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Light-scattering spectra of supercooled molecular liquids
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The light-scattering spectra of molecular liquids are derived within a generalized hydrodynamics. The
wave-vector and scattering-angle dependencies are given in the most general case and the change of the
spectral features from liquid to solidlike is discussed without phenomenological model assumpti@enfor
eral) dielectric systems without long-ranged order. Exact microscopic expressions are derived for the frequency
dependent transport kernels, generalized thermodynamic derivatives, and the background spectra.

PACS nunier64.70.Pf, 78.35tc

I. INTRODUCTION and translational degrees of freedom.
Here, we clarify that generalized hydrodynamics and
Light scattering is a powerful tool to study the dynamicssymmetry considerations suffice to explain the light-
of dense(transparentmaterials[1]. The fluctuations of the scattering spectra qualitatively as they change from liquid to
dielectric tensor for wave-vector transfgrare measured, solidlike. The results will be derived without any assump-
where the corresponding wavelength can be considered larg®ns about nonhydrodynamic variabl@sd their couplings
compared to molecular length scales. In this case the the@nd will also not depend on specific light-scattering mecha-
retical description of the light spectra simplifies as it sufficesnisms nor molecular parameters like shape, dipole moment,
to determine the lowest orders in wave veciponly. The  polarizabilities nor chirality. The set of slow variables we
wave vector and scattering-angle dependence of the scattamonsider are the standard slow hydrodynamic variables of
ing cross sections thus can be determined. liquids, densityn(q), current densityj(q), and temperature
Focusing on low frequencies, the hydrodynamic approacl®(q) (connected to energy conservatiprand the slow
can be used to calculate the spectral shapes. For thaructural relaxation of supercooled liquids enters via a few
polarized-light-scattering spectra of gases and liquids, the asnemory functions. We thus provide a general framework for
sumption that dielectric fluctuations are dominantly causedhe analysis of light-scattering spectra in supercooled mo-
by density fluctuations leads to the well-known Rayleigh-lecular liquids, which we expect will prove useful either for
Brillouin spectra. The corresponding hydrodynamic depolarphenomenological discussions using fit functions for the
ized spectra were first obtained within simplified models bymemory kernels—we will list all restrictions on these fit
Andersen and Pecofa] and Keyes and Kivelsof8], inthe  functions—or for the consideration of specific scattering
latter case, under the assumption that fluctuations in the orimechanisms. Our central technique for simplifying the spec-
entations of the molecules cause the dielectric variations. Aga consists in small-wave-vector expansions of the memory
observed experimentally in molecular liquids, a negativefunctions as should be appropriate for disordered systems.
central line appears called “Rytov dip4,5]. Thus we adopt the idea of generalized hydrodynamics, which
The spectra, in particular the depolarized ones, changextends the regular hydrodynamic approach to larger fre-
qualitatively if the relaxation times of the structural dynam- quencies. In detail, we use the one suggested hyesand
ics increase upon cooling the liquids. For the polarized spec:atz [14] as it provides a physically reasonable description
tra, Mountain introduced a frequency-dependent longitudinabf glassy systems. Finally, we also derive Green-Kubo for-
viscosity in order to model the additionally appearing centralmulas, which enable e.g., computer simulations, to determine
line [6]. In the depolarized-light-scattering spectra transvers¢he memory functions and thus the complete spectra directly.
sound peaks become visible as expected from hydrodynamic Our assumptions pertain to the systems under consider-
calculations for solid§7]. Within phenomenological models ation and can be tested experimentally: We consider only the
including nonhydrodynamic variables, the changes of thdowest nontrivial orders in wave-vector transtgrin order to
spectra from liquidlike at high to solidlike at low tempera- find general results for the light scattering from amorphous,
tures could be explainedl8—13. However, assumptions dielectric, macroscopically isotropic and optically inactive
about the included slow variables and about phenomenologimaterials within the framework of linear response, classical
cal kinetic equations coupling their time dependencies, werstatistical mechanics, and classical electromagnetism. The
required. The introduction of memory functions, in most de-conditionqa<1, wherea denotes either a typical molecular
tail in the recent work of Dreyfust al.[12,13, has relaxed size, the average particle distance, or a collective correlation
the requirement to identify and include all slow variables butlength, appears well satisfied for supercooled molecular lig-
still uses phenomenological equations to couple rotationalids but excludes studies of critical phenomena. Electromag-
netic retardation also can be neglecteddegcq, wherec is
the speed of light.
*Present address: Lyman Laboratory of Physics, Harvard Univer- The general formulas for the spectra and constitutive
sity, Cambridge, MA 02138. equations are presented in Sec. Il. Section Ill lists the central
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results that are discussed in Sec. IV. The results for the dewhere the projectoQ=1—P projects perpendicular to the
polarized spectra are compared to previous theoretical agrydrodynamic modes:

proaches in Sec. V, and conclusions in Sec. VI summarize
our results. More technical aspects are contained in Appen- n n 16) ® i i
dices A and B, and Appendix C outlines the application of P= In@)n(@f , [O(@)(O() +E (@) i)

our general results to specific light-scattering mechanisms. ((a)n(a) ~ (©(a)|6(a)) T Gi@lii(@) ;3)

Il. GENERAL FORMULAS The standard hydrodynamic formulas are obtained in this

approach if the reduced resolveRt(z) is treated in a Mar-

kovian approximation, replacing its matrix elements with
In a light-scattering experiment a laser beam at frequenc§requency-independent transport coefficiefit§]. General-

w; induces a polarization in a transparent sample, whichized hydrodynamics differs from this by retaining the fre-

starts to radiate. For a homogeneous sample the radiategiency dependence &'(z) but still neglecting its wave-

waves interfere constructively only in the forward direction vector dependence. This generalization is required for liquids

at the same frequency as the incident wave. However, that lower temperatures as the structural relaxation slows down

dielectric permeability fluctuates in space and time around itstrongly.

average and therefore additionallydiffusive) scattering oc- Following Ref.[14] we identify the fluctuating tempera-

curs. In general, this scattering spectrum reflects the dynamiure ®(q) with the kinetic-energy fluctuationg®(q), that

cal processes in the sample and depends on the frequency@% orthogonal to the density fluctuations;)®(q)

the incident,w;, as well as the scattered wavey. A sim- - eK(q)=eX(q) —n(q)(eX|n)/(n|n). Here c9=3kg/2

plification is possible if one considers only small frequencyappreviates the specific heat per particle of the kinetic de-

shifts, = wj — ¢ With |o|<w;. Then dynamical dielectric grees of freedom, an@, is the projector orthogonal to the

fluctuations(sij(q,t)lek,(q)) determine the scattering cross density. Conservation of the total energy(q)=e"(q)
sections completely{7]. Here the Kubo scalar product, +eP(q) implies

(A(t)|B)=(1/kgT)(SA(t)* 5B), is used, withT temperature
andkg Boltzmann’s constant.

