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We show that the Gaussian core model of particles interacting via a penetrable repulsive Gaussian
potential, first considered by Stillinger (J. Chem. Phys. 65, 3968 (1976)), behaves like a weakly
correlated “mean field fluid” over a surprisingly wide density and temperature range. In the bulk
the structure of the fluid phase is accurately described by the random phase approximation for the
direct correlation function, and by the more sophisticated HNC integral equation. The resulting
pressure deviates very little from a simple, mean-field like, quadratic form in the density, while the
low density virial expansion turns out to have an extremely small radius of convergence. Density
profiles near a hard wall are also very accurately described by the corresponding mean-field free-
energy functional. The binary version of the model exhibits a spinodal instability against de-mixing
at high densities. Possible implications for semi-dilute polymer solutions are discussed.
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I. INTRO

Interactions between atoms or molecules in simple flu-
ids invariably contain a short-range repulsive component
or hard core, such that the local molecular structure is
dominated by excluded volume effects. This observation
explains the success of simple models involving hard con-
vex bodies in explaining the structure and phase transi-
tions in simple atomic or molecular fluids [1]. For ex-
ample, the hard sphere model has been instrumental in
understanding freezing of simple fluids [2]. The same ex-
tends success to somewhat more complex fluids like liquid
crystals, where hard ellipsoids or spherocylinders have
been widely used to investigate the isotropic-to-nematic
transition and other mesophases [3]. However the situa-
tion is generally not as simple in complex fluids, where
interactions between mesoscopic particles are often of ef-
fective and of entropic origin. While excluded volume
effects still dominate the interaction between compact
colloidal particles, the effective forces between “soft” or
fractal objects of fluctuating shape, like polymer coils
or membranes, cannot be modeled by hard cores. Poly-
mers in a good solvent form highly penetrable coils and
it is by now well established that the effective interaction
between the centers of mass of two polymer coils, duly
averaged over internal conformations, is finite for all dis-
tances, and decays rapidly beyond the radius of gyration
of the coils [5–7]. For two isolated non-intersecting poly-
mer chains, the effective pair potential at zero separation
of the centers of mass v(r=0), is of the order of 2kBT
for sufficiently long chains [6,7], and is reasonably well
represented by a Gaussian whose width is of order the
polymer radius of gyration RG, as shown in Fig. 1.
We have recently shown that the general shape of the

effective pair potential remains roughly the same in dilute
and semi-dilute solutions of self-avoiding random walk
(SAW) polymers, and does not vary strongly with poly-
mer concentration (cf. Fig. 1) [8]. The effective pair po-
tential model has been shown to accurately reproduce the

structure and thermodynamics calculated from Monte
Carlo (MC) simulations of solutions of SAW polymers
over a wide range of concentrations [8].

0 1 2 3 4 5
r/RG

−0.5

0

0.5

1

1.5

2

2.5

βV(r)

ρ=0 polymer CM potential 
Gaussian fit to ρ=0 potential
semi−dilute polymer CM potential 
Gaussian fit to semi−dilute potential 

FIG. 1. Polymer center of mass potentials βv(r)
from simulations of L = 500 monomer SAW chains
[8] are compared to a best-fit Gaussian (1), deter-
mined by fitting βv(0) to fix βǫ, and βv̂(0) to fix
R. The potential for two isolated coils (ρ → 0)
is well approximated by a Gaussian potential with
βǫ = 1.87, R = 1.13RG. The potential in the semi-dilute
regime (ρ ∼ 4×3/(4πR3

g)) is approximated by a Gaussian
potential with βǫ = 2.16, R = 1.45RG.

Neglecting in the first instance the state dependence
of the effective potential, it seems hence worthwhile to
examine the equilibrium properties of a fluid of “soft”
particles interacting via a pair potential approximated
by a simple Gaussian form:

v(r) = ǫ exp

(

− r2

R2

)

(1)
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where ǫ is the energy scale, and R determines the width.
The Fourier transform (FT) is

v̂(k) = π3/2R3ǫ exp

(

−k2R2

4

)

. (2)

Such a “Gaussian core model” (GCM) was in fact intro-
duced some time ago by Stillinger [9], who focussed on
the low temperature regime ǫ∗ = ǫ/kBT >> 1, where
the model exhibits hard-sphere like behavior, and a re-
entrant fluid-solid-fluid phase diagram under compres-
sion below a threshold temperature. This work was fur-
ther expanded by Likos et al. [10], who showed that the
model remains fluid at all densities when ǫ∗ . 100. They
also demonstrated that for this model, the familiar HNC
closure for the pair distribution function g(r) becomes
exact in the high density limit, and that the random
phase approximation (RPA) is remarkably accurate at
high densities.
In this paper we concentrate on the fluid phase of the

