribution of diameters is depicted in Fig. 9. The delta-
peak from single-minimum MBs has been omitted. No
MB with d > dmax = 4 has been found. As a consequence,
if a minimum has a distance larger than dmax to some
MB minimum, we can safely assume pback ≪ 50%. This
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MB. The bent line is the system trajectory x(t) entering and
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criterion has already been used in section III.
Based on these insights, we can now provide a more

complete description of MBs (Fig. 10). First, the ground
state of a MB has to be identified (kernel minimum),
since the definition of pback rests upon it. At low enough
temperatures, the kernel minimum will certainly be vis-
ited during the MB lifetime, due to the very low barriers
among the minima on the bottom of the MB. Second,
for minima beyond the distance dmax from the kernel, we
set pback to zero. Third, the probability pback for return-
ing to the kernel before reaching a distance greater than
dmax can be assigned to every remaining minimum and
-in principle- be computed by simulation. To this end,
one repeatedly starts in the minimum and checks if a re-
currence to the kernel occurs. Fourth, the minima with
pback > 50% are defined as the MB.
Please bear in mind that pback will in general depend

on temperature, since it is defined by dynamics. Corre-
lations among minima are expected to increase towards
lower temperatures, implying that MBs are no static
concept but rather grow with decreasing T . In Fig. 8,
e.g., the minimum at s ≈ 6.5 has the ’critical’ value of
pback ≈ 47% at T = 0.5. Although we do not know the de-
tails of PEL connectivity around this minimum, the small
backward barrier suggests that the minimum would ex-
ceed pback = 50% for still lower temperatures, thus joining
the MB. However, we may also conceive some situations
where a critical pback ≈ 50% is quite unsusceptible to
temperature changes. This is the case if backward and
forward barriers are of about the same size. We will come
back to that issue later.
We further note that the explicit computation of pback

can be extremely expensive. This is mainly the case when
pback is small, and complete escapes beyond dmax have
to be awaited. However, the exact value of pback is of
no great interest. In fact, it suffices to know whether
pback < 50% or pback > 50%. This decision can often be
reached to a high confidence with few trials.
The MB lifetime algorithm in section III is based on

the detection of back-and-forth jumps between minima.
One mostly observes the dominant minima on the bottom
of the MBs, whereas the more elevated members are only
weakly populated, see Fig. 10. If MB lifetimes are to be
read from a simulation run, it suffices to notice when the
set of dominant MB minima has been left, since the visits
to the elevated minima at the end of the MB lifetime
happen quite rapidly. Thus, the algorithm of section III
reduces the MB to the most populated minima, which is
sufficient for the purpose of lifetime calculation from a
given simulation run. In contrast, for the prediction of
MB relaxation behavior as pursued in this section, the
minima close to the rim of MBs are of special interest.
Their elevations from the bottom of the MB give the
depth of the MB.

B. Barriers for Metabasin Relaxations.

In the spirit of the above remarks, we will now carry
out a systematic investigation of the energy barriers over-
come when escaping MBs. The goal to is to recover the
apparent activation energies computed in section III from
PEL topology.
The mean lifetime 〈τi〉 of MB i can be expressed in

terms of escape rates γi,α of different relaxation chan-
nels α,

〈τi〉
−1 =

∑

α

γi,α. (11)

In general, each γi,α reflects a multi-minima escape path

ξ0
ζ01
−→ ξ1

ζ12
−→ ξ2 ... ξM−1

ζM−1,M
−→ ξM (12)

as the one shown in Fig. 8. Here, ξ0 is the kernel min-
imum and ζab is the TS for ξa → ξb. Suppose that
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the number M of jumps in the sequence Eq. 12 is large
enough to completely quit the MB’s range of attraction,
i.e., pback(M) ≈ 0. For the escape shown in Fig. 8, e.g.,
M ≥ 7 would be fine.
We further take for granted that the rates for sin-

gle barrier crossings follow quantitatively -via transi-
tion state theory- from the height of barriers, Eab =
V (ζab)− V (ξa) (the energy difference between the mini-
mum ξa and the TS between a and b). Hence, rates gab
for single transitions ξa → ξb are characterized by

gab ∝ e
−βEab . (13)

