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Abstract

We present a numerical simulation study of a simple monatomic Lennard-

Jones liquid under shear flow, as a function of both temperature T and shear

rate γ̇. By investigating different observables we find that i) It exists a line, Tγ̇ ,

in the (T -γ̇) plane that sharply marks the boarder between an “equilibrium”

and a “shear-controlled” region for both the dynamic and the thermodynamic

quantities; and ii) Along this line the structural relaxation time, τα(Tγ̇), is

proportional to γ̇−1, i. e. to the typical time-scale introduced by the shear

flow. Above Tγ̇ the liquid dynamics is unaffected by the shear flow, while

below Tγ̇ both T and γ̇ control the particle motion.
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The effects of the shear flow on the properties of simple liquids has recently been the

object of extensive investigations [1–6]. Beside its intrinsic theoretical interest (the study of

out-of-equilibrium stationary states), it has been hypothesized [7,8] that the shear flow acts

as an aging-stopping mechanism, thus suggesting an interesting experimental method to

study dynamics in supercooled liquids and glasses. Indeed, under shear flow, the system is

in an out-of-equilibrium situation but reaches a stationary regime: similarly to equilibrium

the correlation functions depend only on the time-difference. This takes place also at those

temperatures for which the non-sheared system would be in an aging regime (i. e. the corre-

lation functions depend explicitly on two times). In the common phrasing, the application

of a shear flow has the effect to rejuvenate the glassy system and the aging phenomenon

characteristic of glasses is stopped. The fact that some relevant properties of aging systems,

like the existence of a generalized fluctuation-dissipation relation [7,9] and of an effective

temperature, still hold in systems under shear flow [8,10], makes the study of sheared sys-

tems an important topic. This is particularly true in view of possible experiments aiming to

probe the out-of-equilibrium dynamics of glassy systems: in aging the waiting-time depen-

dence of correlation functions prevents the acquisition of the data with the desired statistics,

while under shear correlation functions become time translation invariant.

In this work we use numerical simulations to study the effects of the shear flow on the

properties of a simple Lennard-Jones model liquid. In particular we compare the tempera-

ture dependence of some physical quantities of the driven system (with different shear rates

γ̇) with those of the equilibrium system (γ̇ = 0). We find that i) it exists a well-defined

crossover temperature Tγ̇ , whose value depends on the shear rate γ̇, below which the proper-

ties of the sheared system exhibit a marked difference from those of the equilibrium system.

On the contrary, for T > Tγ̇ the driven system is not influenced by the presence of a shear

flow, and both the energy and the structural relaxation time coincide with their equilibrium

values. ii) The same Tγ̇ can be derived from the T -dependence of both potential energy and

structural relaxation times, thus indicating the robustness of the ”cross-over” temperature

concept; iii) At Tγ̇ , the structural relaxation time τα(Tγ̇) is proportional to γ̇−1, i. e. to the
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typical time-scale introduced by the shear, the proportionality coefficient being an observ-

able dependent quantity. The previous observations lead to a microscopic interpretation of

the shear thinning effect, and suggest a quantitative experimental test on the temperature

dependence of the non-linear viscosity in simple liquids.

The investigated system is made of N=256 particles interacting via a simple Lennard-

Jones potential, plus a small many-body term [11] introduced to prevent the crystallization

unavoidably occurring in undercooled monatomic systems. The particles are confined in

a cubic box, at density ρ = 1 (hereafter all the quantities are expressed in reduced LJ

unit), with periodic boundary condition adapted to the presence of a shear flow. The latter

is applied to the system along the x direction with a gradient velocity field along the y

axis. The molecular dynamics simulation is performed using SLLOD algorithm [12], with

a Nose-Hoover thermostat for the thermal velocities. Different shear rates γ̇ were studied

in the range γ̇ = 10−1 ÷ γ̇ = 10−3. A preliminary simulation performed at γ̇ = 0 was

used to determine the reference behavior of the equilibrium system. For all the shear rates

considered, different physical quantities are analyzed as a function of temperature: energy,

incoherent scattering functions, relaxation times.