GCM (ǫ∗ < 100), with a particular emphasis on the
regime relevant for polymer solutions (ǫ∗ ≃ 2) [8], for
which the dilute regime corresponds to reduced densities
ρ∗ = ρR3 . 3/(4π) ≈ 0.239, and the semi-dilute regime
corresponds to ρ∗ & 3/(4π) [11] (here ρ = N/V is the
number of Gaussian core particles per unit volume). We
shall successively consider the homogeneous fluid phase,
the inhomogeneous fluid phase in the vicinity of a hard
wall, and the possibility of de-mixing of binary Gaussian
core systems.

II. THE HOMOGENEOUS FLUID PHASE

A. The Thermodynamic stability of the GCM fluid

We consider a system of N particles interacting via a
Gaussian pair potential (1), in a volume V . In the ab-
sence of an infinitely repulsive core the first question is
that of thermodynamic stability against collapse, i.e. the
existence of a well defined thermodynamic limit. Accord-
ing to definition 3.2.1. in Ruelle’s classic book [12], the
total interaction energy VN , which can be built up of
pair and higher order potentials, is stable if there exists
a B ≥ 0 such that

VN (r1, ...., rN) ≥ −NB (3)

for all N > 0 and all {ri} in the phase-space RN . Sta-
bility implies convergence of the grand partition function
and a well defined thermodynamic limit. Specializing to
pair potentials v2, the total potential energy of the sys-
tem, for any configuration of N particles {ri} ∈ RN , can
be written as :

V
(2)
N (r1, ...., rN) =

∑

1≤i<j≤N

v2(|ri − rj|) (4)

For purely repulsive pair potentials, such as the GCM

with ǫ∗ ≥ 0, V
(2)
N satisfies the condition (3), so that a well

defined thermodynamic limit exists. However, if v2(r) is
not strictly positive, this may no longer be true. In Ap-
pendix A two examples are discussed, involving a finite
core and (small) attractive tail, which do not lead to a
proper thermodynamic limit.

B. The Structure of the GCM fluid

To determine the pair structure of the GCM fluid, we
have used the HNC closure which becomes exact in the
high density limit; this closure relates the direct correla-
tion function c(r) to the pair potential v(r) and the pair
correlation function h(r) = g(r) − 1, according to:

c(r) = −βv(r) + h(r) − ln [1 + h(r)] , (5)

where β = 1/kBT . This closure must be combined with
the Ornstein Zernicke (OZ) relation between c(r) and
h(r) [13] to yield a non-linear integral equation, which
must be solved numerically. Examples for ǫ∗ = 3 at three
reduced densities ρ∗ are shown in Fig 2, and compared
to the results of MC simulations.

0 1 2 3
r/R

0

0.2

0.4

0.6

0.8

1

1.2

1.4

g(r)

HNC
ρ∗ = 0.1
ρ∗ = 0.5
ρ∗ = 2

FIG. 2. Comparison of MC simulations and solu-
tions of the HNC integral equation in a regime relevant
for polymer solutions [8], v(r) = 2 exp[−(r/R)2]. The
lines are HNC calculations, and the symbols represent
MC simulations for different reduced densities ρ∗.

The key feature is that the “soft” correlation hole is
gradually reduced as ρ∗ increases, a behavior typical of
finite core potentials, which leads to overlap and ideal-
gas like behavior of g(r) in the high density limit. Note
that the HNC results are indistinguishable from the MC
data, so that for ǫ∗ ≃ 2 the HNC correlation function will
henceforth be considered as providing an “exact” refer-
ence to gauge simpler theories. The simplest is the RPA
[13,14], which may be formally derived from the HNC
closure (5) by linearizing the logarithm, leading to:
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c(r) = −βv(r). (6)

Since Fig. 2 clearly shows that the amplitude of h(r) is
rather small at high densities, we may expect the RPA
closure to become more accurate as the density increases.
For the GCM, Eq. (6) and Eq. (2) imply the following
FT of c(r):

ĉ(k) = −ǫ∗π3/2R3 exp

[−k2R2

4

]

(7)

and the OZ relation immediately yields the following
RPA structure factor:

S(k) = 1 + ρĥ(k) =
1

1− ρĉ(k)

=
1

1 + α exp [−k2R2/4]
, (8)

where we have introduced the dimensionless coupling pa-
rameter:

α = π3/2βǫρR3 = π3/2ρ∗ǫ∗ (9)

