
ar
X

iv
:c

on
d-

m
at

/0
00

83
11

v1
  [

co
nd

-m
at

.s
ta

t-
m

ec
h]

  2
2 

A
ug

 2
00

0

Phase transition in a spatial Lotka-Volterra model
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Spatial evolution is investigated in a simulated system of nine competing and mutating bacterium strains,
which mimics the biochemical war among bacteria capable of producing two different bacteriocins (toxins) at
most. Random sequential dynamics on a square lattice is governed by very symmetrical transition rules for
neighborhood invasions of sensitive strains by killers, killers by resistants, and resistants by sensitives. The
community of the nine possible toxicity/resistance types undergoes a critical phase transition as the uniform
transmutation rates between the types decreases below a critical value Pc above which all the nine types of
strain coexist with equal frequencies. Passing the critical mutation rate from above, the system collapses into
one of three topologically identical (degenerated) states, each consisting of three strain types. Of the three
possible final states each accrues with equal probability and all three maintain themselves in a self-organizing
polydomain structure via cyclic invasions. Our Monte Carlo simulations support that this symmetry-breaking
transition belongs to the universality class of the three-state Potts model.

PACS numbers: 87.23.Cc, 05.10.-a, 05.40.Fb, 64.60.Ht

Many species of bacteria have recently been shown to
excrete toxic subtances that are very effective against
strains of the same or closely related species not pro-
ducing the corresponding resistance factor [1,2]. With
respect to a certain toxin a species consists of colonies
of three possible types: Sensitive (S), Killer (K), or Re-
sistant (R). Killer strains produce the toxin and a resis-
tance factor that prevents suicide; resistant strains only
produce the resistance factor, and sensitives produce nei-
ther. An S colony can always be invaded and displaced
by a K propagulum because K can kill S using the toxin.
A K colony can be invaded and ultimately displaced by
an R propagulum because the resistant type is immune to
the toxic effect and it does not carry the metabolic bur-
den of synthetizing the toxin, thus it achieves a higher
growth rate and competitive dominance over K. The
sensitive (S) type can in turn displace the resistant by
competition, for it does not even pay the metabolic cost
of producing the resistance factor. The resulting cyclic
pattern of competitive dominance (K beats S beats R
beats K) is a striking realization of the well-known Rock-
Scissors-Paper game [3], by a biological entity. Other
cyclic dominance systems are almost unknown in ecol-
ogy, but given the extraordinary significance of bacterial
communities in virtually all ecological systems, the prob-
lem is well worth detailed theoretical studies.
Some theoretical aspects of cyclic dominance have al-

ready been thoroughly investigated [4,3]. In the simplest
spatial (lattice) version of a cyclic Lotka-Volterra system
[5,6] the species are distributed on a d-dimensional lat-
tice, and invasions are confined to nearest neighbor sites
with uniform rates. [7,8] Analytical and numerical cal-
culations have proven that fixation occurs if the number

of species exceeds a critical value dependent on dimen-
sion d, otherwise a self-organizing domain structure is
maintained for d ≥ 2. [9], which comprises rotating vor-
tices and antivortices in three-species models. [7,10] The
present work is meant to demonstrate that extending the
cyclic dominance approach to a two-toxin bacterial com-
munity with mutation results in a remarkable enrichment
of interesting dynamical phenomena, compared to what
is already known.
The relevant biological details of bacteriocin systems

are the following: The genes coding for the toxin and
the resistance factor are usually both sitting on an extra-
chromosomal DNA-ring in the citoplasm (called plasmid)
that the bacterium can lose and obtain without any im-
mediate deleterious impact. Each of the two genes on the
plasmid can be switched off by DNA mutation. Thus all
possible mutational transformations are possible in prin-
ciple, but—supposing the mutant does not disperse far
immediately—those having a visible effect are only the
ones after which the mutant defeats the resident strain
from which it emerged. Obviously, S → K, K → R,
and R → S are mutations followed by competitive dis-
placement of the resident, i.e., they are permitted, but
the reverse ones are immediately eliminated by the resi-
dent population. S → K involves obtaining a complete
plasmid which is possible, e.g., through genetic transfor-
mation or a sexual event called conjugation; the other
two viable mutations are realized by switching off the
toxin gene and the resistance gene, respectively, on an
existing plasmid.
Most bacteria are capable of producing more than one

toxin and/or the corresponding resistance factors simul-
taneously. If the maximum number of toxin types is two,
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the number of possible toxicity/resistance combinations
in a strain is nine. These are: SS, SK, SR, KS, KK,
KR, RS, RK, and RR. Here we confine our attention
to this two-toxin system, denoting the actual state of a
bacterium colony by an index number from 0 to 8 in the
order above. The topology of the dominance relations
among the states is illustrated in Fig. 1. The biological
justification for this topology is straightforward: double
dominance of strain A above strain B means that A har-
bors dominant genes on both plasmids compared to B;
single dominance means that one gene of A is dominant,
the other is identical to that of the correspondig gene in
B; no dominance follows either if the corresponding genes
are both identical, or if the two genes play draw (i.e., A
wins with one gene, and B with the other).
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FIG. 1. Topology of dominance in the nine-species model.
The single and double lines with arrow indicate single and
double dominances as described in the text.