In Fig. 1 we report the potential energy per particle e as a function of temperature for

selected values of the shear rate. The full line indicates the temperature dependence of e

at equilibrium (γ̇ = 0), which, as shown in previous work [11,13,14], can be described quite

accurately by the Rosenfeld-Tarazona T 3/5 power-law [15]. The open symbols indicates the

caloric data for three selected shear rates: γ̇=1·10−1, 4·10−2, 6·10−3. At high temperature,

one can observe a good agreement between e(T, γ̇) and e(T, γ̇ = 0) = eeq.(T ). On lowering

the temperature, the agreement breaks down at a γ̇-dependent temperature (Tγ̇), below

which the caloric curve of the sheared system deviate from the T 3/5 power-law. In particular,

at low-T , e(T, γ̇) is well described by a linear temperature dependence (indicated, as an

example, by the dashed line for γ̇=4·10−2). The deviation of the energy of the driven

system from the equilibrium energy is evidenced in the inset of Fig. 1, where the energy

difference e− eeq. is reported as a function of temperature for the system with γ̇ = 4 · 10−2.
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The existence of a linear behavior of e(T, γ̇) at low T and of an analytic expression for this

quantity at high T allows for a straightforward identification of a crossover temperature Tγ̇

(indicated in the inset of Fig. 1 with dashed arrow).

In Fig. 2 we report the γ̇-dependence of the parameters describing the caloric curves of

the sheared systems: the crossover temperature Tγ̇ and the potential energy value at T=0

e0. As shown in Fig. 2a, Tγ̇ is an increasing function of the shear rate. For small shear

rate values it approaches a plateau whose value is very close to the estimated mode-coupling

critical temperature TMCT (TMCT=0.475 for this potential model [16,17]) indicated by the

dashed line in Fig. 2a. A similar plateau is observed in the γ̇ dependence of e0 (see Fig. 2b).

Here, for small shear rate values, e0 reaches the value epl.0 ∼ −6.90. We note that the

value epl.0 is higher than the lowest inherent structure energy value obtained in equilibrium

simulation eIS0 = −7.0 [18]. Similarly to the case of analytic mean field spin glass models

[8], the plateau value can be interpreted as a threshold in the potential energy surface, above

which the system is forced by the shear. However, as we are dealing with a non-mean field

system, we expect that for values of γ̇ small enough -well below the ones that we are able

to study- the system cross the threshold. Similarly, also in Fig. 2a the existence of a plateau

is only apparent and mirrors the (apparent) power-law divergence of the relaxation times

predicted by the MCT. The evaluation of the crossover temperature for even smaller γ̇,

i. e. in a region not accessible to the simulation for CPU time reason, would have resulted

in a Tγ̇ smaller than TMCT as a consequence of the presence of activated processes in the

investigated non-mean field system.

Further information on the effect of the shear flow can be obtained analyzing the tem-

perature dependence of correlation functions in driven systems. For the different shear rates

considered, we have calculated the incoherent scattering functions Fq(t):

Fq(t) =
1

N

N∑

j=1

〈eiq·[rj(t)−rj (0)]〉 , (1)

where rj(t) is the position of particle j at time t. The wave vector q is that of the first peak of

the static structure factor Sq (qmax = 7.1) along the “shear-free” direction (q = (0, 0, qmax)).
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In Fig. 3 we report the Fq for the equilibrium system (full lines) and, as an example, for

the system with γ̇=4·10−2 (dashed lines), for three different temperatures. At the higher

reported temperature (T = 1.6), the Fq of the sheared system is undistinguished from the

equilibrium one. At the intermediate temperature (T = 0.80) the full and dashed lines start

to deviate one from the other, an effect that become more and more clear on lowering the

temperature (T = 0.56). It is worth to note that -at the reported value of γ̇- the crossover

temperature derived from Fig. 1 is Tγ̇=0.97, i. e. intermediate between the the first two

reported Fq. From the inspection of Fig. 3, one can conclude that for T smaller than Tγ̇

(derived from e) there are no effects of the shear flow on the dynamics.