The fluctuationde;; (q,t) has even time-reversal symme- c2L0(q)=qj5(a)—qj-(q)
try, is a symmetric tensor of second rank, and, as Fourier v € (n[n)
transform of a real quantity, fulfillg;;(—q,t)=¢;;(q,t)*. In
particular, the long-wavelength limé;(q—0y) is real. Dif-  where superscriptd indicate the longitudinal partj-
ferent Cartesian componenitg,k,| are picked out depend- =gq.j/q, e”(q) is the potential energy, arjid(q) the total-
ing on the polarization directions of the incoming and scat-energy current. Note that sind® (q)|eP(q))=0 one can
tered ||ght [l], see Appendix A for more details. The rep|aceQneP(q):QeP(q)_ The hydrodynamic variables are
dynamical evolution is given by the Liouvilliaf via &tA Orthogona| with norma”zationxn(q”n(q)): NS(q)/kBT,
=iLA. A Laplace transformation—conventionf(z) (k@i (@)=(N/m) &, and (@(q)|®(q))=NT/c?,. Here,
=i[odte?'f(t) for 3z>0—thus leads to the problem to p is the average density df molecules,m the molecular

A. Dielectric fluctuations

(e[n)

-LQeP(q), @

calculate, forq—0, the matrix elements of: mass, and(q) is the equilibrium center-of-mass structure
1 factor; 6, is Kronecker’s symbol. Throughout the following

(eij(a.2)|ea(a)=| &;(a)| 7— EkI(Q))- (1)  we will neglect wave-vector dependencies caused by mo-

L-z lecular length scales, and replace, e.g., the structure factor by

its homogeneous limit givenzby the isothermal compressibil-
ity x7: S(q)=S(0)+0((qa)*) with S(0)=nkgT«7.
The spectra at fr.equenczy then are given by the imaginary yansiégzing,(in)gen((e(rqali;e)d hydri(dy)namﬁgﬁ], Ihe fluc-
part of (€;; (0, @ +10)| e1(q)) denoted by(e;; (g, ) ei(q))". tuating temperature instead of energy fluctuations rests upon
the experimental observation that the heat conduction of
glasses and liquids is not drastically different. This aspect is
discussed in Refd.14,17 where the generalized hydrody-
Light scattering measures large wavelength dielectrimamics also is tested by molecular-dynamics simulations.
fluctuations. Even thoughja<1 can thus be assumed, the This formulation of generalized hydrodynamics accounts
limit g—0 cannot be performed naively in E). Because straightforwardly for a frequency-dependent isochoric spe-
of density, momentum, and energy conservation, there argific heat.
poles in the resolveriR(z) =(L£—z) !, which shift to van-
ishing frequency in this limif15]. Using the Zwanzig—Mori
formalism, these hydrodynamic low-frequency features can
be identified. One introduces the reduced resolvent The exact resolvent calculus sketched in the previous sec-
tion thus provides a reformulation of E(L), see Eq(A14)
in Ref.[14]. The reduced dynamid?’(z) and the projector
P, which projects onto the hydrodynamic variables, appear

B. Generalized hydrodynamics

C. Decomposition of dielectric fluctuations

1
R'(Z)=QWQ, (2
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(6 (D) R(2)] (@)= (i (D[R (2)] €x(@)) + (eij ()| quires decay of fluctuations of the conserved variables at
large wavelengthsO(1/q). Thus the time evolution of
X[1-R'(2)L]PR(2)P (Sei;(a,t)) in Eq.(7), is determined by time-dependent cou-
_rp plings to the generalized hydrodynamics of the distinct vari-
X[1= LR (D] (). ©) ables. As seen via a Laplace transformation, the identical
Thus the coupling of the dielectric fluctuations to the hydro-couplings appear in E¢5) as in Eq.(7), expressing that via
dynamic variables is found; exp||c|t|y itis given when writ- these COUpIingS, close to equi”brium, dielectric fluctuations
ing out PR(z)P in Eq. (5). Additionally there is a back- at long wavelengths acquire slow hydrodynamic compo-
ground spectrum, the first term on the right-hand side of Eqnents. Equatior(5) further identifies the nonhydrodynamic
(5). components contributing to the background. The first term
Since the hydrodynamic modes have been projected o the right-hand side of E(ﬁ7) describes static Or.instanta' .
(generalizedl hydrodynamics postulates that the lingit-0  Nneous couplings, whereas the second term describes dynamic
in R'(Z) can now be performed safely. This leads to theCOUplings that need time to build up and may be character-
well-known result for Raman scatterifig]: The background 1zed by a finite response time. These will become important

spectrum consists of scalar, and symmetric-traceless-tens#ih€n approaching the glass transition upon cooling as then
scattering the structural relaxation times increase.

Density fluctuations are coupled to the dielectric fluctua-
) tions statically via the scalar scattering mechanism only, as
(eij (D[R (2)] 1(A))=S(2) 8ij Sia + T (2)| Sikji + 631 S follows from Eq. (7) when inserting the projectdP from
Eq. (3):

2
— 5 6ij 0

3910 | +0(c?). ®)

(n(Q)|[1-LR'(2)]] €j(a))=(n|Se0) i +O(a?).  (8)

Explicit expression forS(z) and 7(z) can be obtained by The dynamic coupling vanishes becau&®(q) = qj«(q) is
choosing special linear combinations of the dielectric tensoragain a hydrodynamic variable. Furthermore the scalar den-
Let Spo=[ €xxt €yy T €;,]/3 denote the long-wavelength limit sjty cannot couple to the dielectric tensor fluctuatiogsin

of the scalar part anthg=[2¢€,,~ €y, eyy]/\/l_Z the(helic-  the limit q—0.

ity) »=0 component of the corresponding spherical tensor = Similar arguments hold for the coupling of the tempera-
t,, (the prefactors are conventional Then, S(z)  ture to the dielectric fluctuations. Since the kinetic energy is
=(sed R'(2)|s00) and 7(z) = (t,oR'(2z)|tp) are the scalar not conserved, there is a dynamic coupling in addition to the
and the tensor correlations. Let us state here explicitly thagtatic one. In order to guarantee conservation of the total
we assume that the long-wavelength static correlations of thenergy, Eq.(4) is used. Observing 4Qe"|R’(z) =(Qe"|
dielectric tensor are characterized by two numbers only and- z(eP|R’(z) and rearranging terms one finds to lowest or-

are independent of the direction g 0. dering
Both spectral contribution§(z),7 (z) are autocorrelation
functions of real variables with even time inversion symme- co(O(q)|[1- LR (2)]] &;(a)
try. Their spectra thus are even and non—negative.
In order to simplify the discussion of the couplings to the = 5j{(Qnels) +2(eP|R'(2)[s00)} + O(q). (9)

hydrodynamic variables in E¢5), it is useful to consider the

corresponding generalized constitutive equatigtd,15. Further couplings of ordeg can be ignored. The dynamic