We use a square lattice of size L × L with periodic
boundary conditions as the arena for interaction. Each
lattice site i is occupied by a colony of one of the nine tox-
icity/resistance types (we call them ”species” for brevity
in the sequel). Assignment of a certain value of the state
variable si = 0, . . . , 8 to a certain site indicates the pres-
ence of the corresponding species on that site. The simu-
lation works by iterating the following elementary steps:
At a randomly chosen site one of the two possible mutants
replaces the resident colony with probability P , otherwise
the resident colony fights with a randomly chosen nearest
neighbor colony by mutually invading propagules (with a
probability 1− 2P ). The outcome of the battle between
two neighbors (i and j) depends on the dominance rela-
tions between them: i displaces j and takes over its site
if si is dominant over sj (cf. Fig. 1). If the neighbors are
equivalent or neutral to each other (play draw), nothing
happens.
Lattice size varies from L = 400 to 3000 in the simu-

lations. At t = 0 the species were distributed at random

with uniform probabilities on the lattice in all simulation
runs. The control parameter was mutation rate, vary-
ing from 0 to 1/2. We have recorded the time series of
species concentrations and correlation functions, the lat-
ter of which served as the basis for calculating correlation
length. After a suitable thermalization time we have av-
eraged these data over some sampling time chosen to be
long enough for providing sufficient accuracy in spite of
the occassionally very high concentration fluctuations.
In no-mutation runs (P = 0) we have observed an in-

teresting domain size increase phenomenon in the time
series of spatial patterns which develop. One can dis-
tinguish three equivalent types of growing domains con-
sisting of the 0+4+8, 1+5+6, and 2+3+7 species re-
spectively. Inside these three domains a self-organizing
structure is maintained through the mechanism described
by Tainaka for the simplest 3-species cyclic dominance
model [7]. We call these domains ”alliances” henceforth,
but note that the species within an alliance are in fact
the worst enemies: each alliance consists of species cycli-
cally double-dominating each other. Our reason for this
terminology will be clear in a minute.
The three alliances are given approximately equal ter-

ritories at start, but the system slowly drifts towards a
single-domain state in all simulations. Each alliance has
the same chance to take over.
Alliances defend themselves against the external inva-

sion of ”alien” species with a peculiar mechanism. One
can easily check that any external invador can attack
only one of the species within an alliance, and the in-
vador is eliminated from the domain of the alliance by
the species actually controlling the attacked one within
the alliance. This means that the invador is wiped away
by the toughest within-domain enemy of the attacked
species, thus maintaining the self-organizing structure
and the integrity of the domain with the very same mech-
anism.
The self-protection of alliances against external in-

vadors can also be observed for small mutation rates as
illustrated in Fig. 2. In this snapshot similar symbols are
used for species belonging to the same alliance. Namely,
different strip widths (or box sizes) distinct the species
within the three alliances represented by horizontal and
vertical strips and closed squares respectively. This figure
illustrates that the mutants and their offspring can form
only small, temporary islands in the sea of the dominant
domain (0+4+8) represented by vertical strips. Clearly,
the concentrations of minority species increase with mu-
tation rate P .
The average concentrations of the species become equal

if the mutation rate exceeds a critical value Pc. This con-
tinuous transition is accompanied by a divergence in both
the fluctuations and the correlation length. A similar
phase transition occurs in the three-state Potts model
[11,12], therefore we have adopted the numerical tech-
niques suggested by Binder [13] for the quantitative anal-
yses.
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FIG. 2. Snapshot of species pattern for P = 0.0003. The
different symbols magnified at the top represent the species
s = 0, . . . , 8 from left to right.

In order to reduce relaxation time in systematic inves-
tigations, the random initial state contained only species
0, 4, and 8 at small values of P . The MC simulations were
performed on large lattices (L > 1500) and long sampling
times (t > 3 · 105 MC steps per sites) in the vicinity of
the critical point. For such large lattice sizes the domi-
nance of the 0+4+8 alliance was maintained during the
simulations at all tested values of P below Pc.
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FIG. 3. Average concentrations of species as a function of
mutation rate. The inset shows the log-log plot of the order
parameter vs. Pc − P .