A justification for this assumption, even for temperatures
above Tc, will be given in section VI.
Generally, the probability of upward jumps is small at

low T . Hence, climbing out of a MB in a back-and-forth
fashion (e.g., ξa = ξa+2 and ξa+1 = ξa+3) is not probable.
(This is reminiscent of the fact that the activated crossing
of single potential barriers happens on a short time scale,
i.e. in a rather straight way.) In contrast, excursions
from the main path may happen. As shown in Fig. 8,
the minimum at s = 6.5 is revisited at s = 9 after taking
a look at another minimum (s ≈ 8). The latter does
not appear again later on. Clearly, running into such
’dead ends’ should not contribute to the escape rate via
the successful main path. We therefore eliminate such
excursions from the sequence of minima, Eq. 12. From
these remarks we take the liberty of assuming that no
minimum appears more than once along the escape path,

ξa 6= ξb, a 6= b. (14)

We are now interested in the contribution of the path
Eq. 12 to the total escape rate Eq. 11. Particularly, we
have to consider the question of how many single transi-
tions are relevant for the escape process. The probability
to jump from minimum ξa to ξa+1 is ga,a+1/ga, where ga
denotes the inverse lifetime of minimum ξa. The rate of
escape via a longer pathway now is given by the rate of
the first jump times the probability that the minima ξa
(a = 1, ...M) are visited in correct order thereafter,

γi,α = g01
g12
g1

g23
g2
...
gM−1,M

gM−1
. (15)

With the help of Eq. 13 one calculates

−
d

dβ
ln γi,α = E01 +

M−1
∑

a=1

pret(a)(Ea,a+1 −Ea,a−1), (16)

where pret(a) = ga,a−1/ga is the probability to jump back
to minimum a − 1 from minimum a. In the deriva-
tion of Eq. 16, we have neglected a term proportional to
Ea,a+1 minus the average barrier when jumping from a
to a neighbouring minimum other than a− 1. This term
strictly vanishes when performing the final summation in
Eq. 11. Moreover, we made use of Eq. 14.

One possibility for calculating activation energies from
Eq. 16 would be to consider the complete paths Eq. 12,
where pback(M) ≈ 0, and determine all terms in the sum
of Eq. 16. However, an accurate computation of all the
desired pret(a)’s would even be more costly than the de-
termination of the point where pback changes from above
to below 50%. We therefore use the following approxi-
mation of Eq. 16, which is in conformance with our pre-
vious definition of MBs: Let m(T ) be the first minimum
along the path Eq. 12, where pback < 50%. Then, for all
a < m(T ), we set pret(a) to unity, while for a ≥ m(T )
(i.e. outside the MB), we let pret(a) = 0. Thus,

−
d

dβ
ln γi,α ≈ Ei,α ≡ E01 +

m−1
∑

a=1

(Ea,a+1 − Ea,a−1)

= ǫm−1 − ǫ0 + Em,m−1,

(17)

where m = m(T ). In this way, the terms a < m(T ) in
Eq. 16 are given higher weights, whereas those of a ≥
m(T ) are neglected. We will dwell on the quality of this
approximation later on.
Note that, due to the temperature dependence of pback,

energy barriers Ei,α generally increase upon cooling: At
high temperatures, in contrast, correlations among min-
ima are small, such that MBs (even the low-lying) consist
of only one minimum. This effect is included in Eq. 17
by the temperature dependence of m(T ).

C. Single Metabasins.

We now relate the lifetimes of single, selected MBs (cf.
section III B) to PEL barriers. By repeated starts from
these MBs, the local PEL topography is sampled thor-
oughly, yielding sets of typical escape pathways. When-
ever a MB is left, we locate the transitions by interval bi-
section and obtain the corresponding TSs with the help
of the ridge method. Then, pback is calculated for the
minima visited, until for the first time, pback < 50%. Fi-
nally, the barrier Ei,α(k) is computed according to Eq. 17,
where α(k) denotes the escape path chosen at the kth es-
cape. The histograms of barriers are shown in Fig. 11,
for the four MBs of Fig. 1, at T = 0.5 = 1.1Tc. Due to
the slow dynamics at this temperature, the computation
of pback was rather expensive. Nevertheless, the statistics
should be sufficient for a reasonable estimate of the ap-
parent activation energy. To this end, we express Eapp(i)
of MB i in terms of the contributions Ei,α,