These describe the temporal decay of the deviations in aoupling in Eq.(9) arises from the separation of the total-

variable, say inde;;(q,t), produced by an adiabatic pertur- energy fluctuations into fast kinetic argdossibly slow po-

bation with external fields coupling to the conserved vari-tential ones. Thus the simplified handling of the reduced re-

ables, after the perturbations are switched off at tim®: solvent in this generalized hydrodynamics has to be paid by
an additional frequency-dependent coupling to temperature

> fluctuations.
<56ij(qvt)>:§ (ALY (A € () (A AL) Finally for the coupling of dielectric fluctuations to cur-
rent fluctuations
t
‘f0d7<5Aa<T)><Aa|"R'“ Ge(@I[1— LR (2)]] (@)
— e (@) (AJAL) |, 7) =—§|: Q(a(D[R'(2)] € (q))/m,  (10)

where the(orthogona)l hydrodynamic variables are abbrevi- one finds a purely dynamical coupling, as first recognized
ated: A;=n(q),A,=0(a), As=jx(d),As=]jy(q), and A5  within so-called two variable mode|&,3]. A static coupling
=]j,(q). The special choice of the external perturbation con-is excluded, since the currerjtsand the dielectric tensay;
sidered in the constitutive equation, Ed@), prepares a fluc- have different time-reversal symmetry. The dynamic cou-
tuation in (J9¢;;(q,t)), which decays slowly because it re- pling to the stress tensor;, which appears because of mo-
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mentum conservatiorgj(q) = 2,9, 7(q)/m, can be evalu- 1 )
ated in the long-wavelength limit: ayn(t) = 5 (72d R’ (1)[t20). (15
(ra(DIR"(2) | €5(a)) It is a generalized elasto—optic or Pockels’ constant familiar
= (p|R' (2)|500) 85 St + (720 R (2) | t20) from light scattering in solid§7], and is a real and symmet-

ric function of time, as the two tensor variables determining
2 5 it are real with even time parity. Its Laplace transform
X| Gikdji+ it Sy~ §5ii S|t O(@). (1D avn(z), therefore has an even spectraffy,(). This Pock-
els’ constant describes the dynamic coupling of the trans-
Here p=[ T+ 7yy+ 7,,1/3 and ryo=[27,,— 7x— 7,y]/\/12  Verse current into the dielectric fluctuations and the constitu-
denote the long-wavelength limits of the pressure and of théve equation becomes
transversal stress tensor. 0
According to the basic assumption (@feneralizegihydro- _ _ .
dynamics[lg,lﬁ, one has to kegp te?rrf?s only to tr):e order (Fevn(a,t))=la CO%JodT avn(t=7)(0,(4. 7).
indicated, the remaining ones are assumed to be regular with (16

respect to frequencyin the limit q—0.
From Eqgs.(5) and (6) follows the general result for the de-

Il RESULTS polarized spectrum:
From Eqgs.(5) to (11) the light-scattering spectra follow if _ 2 f 2T

a scattering geometry is chosen and the appropriate tensor (evi(a.2) evn(@)=T(2) +q coszzaVH(z) Cjj(a.2).

elements are calculated; see Appendix A for the used geom- a7

etry. Polarizations vertical t¥, or in the scattering pland,

are considered, where the standard abbrevidijpuenotes  Here Cj;(0,2)=(] (9,2)j"(q)) denotes ‘the correlation
polarizations for incoming and outgoing light. The spectrafunction of the transversal current fluctuations. The spectrum

depend ong  and scattering angled. We find pon§ists of a back_ground arising frorr_1 the symmetric scatter-
lav(0, 0,0) =1yn(0,0,0) as predicted by Rayleigh's reci- INg in Eg. (6), which commonly is discussed as a Raman
procity theoren{1]. line, and of couplings to the current fluctuations. Naively
evaluating the depolarized spectrum at vanishing wave vec-
tor would neglect this additional contribution. It is small, of
order ©(g?), but is characterized by a time scale that di-
The total scattered intenSitiéexcept for standard coeffi- verges in the hydrodynamic ||mq:*>o, and therefore domi-
cients[1]) can be obtained directly from E¢A4) in Appen-  npates the low-frequency spectrum. The full current correla-

A. Total scattered intensities

dix A and consist of scalar and tensor scattefifi tors appear in Eq(17), which stresses that no assumptions
4 about translational-rotational coupling are required in order
Luv( @, 8) = (Sod Soo) + = (tagltao), (120  to derive Eq.(17). Explicitly this has been shown by the
vvid o0/ Soo 3( 2020 derivation of Eq.(17) for a liquid of spherical particles in
Ref.[19], which was tested in a simulatig20].
lvn(d, )= (tdtz0), (13
1 C. Polarized spectra
Ih(0, 6) = COS 6(Sqql Spo) + | 1+ §00329 (todt20). For theVV spectrum, Eq(11) suggests to introduce the
(14) elasto-optical constant
- iti - - Iai 2 (PIR"(1)[s00)
The intensities are wave-vector independent as the brait ayy(t)= §aVH(t)— N _ (18)

<1 is considered in systems where all molecular correlations
are short ranged. The conservation laws affect the spectral ) ) ) ) )
shapes only, i.e. cause low-lying hydrodynamic lines, but ddt has identical properties ay(t) since the tensor vari-
not lead to long-ranged static correlations. Concurrently, th@Ples entering its definition again are real with even time
static couplings of the conserved variables to the dielectri®@'ity. Another time-dependent coupling function arises
fluctuations in Eqs(8) to (10) are q independent for small from the temperature fluctuations as described in(Hpg.
wave numbers. See Sec. IV, for why these results appear Pl

(€"|R"(2)[s00)

violated when considering the hydrodynamic limits. &2)=&+z (19

NT '
B. Depolarized spectrum where the thermodynamic derivative=(dsy/dT),/n
Using the decomposition of the off-diagonal dielectric = (Qne|syg)/(NT) is written, which contains the total energy
fluctuations, Eqs(7), (10), and(11), one can identify a dy- perpendicular to density fluctuation4]. Clearly, Eq.(19)
namic coefficientayy(z), which describes the coupling to presents a generalized time- or frequency-dependent thermo-
the generalized hydrodynamic variables: dynamic derivative. The scalar variables entering its time or
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frequency-dependent term are real with even time parity, andélere C,,(q,z) denotes the density-density correlation func-