To put the previous observation on a quantitative ground, we analyze the temperature

dependence of relaxation time τα, defined as the time at which Fq reach 1/e-th of its non-

ergodicity factor (the apparent plateau value). In Fig. 4 the power law fit to the equilibrium

(γ̇ = 0) relaxation times is reported as full line, together with the relaxation times for three

selected shear rates: γ̇1=1·10−1 (full diamonds), γ̇2=4·10−2 (full circles) and γ̇3=6·10−3 (open

circles). In the same figure are also indicated by dashed lines the crossover temperatures

derived from Fig. 1 for the three selected shear rates. Similarly to the thermodynamic

quantities, also the dynamics follow a simple behavior: at a fixed γ̇ value, for T larger

than a certain threshold the dynamics of the sheared system is undistinguished from the

equilibrium one. Below the threshold the relaxation time flattens and no longer follows

the steep increase associate to the slowing down of the dynamics which precedes the glass

transition. It is important to emphasize that the crossover temperature, defined from the

dynamics is found to be the same as that derived from thermodynamic data.

The existence of a well defined crossover temperature Tγ̇ , as evidenced by the above

results, suggests the following scenario: for T > Tγ̇ the sheared system is not affected by

the shear flow because the structural relaxation process of the equilibrium system acts on

a time-scale (τα) that is faster than the one introduced by the shear flow; on lowering the

temperature τα increases and -for temperatures close to Tγ̇- becomes comparable to the time

scale introduced by the shear (proportional to the inverse of shear rate γ̇−1). For T < Tγ̇
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the shear starts to modify both the static and the dynamic properties of the system. In the

following, we refer to the high temperature regime (T > Tγ̇) as “α-dominated” (equilibrium

region) and the low temperature regime (T < Tγ̇) as “shear-dominated”. Below Tγ̇ , in the

“shear-dominated” region, the system, still remaining in a stationary state, “freezes” (in the

sense that relevant processes governing the relaxations become those induced by the shear

and then only weakly temperature dependent). Dynamic behavior are much less affected by

further decreases of temperature and the relaxation time reaches a finite value for T →0.

The previous scenario implies the existence of a strong relation between the equilibrium

relaxation time at the crossover temperature and γ̇−1. In Fig. 5 we compare τα(T ) plotted

as a function of the temperature and the inverse shear rate γ̇−1 plotted as a function of Tγ̇.

The inverse shear data have been multiplied by a constant factor 0.07 in order to align them

with the τα(T ) data. The temperature dependence of the two quantities are in quite good

agreement, suggesting a direct proportionality between them

τα(Tγ̇) ∝ γ̇−1 . (2)

There is obviously a shear-independent prefactor that depends on the chosen definition of

τα and on the specific investigated correlation function (for example, the self relaxation

time scale approximately as q−2). It is interesting to note the existence of a simple linear

relationship between τα and γ̇−1 along the line Tγ̇ in the (T -γ̇) plane, as compared, for

example, to the γ̇−2/3 dependence observed along the T -constant line [8].

Recent important work on the fluctuation-dissipation relation (FDR) in sheared system

[3,8,10] has provided evidence that two different temperatures control the dynamics. Dy-

namics at short times is controlled by the bath temperature, while dynamics at longer times

is controlled by an effective temperature, larger than the bath one. Our analysis predicts

that only for T < Tγ̇ a two-temperature scenario in the FDR should be observed.

Furthermore, our analysis confirms [7] that an interesting and promising (from a numeri-

cal and experimental point of view) implication of the above scenario could be the possibility

to reproduce the aging properties of the non-driven system from the investigation of the shear
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effects on the driven system. The underling main hypothesis is the similarity between the

properties of the non-driven system at a given waiting time and those of the driven system

at a given shear rate γ̇.