d

dβ
ln 〈τi〉 ≈ 〈τi〉

∑

α

Ei,αγi,α =
∑

α

pi,αEi,α ≡ E
est

app(i),

(18)
where Eqs. 11 and 17 were used. Thus, the barriers Ei,α

are weighted by the probabilities pi,α = γi,α/
∑

α γi,α
that the escape happens via pathway α. Note that the
Ei,α(k) correspond to the pathways that were chosen by
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FIG. 11: Bold curves: Histograms of barriers Ei,α(k) over-
come when escaping single MBs (i = 1, 2, 3, 4 at T = 0.5).
Light curves: Respective histograms of barriers E01 from first
jumps. Apparent activation energies Eapp(i), mean barriers
Eest

app(i), and mean barriers from first jumps Ē01 are given in
the figure.

the system, i.e. they are already weighted correctly by
pi,α(k), compare Eq. 18. Therefore, Eest

app(i) is just the
average of the Ei,α(k). The values of Eapp(i) and E

est
app

(i),
given in Fig. 11, are in good agreement. Also shown in
Fig. 11 is the distribution of first barriers, E01, belong-
ing to the step ξ0 → ξ1. Evidently, the neglect of the
multi-minima nature of escapes leads to a considerable
underestimation of apparent activation energies.
We now continue the discussion of the temperature de-

pendence of barriers Ei,α(T ). At the example of MB 1
from Fig. 11, we have carried out the above program
for two other temperatures, T = 0.6 and 0.8. The ob-
tained distributions of barriers, P (Ei,α), are shown in
Fig. 12. We find that the estimates for the apparent
activation energy (Eest

app
(1) = 6.9 ± 0.5, T = 0.6, and

Eest
app = 6.8±0.5, T = 0.8) remain in good agreement with

Eapp(1) = 6.7 ± 0.3 from section III. The distributions
of barriers, however, grow narrower with decreasing tem-
perature. Single, high barriers, contributing to the right
wing of the distribution, become inaccessible at low T ,
i.e., the relative weights pi,α of the corresponding escapes
become small. This suppression of high barriers at low
T is a trivial effect.
More interesting is the vanishing of small barriers upon

cooling, i.e., of the barriers E < 5 in the figure. Naively,
one would expect these to dominate the escape rate at low
T . However, due to the stronger backward correlations
(increased pback), jumps over these barriers eventually do

0 5 10 15

0.00

0.10

0.20

0.30

0.40

E

P(E) T=0.5

T=0.6

T=0.8

Eapp=6.7±0.3

(Eapp=6.7±0.5)
est

(Eapp=6.9±0.5)
est

(Eapp=6.8±0.5)
est

MB 1

FIG. 12: Normalized histograms of barriers E1,k overcome
when escaping MB 1, for T = 0.5, 0.6, and 0.8. The number
of contributing barriers are 42, 72, and 59, respectively. Es-
timated apparent activation energies, Eest

app(i;T ), are given in
the figure.
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FIG. 13: Histogram of barriers from a regular MD run at T =
0.5 (bold). Neglecting the contributions of the last transition
state (ǫm − ǫMB), we find smaller barriers (light line). The
barriers E01 from only the first jumps are given as the dotted
line.

not suffice anymore to escape. As described above, the
respective escape paths, ξ0 → ... → ξm(T ), grow longer,
and the barriers change to a different, mostly larger value.

D. Average over Metabasins.

During our analysis of the escape times in section III
the apparent activation energies Eapp(ǫMB) emerged as
useful quantities. Although the above results already
indicate that barrier hopping is the relevant motional
mechanism, a clear-cut verification requires the compari-
son with the average barrier the system has to cross when
leaving a MB with energy ǫMB.
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For this purpose we now carry out a similar program
as before, with many MBs visited during an ordinary
MD run. We concentrate on MBs with lifetimes of more
than 105 MD steps (179 MBs) at T = 0.5. When such
a MB is left, we locate the transitions by interval bi-
section and obtain the corresponding TSs by the ridge
method. Then, we calculate pback and identify the barrier
Ek ≡ Ei(k),α(k) according to Eq. 17. The histogram of
barriers is shown as the bold line in Fig. 13. For compar-
ison, we also show the barriers minus the contribution of
the TSs E(m−1)m. Ignoring multi-minima correlations,
we further show the histogram of first barriers E01 of
escapes. Evidently, the neglect of TSs or of backward
correlations leads to much smaller barriers.
From the above barriers, we will now calculate esti-