HNC results for c(r) and S(k) at several densities are
compared to the RPA predictions in Figs. 3 and 4.
Since h(r) ≥ ln[1 + h(r)], the HNC direct correlation

functions are bounded below by the RPA form (6). Fig.
3 also shows that the HNC c(r) appears to be bounded
above by the low density approximation:

c(r) = f(r) = exp [−βv(r)] − 1 (10)

which corresponds to the lowest order term in the expan-
sion of c(r) in powers of ρ [13]; f(r) is the usual Mayer
f -function. Figs. 3 and 4 also illustrate the point that the
simple RPA becomes very accurate at high densities, so
that it is worthwhile to inquire about a correction to Eq.
(6). Expanding the logarithm on the r.h.s. of Eq. (5) to
second order in h, one arrives at the following expression
for c(r):

c(r) = −βv(r) +
1

2
h(r)2. (11)

Solution of the closure (11) and the corresponding OZ
relation requires an iterative procedure, as for the full
HNC closure. Further simplification amounts to replac-
ing h(r) in Eq. (11) by its RPA form derived from Eq.
(8) by FT; we refer to this non-iterative approximation
as RPA2 [15]:

c(r) = −βv(r) +
1

2
hRPA(r)

2. (12)

From Fig. 3 it is clear that cRPA2(r) is indistinguishable
from the HNC results except at low densities (ρ∗ . 0.2).
The limitations of RPA theory at low densities become
apparent by considering the resulting behavior of g(r) at
short distance.
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FIG. 3. HNC, RPA, and RPA2 forms of the di-
rect correlation function c(r) for v(r) = 2 exp[−(r/R)2].
From top to bottom the densities are ρ∗ = 0.1, 0.5,
and 1 respectively. Note that the HNC c(r) is
bounded by cRPA(r) = −βv(r) from below and
f(r) = exp[−βv(r)] − 1 from above. Inset: Ratio’s
ĉRPA(0)/ĉHNC(0) (solid line) and ĉRPA2(0)/ĉHNC (0)
(long-dashed line) v.s. density ρ∗. For ρ∗ > 0.05,
ĉRPA2(0) is always within 2% of ĉHNC(0)
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FIG. 4. RPA and HNC forms of the structure factor
S(k) for v(r) = 2 exp[−(r/R)2]. From top to bottom the
densities are ρ∗ = 0.01, 0.1, 0.5, 5 respectively.

The zero separation value is easily derived from the
r → 0 limit of the FT of Eq. (8), with the result:

gRPA(0) = 1 +
ǫ∗

α
Li3/2(−α), (13)

where the nth polylogarithm is defined by:

Lin(x) =

∞
∑

k=1

xk

kn
. (14)
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for |x| ≤ 1. If ǫ∗ < 1, gRPA(0) is positive for all den-
sities ρ∗. However, when ǫ∗ > 1 there is always a re-
duced density ρ∗0 below which gRPA(0) < 0, which is
unphysical. For example, if ǫ∗ = 2, gRPA(0) < 0, for
ρ∗ < ρ∗0 = 0.3617. However, even for ρ∗ < ρ∗0, the struc-
ture factor S(k) is still reasonably well described by the
RPA because the deficiencies of g(r) at small r do not
strongly affect S(k). This is also illustrated in the inset
of Fig. 3, where ĉRPA2(0) is seen approximate the quasi-
exact HNC result to within 2% for densities ρ∗ & 0.05,
which is a significantly lower bound than ρ∗0 = 0.3671.

C. Thermodynamics of the GCM fluid

Turning now to thermodynamic properties, the equa-
tion of state can be calculated via either of two routes
[13]: from the compressibility equation:

βP =

∫ ρ

0

∂βP (ρ′)

∂ρ′
dρ′ =

∫ ρ

0

[1− ρ′ĉ(k = 0; ρ′)] dρ′ (15)

where P denotes the pressure. For soft-core potential
systems the virial equation leads to:

βP = ρ+
1

2
ρ2v̂(k = 0)− 2π

3
ρ2
∫ ∞

0

r3
∂βv(r)

∂r
h(r)dr.

(16)
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FIG. 5. Compressibility factors (Z = βP/ρ) from
RPA and HNC for a Gaussian potential with ǫ∗ = 2,
compared to MC simulations and to two and three term
virial expansions. Zv

RPA, Z
c
HNC , and Zv

HNC , are indis-
tinguishable on this scale. Inset: The analytic ratio
Zc

RPA/Z
v
RPA = (1−ǫ∗ℵ(α)/(1+α/2))−1 gives a good ap-

proximation to Zc
RPA/Z

v
HNC and goes to zero as ρ → ∞.