In conclusion we have numerically studied the shear flow effects on the thermal and

dynamical properties of a simple model liquid, focusing on the differences between driven

and equilibrium system, both in the dynamics and thermodynamics. The potential energy

and the incoherent scattering function (and the associated structural relaxation time) have

been studied as a function of temperature for different shear rates. It emerges the existence,

for a given shear rate, of a crossover line Tγ̇, separating two regimes: an high temperature

(low shear rate) regime in which the driven system behaves very similar to the equilibrium

one, and a low temperature (high shear rate) regime in which the driven system strongly

deviate from the equilibrium one. From the temperature dependence of relaxation times

we found further evidences that Tγ̇ marks the temperature at which the shear relaxation

times start to deviate from the equilibrium times, passing from an “α-dominated” to a

“shear-dominated” region and approaching a finite value at low temperature. Along the line

defined by Tγ̇ in the (T -γ̇) plane we observe a direct proportionality between τα and γ̇−1,

allowing a more clear interpretation of the relationship between shear and relaxation times.

We acknowledge support from INFM Initiative Parallel Computing, and MURST

COFIN2000.
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FIG. 1. Potential energy per particle e as a function of temperature for the equilibrium system

(full line) and for driven systems with different shear rates (symbols - from top to bottom decreasing

γ̇ = 1 · 10−1, 4 · 10−2, 6 · 10−3). The full line extends down to the lowest temperature that we are

able to equilibrate in the simulation. The dashed line is the linear fit to the low temperature

points of the γ̇ = 4 · 10−2 curve. In the inset the difference between the energy curve for the shear

γ̇ = 4 · 10−2 and the T 3/5 fit of the equilibrium energy eeq. as a function of T . The estimated

crossover temperature Tγ̇ is also indicated by the arrow.
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FIG. 2. The shear rate dependence of the parameters describing the energy curves of Fig.

1: a) crossover temperature Tγ̇ (intersection between low energy linear behavior and T 3/5 high

temperature dependence in Fig. 1 - the dashed line is the estimated value of the mode-coupling

temperature TMCT ∼ 0.475 for this system), b) zero temperature energy value e0 (intersection of

energy curves with the y axis in Fig. 1).
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FIG. 3. Incoherent scattering functions Fq (calculated along the “shear-free” direction z and

for the q vector corresponding to the first peak of the static structure factor, qmax = 7.1) for

the equilibrium system (full lines) and for the driven systems with shear rate γ̇ = 4 · 10−2. The

three curves refer to different temperatures: from left to right T = 1.6, 0.80, 0.56 (we note that the

crossover temperature Tγ̇ as defined from Fig. 1 for the shear rate γ̇ = 4 · 10−2 is Tγ̇ = 0.97).
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FIG. 4. Relaxation times (from incoherent scattering functions at qmax = 7.1, see Fig. 3) as a

function of temperature for the equilibrium system (the full line is a power law fit of simulation data

and dashed line is an extrapolation below the last simulation point) and for the driven systems with

shear rates γ̇1 = 1 ·10−1 (full diamonds), γ̇2 = 4 ·10−2 (full circles) and γ̇3 = 6 ·10−3 (open circles).

The arrows indicate the crossover temperatures Tγ̇ as defined in Fig. 1 for the corresponding shear

rates: Tγ̇(γ̇1) = 1.35, Tγ̇(γ̇2) = 0.97 and Tγ̇(γ̇3) = 0.61.
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FIG. 5. Relaxation times τα of the equilibrium system (open symbols) as a function of temper-

ature (the full line is a power law fit), and the inverse shear rate γ̇−1 (full symbols - multiplied by

an arbitrary factor 0.07) as a function of crossover temperature Tγ̇ as defined from Fig. 1.
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