&"(w)/ w consequently is an even function ©f The consti-

tutive equation coupling the fluctuating hydrodynamic vari-

ables intodey\(q,t), from Eq.(7), becomes

(Seyy(a,2)) = (dsg0/ IN)1(SN(0,2)) + &(2)( 50 (q,2))
+ayv(2)9(8j(a,2)), (20

where the thermodynamic relation  n|6y)
=Nnk1(dsge/dn) 1 is used. Collecting the terms in E(p)

tion, Cge(Qg,z) the temperature-temperature correlation
function, etc; see Appendix B. Equati¢é®l) is our principal
result for theVV spectrum. It extends the conventional hy-
drodynamic spectra to arbitrary frequencies. The small—
wave-—vector singularities are encoded in the generalized hy-
drodynamic correlation functionsC,4(q,z), which are
determined by the true resolveR(z), and can thus e.g., be
obtained from simulations.

From the information on the depolarized and the polarized

one obtains when applying the mass-conservation law, whicBpectrum also thi,, spectrum can be obtained even though

gives 0°C};(0,2)=qzG;;(0.2) =2°Cpn(9,2) +zNnkr and
0Ce;(4,2)=2Con(q.2),
(ev(0,2)| (@)= 8(2) + 4T (2)/3+ &\ (2)N iy
+2( 39S/ In)tayy(z)Nnk+
+[ (300! M) 7+ Za\(2)]°Cn(d,2)
+&(2)°Cee(0,2) +2[ (ISl IN)1
+zay\(2)]é(2)Che(0,2). (21

1
(enn(0,2)|eyn(q))=S(z)cog 0+ T (z) 1+§co§0

Soo
—ayn(Z)JNNkr+ n +zayy(2)
T
40
+2&(z)co | —| +zayn(2)
an -

+2z[ayy(z)cosf—ayy(z)[*"Nnk+ ZW

COSG—ZavH(Z)]Cn@(q,Z)-

it is not a simple linear combination. The fluctuating variable
coupling to the distinct variables for th¢H scattering in the
geometry of Appendix A is given by

(d€nn(q,2))= —cosb (dsgo/ In)1(dn(q,z)) —coso &(2)
X{50(q,2)) —[ayn(z)cosd
—avn(2)19(di"(q,2)),

where we abbreviated,(z) =ay\(z) —ayn(z). The gen-
eral spectrum in théelH geometry now reads

(22

cosf[ ayn(z)coso
-

2
cosf— Za\/H(Z)} Cnn(0,2)+&(2)°c0S0 Cop(0,2)

(23

One notices that even for a general molecular fluid, transtheoretical approaches or from computer simulations, it is,

verse current fluctuations do not couple into thiH
spectrum.

D. Generalized Green-Kubo relations

Ten frequency-dependent matrix elements built with th
reduced resolverR’ (z) have been identified in the expres-

sions for the light-scattering spectra in supercooled liquids
Five generalized transport coefficients and thermodynamic
derivatives are needed in order to describe the correlators of

the hydrodynamic variablgd4]. They are the shear viscos-
ity K¢(2), the thermal conductivit\ (z), the dynamic spe-
cific heatcy(z), the dynamic tension coefficieg#(z), and
the longitudinal stress relaxation kerr€|(z) (explicit ex-
pressions are summarized in Appendix Bhe remaining

e

however, more convenient to find a formulation in terms of
correlation functions involving the full dynamics. For the
considered cases gt 0, this is made possible by the con-
servation laws that allow one to derive Green-Kubo relations
for the memory functions or transport coefficients expressing
them in terms of autocorrelation functions of the correspond-
ing fluxes or time integrals therepf5,16. From the identity
[14]:

(XIR"(2)[Y)=(X|R(2)|Y)+ X|[1-R'(2) L]

X PR(z)P[LR'(2)—1]|Y), (24)

one observes that the reduced matrix elements can be rewrit-
ten as full matrix elements and correlation functions of the
hydrodynamic variables contained ilPR(z)P with

five frequency-dependent kernels encode the details of thiequency-dependent coefficients. Sinceder 0 the coeffi-

light-scattering processS(z), 7(z), ayn(2z), ayv(z), and

£(2).

cients involvingCn, and £j , vanish due to particle and mo-
mentum conservation, only the temperature fluctuations con-

These expressions involving reduced resolvents are verjibute to the frequency dependence of the coefficients. To
suitable for approximations, since they do not exhibit hydro-derive a generalized Green-Kubo relation, we only need vari-
dynamic singularities. In order to determine them from otherablesX=QX and Y=QY, respectively. Therefore all static
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couplingsf(|PR(z)P to the hydrodynamic variables in ER4) will vanish too and the generalized Green-Kubo relation is
given by

X|QeP)+z(X|R(2)|e) eP|Y)+z(eP|R (2)|Y)
(X|R’(z)|Y)=(QX|R(2)|QY)+{( Q€D +2( ()|I\|Tz}g(Qz) ) R'@IV} for q—0. (25

Here we made use of Eqel) and(B3) in the limitg—0 and  \here B°=(p|Q,eX)/(NmT). Since Qp=0Qp
of the identityR'(z) LQ=Q+zR'(2). Rotational invariance , ) 0% P10+ — 89T the left-hand sid b it-
implies that the second term in E@®5) is nonzero only for terr]nnge Cytm(B— AT, the left-hand side can be wri
scalar variablesX,Y. Thus, e.g., the standard Green-Kubo

relations for the shear viscosit{,=Y = 7,9, and heat diffu- 1 1 . ~

sion, X=Y=jL, are found. Moreover, it follows that in the NmT @ p(2)|QeR)= N—mT[QP(Z)|QeP]

elasto-optic constanay(z), Eq. (15), and in the tensor

background spectrumi(z), Eq. (6), the reduced resolvent o _

can be replaced with the full dynamics. +——(Qe"(2)|QeP)
In order to obtain tractable expressions for the remaining NTcy

kernels and make contact with the standard Kadanoff-Martin (B— 30)( cy— cf’, )

approacH 16,18, we define another, the conventional, fluc-
tuating temperature byc,T(q)=e(q)—n(q)(e/n)/(n|n),
with normalization T(q)|T(g))=NT/cy. Also, letQ de-  Again the memory kernels appearing on the right-hand side

note the projector orthogonal to density, currents, a6aq). are regular in the low-frequency limit. Collecting terms leads
ChoosingX=Y=e" in Eq. (25) one finds to the generalized Green-Kubo formula for the dynamic ten-
sion coefficient