mates of apparent activation energies. When the average
over lifetimes of different MBs is considered, each MB i
acquires a weight ϕi corresponding to its probability of
occurrence,

〈τ〉 =
∑

i

ϕi 〈τi〉 .

At fixed ǫMB, the analog to Eq. 18 can then be derived

d

dβ
ln 〈τ(ǫMB;T )〉 ≈

∑

i

〈τi〉ϕi

〈τ(ǫMB;T )〉

∑

α

pi,αEi,α, (19)

where summation goes over MBs of energy ǫMB. As in
Eq. 18, the barriers in Eq. 19 are weighted according to
their probability of occurrence, but, additionally, with
the respective MB lifetimes.
In Eq. 19, we have neglected terms stemming from

the variation of ϕi’s with temperature. This is justified,
since the ϕi’s belong to the same ǫMB. Their relative
weights will only vary if these MBs differ considerably in
barrier heights. As already stated above, however, MBs
of the same energy seem to be fairly uniform regarding
this property. For the finite sample of MBs visited during
an MD run, Eq. 19 then takes the form

Eest

app(ǫMB) =

∑

τkEk
∑

τk
, (20)

where summation goes over MBs of energy ǫMB. Again,
the correct weighting is implicit here. This expression can
be shown to converge to the right-hand side of Eq. 19 in
the limit of infinitely long sampling. In Fig. 14 we show
the values of Eest

app(ǫMB), determined in this way. They
perfectly agree with the apparent activation energies, de-
rived from the analysis of relaxation times at different
temperatures. Thus we have a clear-cut proof that the
apparent activation energies Eapp(ǫMB) are indeed related
to barriers on the PEL and thus reflect activated behav-
ior significantly above Tc. This again demonstrates that
we not only deal with the right order of barrier sizes, but
we also quantitatively link PEL topography to dynamics.
For comparison, we included the apparent activation

energy which results, if only the first transitions of es-
capes, ξ0 → ξ1, are considered (E01 = V (ζ01)− ǫ0). One
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FIG. 14: Eapp(ǫMB) (Fig. 2) vs. estimated Eest
app(ǫMB) from

PEL barriers. Considering only the first jumps of escapes, we
find a much smaller estimate (E1st

app(ǫMB)). Data stem from
a regular MD run at T = 0.5, where MBs of lifetime greater
than 105 MD steps were analyzed (179 MBs, see Fig. 13).
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FIG. 15: Comparison of the inverse diffusion constant,
1/D(T ), with the prediction 1/Dest(T ) from Eq. 21, τ0 =
200.

ends up with much too small apparent activation ener-
gies. Again, multi-minima correlations turn out to be
crucial for the characterization of MB depths.
In principle, the results of Fig. 14 may slightly

change if all MBs rather than those with lifetimes larger
105 MD steps were considered. However, our analysis has
clearly revealed (see, e.g., Fig. 1) that the depth of the
trap only mildly varies when comparing MBs with simi-
lar ǫMB. Thus inclusion of MBs with smaller values of τ
would not significantly change the values of the apparent
activation energies Eest

app(ǫMB).
Finally, we show that these results, in conjunction

with p(ǫMB;T ), largely explain the behavior of the dif-
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fusion constant D(T ). This is a conceptually impor-
tant step, since we link D(T ) to purely structural and
thermodynamical quantitites, see Eq. 5. The key is the
mean lifetime 〈τ(ǫMB;T )〉 of MBs at energy ǫMB, which is
parametrized by τ0(ǫMB) and Eapp(ǫMB) (Eq. 7). The for-
mer, τ0(ǫMB), however, has not been deduced from PEL
properties. Its variation with MB energy is not strong
(Fig. 2(c)), so we can hope that setting it to a constant
will be a good approximation. Thus, Eq. 4 becomes

D(T ) ≈
a2

6Nτ0

∫

dǫMBp(ǫMB;T )e
−βEest

app(ǫMB) ≡ Dest(T ).