The simulations suggest a continuous transition as in-

dicated in Fig. 3. Statistical errors are small, comparable
to the line thickness of the figure, except for the very close
vicinity of the critical point.
Figure 3 shows that the P -dependence of average con-

centrations can be characterized by a single order param-
eter m as

c0 = c4 = c8 =
1

9
+m, (1)

c1 = c2 = c3 = c5 = c6 = c7 =
1

9
−

1

2
m.

According to our MC simulations, m follows a power law
behavior in the close vicinity of Pc, i.e.

m ∝ (Pc − P )β (2)

if P < Pc (see the inset in Fig. 3), whereas the order
parameter remains zero for P > Pc. Numerical fitting
yields β = 0.110(5) and Pc = 0.0004333(5). This value of
the β exponent is in good agreement with the theoretical
prediction (β = 1/9) obtained for the three-state (Q = 3)
Potts model [12]. This is not surprising, given that a
large class of two-state dynamical systems exhibits phase
transition belonging to the universality class of the Ising
model [14] and the Q-state Potts model was introduced
as a generalization of the Ising model [11,12].
To obtain further evidence, we have also studied some

other quantities characterizing the critical behavior. For
example, the fluctuation of the order parameter defined
as χ = N〈(m − 〈m〉)2〉 can be well approximated by a
power law; χ ≈ |P − Pc|

γ in the vicinity of Pc. Be-
low and above the critical point, numerical fitting yields
γ = 1.3(2) and γ′ = 1.43(4) respectively, which values
agree with the theoretical prediction (γ = γ′ = 13/9)
[12]. The investigation of the cumulant of the order pa-
rameter [15] for small lattice sizes (L = 60, 100, 200)
supports the presence of a continuous transition at the
critical mutation rate Pc. Furthermore, we have deter-
mined the correlation function C(x) for P > Pc, which
characterizes the probability of finding the same species
on two sites at a distance x away from each other. In the
vicinity of Pc, two different characteristic lengths can be
obtained from C(x) (see the inset in Fig. 4). The short-
est correlation length is proportional to the linear size of
a domain within the alliance, and this quantity remains
finite if P → Pc. The longest correlation length is more
interesting, because it characterizes the linear size of the
alliance and diverges if P → Pc. More precisely, this
correlation length can be well described by a power law
(ξ ∼ (P −Pc)

ν) as illustrated in Fig. 4. Numerical fitting
predicts ν = 0.82(4), in agreement with the theoretical
prediction ν = 5/6 for the two-dimensional, three-state
Potts model [12].
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FIG. 4. Log-log plot of the correlation length characteristic
to the linear extension of alliances as a function of P − Pc.
The solid line represents the fitted power law behavior with
a slope of -0.82. The arrow points to the value of the correla-
tion length characteristic to the linear domain size inside an
alliance for P = 0. The inset shows the lin-log plot of the
correlation function for P = 0.00055.

We have also investigated the model analytically, by
evaluating the probability of configurations on two adja-
cent sites (pair approximation method). Even though the
number of possible pair configurations is large (92), con-
sidering the (translation, rotation, reflection, and cyclic)
symmetries of the system the number of different pair
probabilities reduces to as few as four. For sufficiently
large P , this method gives a good approximation for the
behavior of the simulation model (i.e., it predicts van-
ishing correlations if P → 1/2). However, it shows no
sign of the phase transition found in the MC simulations
at Pc. This failure of the pair approximation method in
showing the phase transition is related to the key role
that interfacial invasion plays in the development of the
self-organizing domain structure. [7,10] This feature lim-
its the techniques we can use for further investigations.
In conclusion, our MC simulations justify that the

present model exhibits a critical phase transition accom-
panied with spontaneous symmetry-breaking, in close
analogy to the well-known Potts model. Here the muta-
tion rate P plays the role of the control parameter whose
increase drives the system towards the symmetric sta-
tionary state in which all the nine species are present
with the same probability. Conversely, for low muta-
tion rate P the system drifts towards the dominance of
an alliance consisting of three species whose survival is
maintained by cyclic within-domain invasion. Due to the
very symmetric topology of species dominance relations
the system admits three equivalent alliances. Numeri-
cal analysis of the critical behavior (β, ν, and γ expo-
nents) supports our conjecture that the observed phase
transition belongs to the universality class of the three-

state Potts model. The most surprising result of this
work is that cyclic invasion is capable of providing pro-
tection (stability) for alliances consisting of mortal ene-
mies (species double-dominating each other) under some
particular conditions hidden in the topology of the inter-
action. Further systematic research is required to clar-
ify the conditions for the emergence of such defensive
alliances accompanied by a reduction in the number of
surviving species for more general interaction topologies.
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