26, (30

QI oy el @ o) ©@p(2)[3e)
- - . cy(z2) cy(z 2)|Qe
NT z zcy(2) B(2)=2 \(’:V + \(’:O z meT . (32)
\

Since QeP=QeP+ (cy—cY)T the left-hand side implicitly o _ _
contains hydrodynamic poles due to energy conservation. N @ similar fashion the corresponding Green-Kubo for-

However, mulas for the dynamic temperature coupling, the scalar back-
ground spectrum, the remaining term contributing{g(z),
P P DeP( 0P co—c2)2 and the longitudinal stress-stress correlation function can be
(Qe'(2)|Qen)  (Qe(2)|Qen) _ (ev=cv) . (27)  obtained:
NT NT ZGy
o AaP
and, according to Kadanoff-Martin, the first term on the g(z)zgc\/(z) + CV(OZ)Z(QSOO(Z)|Q6 ), (32
right-hand side is free of poles in the linzt-0 [18]. Com- Cv Cy NT
bining Egs.(26) and(27) one derives
5= N o BsofOsg, 3
(CO)Z Z)= - Sool Z So0),
cv(z)=cy > (28) 2z o

(c)2—2z0,(QeP(2)|QeP)/(NT)

(PIR'(2)|s00) _ MB(2)T maT .. @p(2)|0s00

In the liquid phase the dynamic specific heat attains its ther- N -~ zoy(2) z)- zeoy § N
modynamic valuec,,(z) — ¢y, for z—0. Equation(28) dem- (34
onstrates explicitly that the Goe-Latz resolvenR’(z) in-

deed is devoid of all hydrodynamic singularities and is K(2) mT , mT (QTL(Z)@TL)
compatible with the conventional Kadanoff-Martin formal- M Zo02) (2)°— aﬁ Tm (39

ism. It differs in an explicit frequency dependencecg{z),
which arises from the splitting of the conventional tempera-, particular, the last term on the right-hand side of B3%)
ture fluctuationsT(q,t) into fast, kinetic one®(q,t) and s related to the longitudinal  viscosityi 7, = (Q7-(z

structural slow ones. ~ | : _
S NP P . —0)|Q7-)n/N. Therefore in the low-frequency limit where
Similarly, substitutingK=p andY=e" in Eq. (25) yields cu(2)=cytizd), and B(2) = B+izB" one finds

QP(2)Qe") _B(2)-B [B(2)~plev()—cl] K(z0) o &

NmT z zoy(z ’ — = —imTB%—= +2imTB—+i—. (36
cv(2) 29 om B 2 Bcv o (36)
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To summarize, all ten frequency-dependent kernels can besolvent, can no longer be neglected; for a discussion of
expressed in terms of the full resolveR(z), and therefore structural relaxation, see e.g., the revigt]. The result in
they can be obtained directly from molecular-dynamicskq. (17) can handle this situation, as the memory functions

simulations. built with R’ (z)—there are 3 in Eqs(17) and (37)—may
either be modeled appropriately or can be taken from other
IV. DISCUSSION theories or simulations. Within the generalized hydrody-
_ namic approach, a glass or amorphous solid is obtained
A. Depolarized spectra whenever a structural relaxation process, with time seale
The depolarized frequency-dependent spectrum(Eg), is slow compared to the hydrodynamic frequencies. Assum-

shall be discussed in detail as it provides the most compadfg further that the dynamics iR’(t) at shorter times, de-
expression but also exhibits clear qualitative changes whehoted by, can be neglected for this frequency range, then
supercooling the liquid. It consists of three frequency-the memory functions in Eq17) can be approximated by
dependent contributions, a background, the Pockels constant,
and the transverse current correlator.

The current correlators can be taken from theories for the
dynamics of the liquid under study or from computer simu-
lations. Alternatively, the generalized hydrodynamic ap-for 1/7,<|z|<1/75. This is equivalent to time-independent
proach shifts the problem of calculating the transverse corvalues, K (t)=G.. and ayy(t)=ayy for 75<t <7,.
relator to the problem of calculating correlations of the Therefore, the poles in Eq40) are called nonergodicity
transversal-stress tensor, namely, the frequency-dependgmiles as they describe frozen—in, nonrelaxing components.
shear modulusK ((z) = (7, R’ (2)| 7,0n/N, where the resol- G.,=mn¢ is the glassy shear modulus familiar from Max-
vent devoid of hydrodynamic fluctuations from E@) ap-  well’s model anda;;, is the Pockels’ constartoften denoted
pears again. The separation of the hydrodynamic poles fronp, ) quantifying the elasto—optic coupling in the gld33.

-G, . ayy
KS(Z)_)T—'—IFSl a'VH(Z)_> Z ’ (40)

structural relaxation thus is achieved leadind 1d]: WhereasG.,, andI's need to be positive, the sign af;,, is
undetermined; a next-to-leading imaginary paraijp, exists

cl(q,2)= —(N/m) 37) in principle but does not contribute to the spectrum in the
U z+g%K(z)/nm’ hydrodynamic limit. Equation§17) and (40) predict for the

hydrodynamic glass spectrum:
The result from hydrodynamic theory for the depolarized

light scattering from equilibrium molecular liquids can be lyu(q, 6,0, =T"+| g co '9ax 2

obtained if the frequency dependence of memory functions vhlG 0, @)ny.g= 4 g7 | G % VH

built with the reduced resolveR’ (z) is neglected by using

the Markovian low-frequency limit. Then the depolarized g°T's/(mn)
Pockels’ constant becomes purely imaginary: X(wz—qzc$)2+(wq21“s/nm)2'

aVH(z)—>ia(’,H=iJ dtayy(t) for z—0. (38 4y
0 Two transverse phonon peaks characterized by the transverse
sound velocitycy, and a width=q?I'g, appear, which are
O8escribed as damped harmonic oscillations. The background
consists of a central line, which cannot be resolved and a
structureless continuuri(z) = —7.. /z+i7T .
Note, that both hydrodynamic expressions, E§S) and
P (41), do not fulfill the sum rule for the total intensity, Eq.
lyi(Q,0,0)py. 1=T"(w=0)—qg?a},)’cos= (13), and imply wave-vector-dependent total scattered inten-
2 sities. The reasons, of course, are the Markovian approxima-
tions in Egs.(17) and (40), which are restricted to describe
_ (39 the dynamics in the hydrodynamic range. Nontrivial spectra
w?+(g%ps/nm)? obtained in glasses on frequency scales characterizec} by
[22] also require more elaborate expressions for the memory
The transverse momentum diffusion cuts a central line ofunctions in Eq.(17).
half-width g%7/(mn) and amplitude proportional to For temperatures around the liquid-to-glass crossover at
(al,4coshI2)>nN/ n¢ out of a flat background. Note, that T., neither the assumption,w>1, nor the estimate ;o
within hydrodynamics the background is structureless, and<1 hold and the depolarized spectra exhibit anomaR&s
that the spectrum is positive owing to an elementaryThe mode coupling theory of the structural relaxation there
Schwartz inequality, tho| t20) ( 720 720) = (720 t20) % suggests modeling the reduced resolvenKgz)~ —G.[1
The structural relaxation of liquids cooled down to and —(1—izr,) #co+ (—izty)?]/z for T=T,, and similar ex-
below the melting temperature, slows down strongly, and th@ressions for the other two memory functions. Whereas the
frequency dependence of the memory functions with reduce@ole-Davidson behaviofthe first two termgis a (rough