(21)
The estimated diffusion constant derived from this ex-
pression is shown in Fig. 15. The agreement of D(T )
with our estimate is satisfactory below T = 1, albeit we
find a slightly too strong temperature dependence for the
lowest T . The deviation at T = 2 is due to the depart of
〈τ(ǫMB;T )〉 from Arrhenius behavior, see Fig. 2(a).

VI. BARRIER CROSSING.

When making use of Eq. 13, we presumed that the bar-
riers V (ζab) − V (ξa) in fact are the determinants of the
temperature dependence of rates. The excellent agree-
ment between Eapp(ǫMB), determined from dynamics, and
the Eest

app(ǫMB), from the analysis of the PEL, strongly
indicates that this presumption is indeed true. We will
show here in a very detailed way that at T = 0.5 = 1.1Tc,
escapes from stable MBs are perfectly activated. More
precisely, two conditions are fulfilled, (i) the potential
barriers are much larger than kBT , (ii) rates follow from
the 1D energy profile of the RP plus corrections from
perpendicular curvatures.
We will check these conditions explicitly here by an

analysis of escape dynamics out of MBs. We made the
observation that during every escape from a stable MB,
at least one single barrier larger than 6kBT must be sur-
mounted. Moreover, this larger jump is mostly under-
taken from one of the lowest minima of the MB, compare
Fig. 8. From the repeated escape runs of section III B, we
selected the most frequent ten transitions of that kind.
From the respective TSs, ζl, we computed the RPs, de-
noted ζl(s), l = 1...10. We then investigated the mo-
tion within the MBs over a long period of the simulation
where no escape had happened (107 MD steps each MB).
The goal was to observe how the system tries to climb
the different RPs. To this end, we projected the instanta-
neous configuration x(t) onto each of the RPs, according
to

sl(t) ≡
{

s′ : ||x(t) − ζl(s
′)|| = min

s
||x(t) − ζl(s)||

}

,

which means the point on the RP next to x(t). Due to the
long residences in the MBs, motion therein is largely equi-
librated. Hence, if the potential energy profiles V (ζl(sl))
along the reaction paths are of importance for the tran-
sition rates, we expect that the populations pl(sl) of the
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FIG. 16: Parametric plot showing the correspondence of
− ln pl(sl) + const. to the free energy profile Fl(sl)/kBT +
const., l = 1...10, T = 0.5. All curves were shifted to start in
the origin. Insets: comparison of the free energy profiles of
two reaction paths with the population along the path.

RPs follow from Boltzmann’s law

pl(sl) ∝ exp {−βVl(sl)}Y
⊥
l (sl) ≡ exp {−βFl(sl)} .

The vibrations perpendicular to path l are accounted for
by the harmonic partition function

Y ⊥
l (sl) =

∫

dx exp

{

−
β

2

∑

λνx
2
ν

}

δ(x · t̂(sl)),

where λν are the eigenvalues of the Hessian matrix,
H(sl), xν the components of x along the eigenvectors,
and t̂(sl) is the tangent to the reaction path.
The upper inset of Fig. 16 shows an example of pl(sl)

vs. Fl(sl)/kBT . The population of the reaction path
follows nicely the prediction from its energy profile. For
RPs with complicated shapes, this correspondence can be
disturbed. The worst agreement of the considered RPs
is shown in the second inset. Still, a clear correlation of
RP population with energy is present. We compiled the
results for all 10 RPs in Fig. 16 as a parametric plot of
− ln pl vs. Fl/kBT . Curves of slope one result from a per-
fect equivalence of pl to Fl/kBT . Here, we find an average
slope of 0.92. Since transition rates are proportional to
the population of TSs, the implications of these results
are obvious: MB jump rates follow from energy barriers.
We finally note that the vibrational terms lnY ⊥

l (sl) are
minor as compared to βV (sl).
In view of these results, it is a little surprising that

the TS location with the help of the auxiliary potential
Ṽ was that unsuccessful (cf. section IV). Since the RP
population suits well the harmonic description of the RP,
one expects that motion near the TS is quite harmonic,
too. Minimizing Ṽ in a harmonic potential directly yields
the stationary state. Consequently, one should easily find
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the TS when starting from a configuration at s ≈ 0.
After section IV, this is not the case, so at least minor
anharmonicities must be present.