Therefore, and using the standard hydrodynamic result f
the shear viscosityK (z—0)—i »s, one recovers the result
for the depolarized spectrum first obtained within simple
models in Refs[2,3]:

quns/(nmz)
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model of thea process, an@-p—as well asr,—will differ given in Eqs(38) and(40) and as described at the end of the
for different resolvent matrix elements, the power law with previous section. The explicit factar in the frequency-
exponenta describes the universal “critical” decay close to dependent part ig(z), Eq. (19), cancels a possible noner-
the transition. Here, is a microscopic time and the exponent godicity pole. The coupling to temperature fluctuations inter-
a and the(true, universalexponentb of the high-frequency polates smoothly between its low-frequency thermodynamic
von Schweidler wing of ther processK(1/7,<z<1/75)  value (#s/dT), and a high-frequency coupling,., char-
”(__'ZTa)fb/_Z, are related; see e.g., the revigd] for fur-  acteristic for a glass. A renormalization also appears in the
ther information. effective coupling to the density fluctuations, which in Eq.
(21) is described by the Pockels’ constaPt,= (dsge/ In)t
B. Polarized spectra +zayy(2) and in Eq.(23) by (P;,c0s0—P,,), respectively,
The most prominent feature of the polarized spectrum, thavhere Py,=za,4(z). Note, that the frequency-dependent
Brillouin peaks, arise from propagating sound waves. Uporfenormalization of §sqo/dT),, in Eq. (19) vanishes, if only
cooling the liquid, structural relaxation manifests itself pre-the hydrodynamic fluctuations, density and temperature, con-
dominately by a gradual change of the sound velocity andribute to the scalar scattering; then as@,(z) = 3a,(2).
the damping constant. Considering the enormous increase of In order to obtain the spectrum in the true hydrodynamic
the transport coefficients, e.g., the longitudinal viscosity thatimit one substitutes the appropriate correlation functions—
describes the damping in the liquid, this clearly points outsee Appendix B—and replaces all memory functions with
the necessity to consider the frequency dependence of thheir low-frequency limits; only incy(z), B(z), and &(z)
reduced resolvent as done in generalized hydrodynamictinear terms inz need to be kept as can be seen from Egs.
Furthermore, the couplings,(z2),£(z) as well as the back- (28), (31), and (32). There are the three familiar hydrody-
ground spectra(z),7 (z) exhibit nontrivialz dependencies namic resonances superimposed on the Raman background:
in the frequency regime of interest. the Brillouin doublet of sound modes and the Rayleigh heat
The structural relaxation of the Pockels’ constagt(z) pole. The spectrum is obtained from determining the residues
(with numerically different constantscan be modeled as of these poles to lowest order in frequency and wave vector.

_ ~ XBr C2q4F|
[ 0, =(Qsgo(@=0)|Qsp0)" + 47" (w=0)/3+Nnk1P2,| —
w(Q, 0, @)y =(QSpo @=0)|Qsg0) (w=0) LT oy (02— G222+ (0?2

xR y—1 q°D+

: 42
Y »?+(q°Dy)? 42

where the adiabatic sound velocity= \y/(mn«7), the lon-  <1/75, simple Markovian expressions likey(z)=cy,
gitudinal sound dampind’,=D+(y—1)+ %, /(mn), and the +izc(’,'g are appropriate for ergodic matrix elemepts(z),

heat diffusion constarDt=\"/cp appear(see Appendix B B3(z), £(z), and\(z)], and frozen-in components, leading to
for detaily. The Pockels constant is given by the thermody-K,(z) = — K{'/z+iK{,, appear inK (z), a\\(2), and in the
namic derivative,P1,= dsgo/dn)r, and the flat background Raman background lines. Thus, e.g., the expression for the
consists of scalar and tensor parts. Neglecting contributionpgckels constant becomeB:;,= dsgo/N)1—ajy,. A hon-
from temperature fluctuation¥®=X®'=1, one regains the trivial renormalization appears in the isothermal sound ve-
well-known result for light scattering frorthydrodynami¢  |ocity or equivalently the isothermal compressibility, because

density fluctuationg1,7,15. Then, the Landau-Placzek re- of the frozen structural relaxation in the longitudinal friction
sult (y—1) is recovered for the relative intensity of the Ray- fynction:

leigh to the Brillouin lines, where/=cp/cy denotes the ra-

tio of the isobaric to isochoric heat capacity,7,15. In the 1 K=
general case, scattering from temperature fluctuations leads (cT)2= :c(2,+ _', (43
to (presumably small corrections: XR=[1—(C§/B) MmNk mn

X(&P19) 17 and XP'=[1+ (y—1)(cg/ B) (éIP1) > _ _ _

For the glass,wr,>1, actually the identical formula @as first observed by Mounta[6] and predicted from micro-
holds where, however, the isothermal compressibility, theSCOPIC expressions by the mode-coupling thel@y]. The
sound velocity and damping constants, as well as the colass is less compressible than the corresponding liquid.
plings and the background—compare E(@9) and (41)—  Thus the glass sound velocity isc*=\y"c}
are renormalized. The high-frequency values of the memory= \/(c°T°)2+ mT(8”)?/cy,. Note that the reduction of the Bril-
functions appear in the formally identical definitions @f louin and Rayleigh intensities described by E¢42) and
Dt, and I'j, where, in the frequency window 4/<w (43) is caused by the appearance of frozen-in density fluc-
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tuations (an elastic line called the Mountain linghat model. The multivariable phenomenological models, how-
contribute  the missing  weight, Nnk[(dseo/dn)3  ever, rest on specific assumptions about the rotational-
—(co/CD)2(PT)2]. translational coupling in order to obtain closed equations of

For the HH spectrum let us just mention that faf ~ Motion. Such additional equations, which are not fully con-

— 7/2, Eq.(23) simplifies considerably, since the scalar scat-Straint by hydrodynamics or symmetry, are not required in
tering drops out completely. For frequenciesr,<1, our approach. Because of their speC|f|c choices, thg models

ayn(z)—ialy, holds again, and one finds in Refs. [9_)—11] mtroduced.constramts.on the couplmg pa-
rameters in order to describe spectra in supercooled liquids;

T see Ref[13] for a detailed discussion of this aspect. Note
|HH<q,0= E,w) =T"(@=0)—(way)’Cnn(q,0)". that thea-process only model, Eq46), is restricted to low
hy 44 frequencies as can be seen from the vanishing damping of
(44) the shear waves in glass, see E4l).
The hydrodynamic modes are suppressed by a factar?of The introduction of retardation effects via memory func-

tions in the work of Wand10] and Dreyfuset al. [12,13

removed constraints on the coupling parameters, and, within

the latter phenomenological approach, an expression for-

mally equivalent to Eq(17) was given; for linear molecules,

corresponding microscopic expressions have been suggested
Interesting intensity ratios can be constructed if the scatf24].

tered intensities with different polarizations of the light be-

fore and after the scattering process are considered. The stan- VI. CONCLUSIONS

dard depolarization ratio compares the off-resonanee ( |, this paper we discussed the light-scattering spectra for
>cq) frequency-dependent background intensities neglecty one.component molecular liquid incorporating slow struc-
ing all hydrodynamic modes: tural relaxation and thus extending the description to super-
" cooled liquids and glasses. In contrast to earlier phenomeno-
lvu(a.0,0) — T"(w) <3/4 logical approaches, no assumptions are made on the nature
Iv(0,0,0)  (Qsy(@)|QSg0)” +4T"(w)/3 ' of the scattering mechanisms nor on the origin of the struc-
(45  tural relaxation. Molecules of arbitrary shape and polarizabil-

. ) . ) ities are considered.
The expected depolarization ratio 3/4 is recovered if the only  Erom our exclusive use of symmetry arguments it follows

scalar scattering mechanisms are density and temperatujigat any phenomenological approach complying with gener-

e.g., the Brillouin line cuts a Lorentzian with half-widt3T,
and amplitudeN(ay),,)?/(mrI’}) out of a flat background.

C. Intensity ratios

fluctuations. alized hydrodynamics, regardless of the physical mecha-
nisms assumed or nonhydrodynamic variables included,

V. COMPARISON WITH PHENOMENOLOGICAL must obey the formulas of Secs. Il and Ill. For an analysis of
APPROACHES experimental data, our paper provides a framework clarifying

Iihe number of required frequency-dependent kernels, their
interpretation, and their most general functional forms.
Our results are akin to the theory of neutron scattering
ere it is shown that, in general, density fluctuation func-
tions are measured without the need for special models of
their dynamicq15,16. For example, Eq917) and(37) in-
dicate how the shear viscosity can be measured by light scat-
?‘ering, without specifying what microscopic dynamical
mechanisms contribute to the decay of transverse currents.
We give explicit microscopic formulas for the back-
ground spectrum and the elasto-optical constants that can
serve as a starting point for approximations once a choice for
Ghe scattering mechanism is made. For isotropic particles
considering dipole-induced—dipole scattering this has been
rTberformed in Ref[19]. Alternatively, computer simulations
could be employed. Our central assumption is to consider
systems characterized by short-ranged equilibrium correla-
tions. Thus we can neglect the wave-vector dependence in
__1 + L —A matrix elements describing the structural relaxation leading
z+il'r [z+iynl? z—q?c2[z+il 7]’ to Green-Kubo-like formulas for the memory functions as
(46)  familiar from simple hydrodynamics.
Whereas previous approaches were mainly concerned
where A=(qay,;cosf/2)’N/(mT ) and Eq.(46) gives a  with the nature of the depolarized spectrum and correspond-
simplified a-process only description akin to Maxwell's ingly therefore attribute the scalar fluctuations to a combina-

It appears worthwhile to discuss earlier phenomenologic
approaches within our general framework. Again we shal
concentrate on the depolarized spectrum, which has been tr\}\%
focus of a long list of theoretical descriptions.

The original approach of Andersen and Pecfhand
Keyes and Kivelsofi3] captures the spectra as predicted by
hydrodynamic theory. The two or three variable approache
in Refs.[2,3] go beyond hydrodynamics as they model the
background spectrum agsum of Lorentziaris). Vaucamps
et al. extended this approach by adding a further Maxwell
relaxation to the shear modul{i8]. More elaborate models,
which identify slower and faster relaxing processes in th
shear modulu&(t), were suggested in Ref@-11]. Mod-
els with more than two variables can be brought into a for
suggested by a simple viscoelastic approximatigiA) to
our general result, Eq17):

VA
lyh(Z)e
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tion of density and temperature fluctuations, we carefully 1 (=
make the distinction between dielectric fluctuations coupled ;j dwlis(q,0,0)=1i,(q,0), (A3)
to hydrodynamic modes and the ones orthogonal thereto. -
Consequently one obtains a theory that combines conven- _ N )
tional Brillouin and Raman scattering. For example, molecuWhere the total intensities(q,#) are determined by the
lar vibrations or rotational motion give rise to scalar as wellthermal fluctuation of the dielectric tensors
as tensor scattering, which appears as background to the hy-
drodynamic resonances and are included in our framework. <|5€io(Q)|2>
An important aspect of our results is that no assumptions lio(d, 0) = (€io(a,t=0)[ €io(q)) = ket (A4)
on, e.g., translational-rotational coupling or about the con-
crete description of the structural relaxation were necessary.
The general aspects of the light-scattering spectra were APPENDIX B: GENERALIZED HYDRODYNAMICS

workgd out "’F”d correlation functions were defined, Wh'.Ch The correlation functions in the generalized hydrody-
can, in principle, be measured experimentally, and which

contain the general information about the dynamics of the am'c limit can be expressed Eist]

sample under study.
Cnn(0,2)=—Nnir/{z—(co0)?/{z+ %K (2)/(mn)
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APPENDIX A: SCATTERING GEOMETRIES [22— (coq) 2+ 2K (2) /(M) ). (B3)