VII. DISCUSSION.

The metabasin concept is at the heart of the present
study. The important insight is that, upon cooling, not
only the time scale of inter-basin transitions becomes well
separated from intra-basin vibrations, but also that a
similar separation occurs betweenMB hopping and intra-
MB transitions. Recently, Biroli and Kurchan have anal-
ysed the general problem of defining metastable states in
glassy systems [46]. They conclude that one has no abso-
lute notion of a state without making reference to a time
scale and hence to dynamics. Also the present definition
of MBs relies on the dynamics of the system. It is, how-
ever, independent of time scale and exclusively depends
on the pback values which directly reflect the topological
properties of the PEL.
Our MB definition (see Fig. 10) is devised to eliminate

the information on trivial back-and-forth jumps within
MBs. This strongly correlated type of motion is remi-
niscent of the particles’ rattling in the cages formed by
their neighbors. Similarly, escaping from MBs seems to
be equivalent to the breaking of cages and thus to struc-
tural relaxation. Guided by this idea, we have examined
MB relaxation in great detail:
First, for repeated relaxation from the same MB, we

calculated the mean relaxation time 〈τi〉 and found Ar-
rhenius behavior in all cases. The simplest view is
that the apparent activation energies Eapp(i) from the
Arrhenius-like 〈τi〉 (Fig. 1) should correspond to the
depths of these MBs, i.e. to the typical heights of barriers
that surround the MBs. Indeed, this has been quantita-
tively confirmed for the four randomly selected, low-lying
MBs (see Fig. 11). A direct conclusion from the con-
stancy of Eapp(i) is that the system does not find smaller
and ever smaller barriers upon decreasing T .
Although not of statistical relevance for the whole

PEL, the results for the four single MBs give us a de-
tailed picture of the local PEL topography. An important
outcome is the variation of barrier heights with temper-
ature, see Fig. 12. We have already discussed that low
barriers increase upon cooling, due to enhanced multi-
minima correlations (growing MBs), while unnecessarily
high barriers are suppressed. Both effects seem to cancel,
so that the mean barrier, Eest

app, remains constant, lead-
ing to Arrhenius behavior below T = 1. This cancellation
may be fortunate, at least we can offer no explanation for
it, here. As depicted in Fig. 12, the distribution of bar-
riers becomes more and more narrow when going from
T = 0.8 to T = 0.5, but the mean value, i.e. Eest

app
(1),

remains constant. The constant apparent activation en-
ergy of MB 1 down to T = 0.45 implies that the mean
value of the distribution of barriers has not increased. We
thus speculate that the growth of barriers due to increas-

ing multi-minima correlations has essentially come to an
end at T ≤ 0.5. Although the temperature dependence
of the barrier distribution has only been analyzed for a
single MB, the constancy of apparent activation energies
of the other three MBs and the temperature indepen-
dence of Eapp(ǫMB) support this idea. Stated differently,
the development of superstructures of minima seems to
cease at some temperature above Tg. Expressed by pback,
this means that no minimum with pback < 50% will sur-
pass pback = 50% upon further cooling, thus being un-
able to join the MB in question. Hence, an escape se-
quence found at one temperature T ≤ 0.5 has the same
length at another one, i.e., from some temperature on,
the minimum ξm(T ) remains at pback < 50% for T → 0;
we then say it terminates the sequence. It is an interest-
ing question under what circumstances such termination
happens. A trivial example would be a ’transit’ minimum
with one backward and one forward exit, where taking
the forward leads to a minimum with pback ≈ 0. If the
backward barrier was higher than the forward one, pback

would go to zero for T → 0. On the other hand, the min-
ima inside MBs generally feature growing pback’s upon
cooling, because the energetic gain of returning becomes
more and more attractive. Ideally, thus, for T → 0, we
would have pback → 1 within MBs, and pback → 0 outside.
This provides a plausible, physical basis for computing
barrier heights according to Eq. 17, at least in the limit
T → 0. Clearly, a more detailed investigation of the tem-
perature dependence of pback is necessary to back these
conclusions.