The scattering plane, i.e., the plane that contains both the
wave vectorsk; k; of the incident and scattered wave, is Hereco=(mnxy) ~¥? denotes the isothermal sound velocity,
chosen as thez plane. The direction of the momentum K;(2)=(7"|R’(2)|7)n/N the longitudinal stress relaxation
transferq=k; —k; is taken to be (0,08;q). Since we con- kernel, and\ (2)=(j5|R’(2)|j5)/(NT) the thermal conduc-
sider only small frequency shiftik;|=|k;| the scattering tivity. The frequency-dependent expansion coefficient and
angle 6= 2 (ks ,k;) is related to the momentum transfer via specific heat are given by
g=2k;sin(#/2). The dielectric fluctuations corresponding to

the conventional scattering geometries, namely, polarization B(z)=B+z(p|R'(2)|eP)/ (NmT), (B4)
perpendicularfV) to and in the scattering planél, are then
given by[1] cy(z)=cy+z(e"|R'(2)|€™)/(NT), (B5)

dey(q) = 5€yy(C]), . .
where 8= (p|Q,e)/(NmT), cy=(€|Q,e)/(NT) retain their
P P standard values.
5eVH(q):5exy(q)sin§—6eyz(q)cos§, There appear three hydrodynamic modes in the liquid
state. First, the sound doublet= +cq—iq?l'|/2+ O(g3)

0 0 with the adiabatic sound velocitg?=c2+mTg?/c, and
oeyv(Q) = 5€xy(Q)Sm§ + 55yz(q)COS§a o -I-’BZ
m
nm ¢y

)\/r N C(,/ B ZBH
c’cy Cv B

| ’ (BG)

0 0
denn(0) = e Q)siP 5 — dez{q)cos 5. (AL)

where we have writteflK|' = K;(z—0),iN"=\(z—0),cy(z
The scattering intensities are expressed via the spectra of the0)=cy+izc,, B(z—0)=p+izB". In the generalized

dielectric fluctuations hydrodynamic approach the sound damping consists of four
parts: viscous friction, losses at conversion from mechanical
lio(0, 0, 0) = (€io(0, )| €0(q))" into thermal energy, losses from storing and extracting ther-

. mal energy, and thermal diffusion. Although the expression
:f dtcog wt)(eio(q,1)| €i0(q)).  (A2) looks unfamiliar, the associated Green-Kubo formula, Eg.
0 (36), shows that the longitudinal viscosity appears, leading to
the well-known resulf7,15]. Second, there is the heat mode
The scattering intensities obey the sum rule z=—1iq?D+, where the thermal diffusion constant reads
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_@7\ _)\

v @ <

4
t,= E(a'zz_ a’xx)zi: Y2, (0i,¢i),

and the standard spherical harmonics app&hr

For the second equality in E@B7) we made use of stan-
q y ®7) (3) In the case of optically isotropic particles, depolarized

dard thermodynamic transformation formulas. The merit of . . ! i ; .
the generalized hydrodynamic approach lies in the separati aftering can arise from first order dipole-induced-dipole
of the long-wavelength and low-frequency propertjad].  (D!D) scattering 26]:
The only wave—vector dependence arises from the conserva-
tion laws. The structural relaxation is captured in generalized
transport and thermodynamic derivatives, which exhibit a
significant frequency dependence in the regime of interest.
Let us finally highlight the advantage of measuring the ~ AL . .
fluctuating temperature from the fast kinetic-energy fluctuaWhere Tz, (k)= —4my8m/15Y;,(k) is the static dipole
tions by quoting the resulting fluctuations of the heat energy€nsOr-

~ . . . (4) If second-order DID scattering of isotropic particles is
?Z(g)go%leég% _[Elanfr?é(?%qE(S&ilgély?ilr?gsme identity Eq. considered, then the scalar scattering consists of a contribu-

tion coupling to the density fluctuations, E(C1), and of
another nonhydrodynamic contribution:

2 3
toy= e f K —oTaonk, (€
V2) (2m)3

—NT[cp—Cy(2)—(cp—Cy) BA(2)] 5]

Caa(a.2)= z a® > J d3kd®p R
S00= 3~ (=1)*T,u(k)
+¢c%(2)Co0(0,2)—2MT(2)6y(2)Cno(0,2) Y3 (2np o
+[MTB(2)]1°Can(9,2), (B8) X T, (PIN(—k—p)n(k)n(p), (C4)
which in the fluid only exhibits the heat mode characterized = 2 2 2
by Eg. (B7). In the nonergodic glass, an amplitud&=1 t,,=— \/:a32 (_1)V( b ov—p _V)
—cyy”/cyy of the heat fluctuations arrests together with the 24"
structural motion, and only the remaining part-4~, re- N
laxes via heat diffusion characterized by . % f _pT2 _M(R)Tzﬂ(ﬁ)n(—k—p)n(k)n(p).
(2m)& 7 ’
APPENDIX C: SPECIAL SCATTERING MECHANISMS (CH

In qrder to ShOVY o aII.contrlbutlons. fo ihe I'ght'_This implies that in this case the depolarization ratio from
scattering spectra discussed in the text will be present "Eq.(45) is smaller than the expected value 3/4. Furthermore

general, and also in orde'r.to exemphfy how our general for-t e scalar fluctuations overlap with the orthogonalized en-
mulas can be used, specific scattering mechanisms are listeg:

. ' N ; gy, i.e., 650 Qne) is nonzero, and the coupling of dielec-
ral)(13nlglselgﬂfssﬁgegggs?c;g(r::sses from biaxiBkely chi- o cruations to temperature are relevant. In particular, one

; f h irreducibl herical ) Minds that even in the hydrodynamic limit for a liquid, the
arises from the two irreducible spherical tensors: Landau-Placzek ratio is not fulfilled.
(5) The lower depolarization ratio also already arises from

1) first order DID of linear molecules:

1
500:§(a'xx+ ayyt a;)n(q), g—0,

1
twﬁ(axx— ayy)Z [D@(Q)+D? ,(Q))]

1
+\/T2(2azz_ Qyx— ayy)zi: Dgfz,g(Qi)l

where the scalar dynamics follows the density fluctuations
and the Wigner function®Y)(Q) capture the dynamics of
the molecular orientation in terms of Euler angl€s
=(¢,9,x) [25].

(2) In the special case of linear moleculeg,= a,, the
tensor fluctuations simplify
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S00:§ a(a;,— axx)E (-1~
o

d3k A
XJ(ZTPTz,M(k)n(—k)nzﬂ(k), (C6)
35 d3k
tr,=— \/;a(azz_axx)% j (277)3(_1)V
2 2 2 i
X(,u v —v)TZ,v—,u(k)n(_k)nz#(k).
(C7)



where the fluctuating tensor
=\/877/15EiY2,u(0i,(pi)exp(—ik~ri).

density reads,, (k)

Ja
Soo:Z > —=—Q (&)

7 9Q, *&

(6) If the molecules are not considered as rigid there may
be Raman active modes due to intramolecular vibrations. If

Q,,i is the vibrational coordinate and/¢/JdQ,) the corre-

sponding change of the polarizability for modehere is a

contribution to the scalar dielectric fluctuations

Here the sums run over all molecules and Raman modes. A
similar expression can be derived for the dielectric tensor
fluctuations.
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