Second, we analyzed the average relaxation times
〈τ(ǫMB;T )〉 from MBs at fixed energy ǫMB. Again, they
displayed Arrhenius behavior, with apparent activation
energy Eapp(ǫMB) (see Fig. 2), which compared well with
the prediction from PEL barriers (Fig. 14). In this con-
nection, a recent paper by Grigera et al. [30] is of inter-

est. The authors use the Ṽ -potential to compute saddles
in a binary soft-sphere mixture (N = 70). From the
TSs among these saddles (index one, no shoulder), they
perform steepest descents to obtain the connected min-
ima. They define barriers as the energy difference ∆U
from the TSs to the lower one of the connected min-
ima ǫ = min(ǫ0, ǫ1). Plotting the average ∆U(ǫ), they
find a similar curve to our Eapp(ǫMB), Fig. 14, i.e., a
strong increase of barriers towards lower energies. In
contrast, when carrying out the same analysis for our
BMLJ65, we found a nearly constant ∆U(ǫ), a curve close
to the first barriers of escapes E01 shown in Fig. 14. We
would have expected this result, since the multi-step na-
ture of escapes in the BMLJ65 has clearly been demon-
strated. On the other hand, the contrasting result of
Grigera et al. indicates that the soft-sphere PEL is not
organized in multi-minima superstructures. A clarifica-
tion of this point would be very useful.

Note that Eapp(ǫMB) is of special importance since it
bridges the separation between dynamics (diffusion con-
stant D(T )) and thermodynamics (population of ǫMB).
Clearly, an understanding of Eapp(ǫMB) from basic prin-
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ciples is highly desirable. It is plausible that the simple
form Eapp(ǫMB) = ǫth−ǫMB can only be expected for a sys-
tem acting as a completely correlated entity. In contrast,
two independently relaxing subsystems should generally
show a weaker dependence of Eapp(ǫMB) on ǫMB. This
can be seen by a very simple argument. Consider
two independent, identical systems, with MB energies
ǫ(1)MB, ǫ

(2)

MB and activation energy ˜Eapp(ǫ
(1,2)

MB ). What can
be said about Eapp(ǫMB) of the union of these systems,
at MB energy ǫMB = ǫ(1)MB + ǫ(2)MB? In the limit of low
temperatures, the apparent activation energy is given by
min( ˜Eapp(ǫ

(1)

MB), ˜Eapp(ǫ
(2)

MB)). A proper average over differ-
ent realizations ǫ(1)MB, ǫ

(2)

MB = ǫMB − ǫ
(1)

MB yields Eapp(ǫMB) of
the combined system. Instead of carrying out this av-
erage, we use the fact that ˜Eapp(ǫMB) is a monotonous
function and estimate

0 ≤ min( ˜Eapp(ǫ
(1)

MB
), ˜Eapp(ǫ

(2)

MB
)) ≤ ˜Eapp(ǫMB/2).

Thus, 0 ≤ Eapp(ǫMB) ≤ ˜Eapp(ǫMB/2), which means that
the combined system shows a weaker dependence on ǫMB

than a single copy. For a reasonable PEL topology, one
would expect |dEapp(ǫMB)/dǫMB| ≤ 1, because barriers
should not mount up more than one descents in the
PEL. Since the ǫMB-dependence of Eapp becomes weaker
for larger systems, it in turn should increases towards
smaller N . As a speculation, this might open a way of
estimating the size of cooperative regions.
The results shown in Fig. 15, obtained via Eqs. 4 and 7,

demonstrate the use of the present work. From PEL
barriers (Eest

app(ǫMB)) and thermodynamics (p(ǫMB;T )) we
are able to produce a reasonable estimate of dynamics.
An overall proportionality factor 1/τ0 remains as an ad-
justable parameter, since it could not be predicted from
PEL structure. As discussed in section III, one may use
p(ǫ;T ) instead of p(ǫMB;T ), since they are nearly identi-
cal. This is very convenient, because upon contructing
p(ǫ;T ), no information about dynamics is needed. The
breakdown of the Arrhenius form of 〈τ(ǫMB;T )〉 above
2Tc limits our description to the temperatures T ≤ 2Tc.
In any event, we would not have dared to make quantita-
tive statements on the basis of the hopping picture above
the landscape-influenced temperature regime. At T = 1,
for instance, we have 〈ǫMB〉T ≈ −289 (Fig. 3), where
we already find PEL barriers Eapp(−289) ≈ 1 = kBT
(Fig. 2).
From the fact that we could quantitatively relate MB

lifetimes to PEL barriers below 2Tc and the results from
section VI, we see that there exist activated barrier cross-
ing events significantly above Tc. As shown before [19],
these escape processes from stable MBs determine the
temperature dependence of the diffusion constant also
above Tc. Thus, the general statement that hopping
events are not relevant there (see, e.g. [47]) is not cor-
rect for the BMLJ system. This implies that the ideal
MCT can be applied to systems for which activated pro-
cesses determine the time-scale of relaxation. Thus it
seems that the theoretical description of the cage effect
in terms of structural quantities, as done in MCT, works

independent of whether the cage effect is purely entropic
(like in hard-sphere systems) or is to a large degree based
on barrier-crossing events.
Moreover, with the help of the unbiased quantity

pBB(T ), we were able to measure the population of basin
borders. No indication for an abrupt change of relaxation
mechanism could be observed in pBB(T ); in contrast, the
separation of intra- and inter-basin motion seems to hap-
pen rather smoothly (see Fig. 7). Thus, there is no qual-
itative change around Tc.
We finally discuss the relation of our work to the in-

stantenous normal mode approach (INM) which consid-
ers the number of ’diffusive modes’, fdiff, to be at the
physical basis of diffusion [13, 14, 18]. From the direc-
tions corresponding to negative eigenvalues of the Hes-
sianH(x(t)) (unstable directions), one filters out the ’dif-
fusive’ directions. Considering the energy profile on the
straight lines along the unstable directions, La Nave et al.
observed extremely small barriers, indicating completely
’entropic’ dynamics at the considered temperatures [18].
This conclusion, though reached for a model of super-
cooled water, is in contrast to our findings of the rele-
vance of energetic barriers. A possible key to this ap-
parent contradiction is that fdiff is directly related to the
fraction of time spent in ’mobile’ regions of configuration
space. In contrast, we have concentrated on the dura-
tions of the stable, immobile structures. As the conse-
quence of longer and longer residences in deep MBs, the
mobile fraction becomes smaller and smaller. Thus, one
observes a relation between D(T ) and fdiff, although it
is the long trapping times which are the reason for the
slowing down of dynamics.
We further note that the MB concept is not imple-

mented in the INM approach. Supercooled water, e.g.,
exibits very pronounced MB correlations in the time se-
ries of minima, even for a ’large’ system of 216 parti-
cles [48]. Generally, fragile glass formers are expected
to have a ’rugged’ PEL, i.e. exibit extensive superstruc-
tures of minima [20]. In view of this insight, the success
of INM analyses for the latter type of systems is quite
surprising.

VIII. CONCLUSION.

Our goal in this paper was to shed some light on the
temperature dependence of the diffusion constant. In
our previous work [19], metabasins turned out as a use-
ful concept that reduces correlations of subsequent PEL-
hopping events. Taking seriously these correlations, the
present investigation went a step further into this direc-
tion, by relating the temperature dependence of relax-
ation to the depths of these multi-minima superstruc-
tures. We have shown in this paper that a quantita-
tive link between PEL structure and dynamics is possible
above Tc. However, our approach is still phenomenolog-
ical at this stage: we are far from predicting Eapp(ǫMB)
from more general PEL properties or even the interaction
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potentials. To achieve this is a major challenge, implying
a deep understanding of energy landscape topology.
Further insights might be obtained by unveiling the

real-space aspects of MB relaxation. Here, the corre-
spondance of MBs to the cage effect should serve as the
guiding principle. An interesting question along this line
would be if some of the real-space phenomena found in

supercooled liquids (e.g. the string-like motion discov-
ered by Donati et al. [49]) can be traced back to energy
landscape features.
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