The ratio Zv
RPA/Z

v
HNC demonstrates that Zv

RPA approx-
imates the true e.o.s. to better than 1% accuracy over the
entire density range for ǫ∗ = 2.

If the correlation functions h(r) and c(r) were known
exactly, the two routes would lead to identical equations
of state. Approximate theories are not, in general, ther-
modynamically consistent. However, as shown in Figs.
5-7, the HNC closure yields practically identical values
of the pressure over the whole range of densities, even
for a repulsion as high as ǫ∗ = 90 (remember that for
ǫ∗ & 100 re-entrant crystallization sets in [9,10]). More-
over, the two HNC estimates of the pressure agree closely
with the results of MC simulations. These results con-
firm the conjecture that HNC and RPA become exact for
the GCM in the high density limit, but also show that
the HNC works well for low densities in the fluid regime
we consider (ǫ∗ < 100).
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FIG. 6. Compressibility factors from RPA and HNC
for a Gaussian potential with ǫ∗ = 10, compared to MC
simulations and to two and three term virial expansions.
Zv

RPA, Zc
HNC , and Zv

HNC are very close over much of
the density range. Inset: Compressibility factors at low
density, symbols are the same as in the main figure. Note
that Zv

RPA shows unphysical behavior for very small ρ∗,
which can be understood from the effective virial expan-
sion discussed in Appendix B.

Turning now to the much simpler RPA, it is easily ver-
ified from Equations (6) and (15) that the dimensionless
equation of state (e.o.s.), Z = βP/ρ, reduces, within the
compressibility route, to the simple expression:

Zc
RPA = 1 +

1

2
ρβv̂(k = 0) (17)

which for the GCM leads to:

Zc
RPA = 1 +

1

2
α. (18)

This in turn leads to an excess free energy per particle:

βF ex

N
=

1

2
ρβv̂(k = 0) =

1

2
α (19)
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identical to that obtained from a van der Waals like mean
field theory (MF) so that Zc

RPA = ZMF ; it also implies
that the excess chemical potential is linear in density.
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FIG. 7. Compressibility factors from RPA and HNC
for a Gaussian potential with ǫ∗ = 90, compared to
MC simulations and to two and three term virial expan-
sions. Again, the HNC virial approximation is nearly
exact across the whole density range, and the e.o.s. is
that of a mean-field fluid at all but the lowest densities.
The low-density limit is further discussed in Appendix B
and illustrated in Fig. 15.

Remembering that the quasi-exact HNC direct corre-
lation function is bounded below by the RPA form (6),
it is immediately clear from the compressibility equation
(15) that one may expect:

Z < Zc
RPA = ZMF (20)

This conjecture is supported by Eq. (16), which shows
that the exact equation of state is given by:

Z = Zc
RPA − 2π

3
ρ2
∫ ∞

0

r3
∂βv(r)

∂r
h(r)dr, (21)

which, for the Gaussian core model reduces to:

Z = 1 +
1

2
α+

4α

3
√
π

∫ ∞

0

x4e−x2

h(x)dx (22)

where the dimensionless spacing x = r/R was intro-
duced. The conjecture (20) is thus true, provided the
integral on the r.h.s. of Eq. (22) is negative. This is very
likely for sufficiently high temperatures since the HNC
results plotted in Fig. 2 show that h(x) is mostly nega-
tive.
The integral in Eq. (22) can be calculated analytically

within the RPA, leading to the following result for the
RPA virial equation of state:

Zv
RPA = 1 +

1

2
α− ǫ∗ℵ(α) (23)

where:

ℵ(α) = 1

2α

[

Li 3
2
(−α)− Li 5

2
(−α)

]

(24)

ℵ(α) is zero for α = 0, has a maximum of 0.0908 at
α = 7.8, and goes to zero for α → ∞, which implies that
for any ǫ∗, the RPA becomes thermodynamically consis-
tent in the high density limit.
Interestingly, within the RPA2, the compressibility

e.o.s. may also be solved analytically and yields exactly
the same result (23) as the virial e.o.s. in the RPA (i.e.
Zc
RPA2 = Zv

RPA), suggesting that the latter is more ac-
curate than the MF or RPA compressibility equation of
state (17). In fact, as shown in Figures 5-7, the RPA
virial equation of state is virtually indistinguishable from
the practically self-consistent HNC results and the MC
simulations, except at very low reduced densities ρ∗. Fig.
7 demonstrates that the mean-field approximation (17) is
still surprisingly good, even for an interaction as large as
ǫ∗ = 90, just below the value where freezing sets in. This
implies that the hard-sphere limit, envisioned by Still-
inger [9], is still not reached at such a strong interaction,
and that the Gaussian core-model behaves very much like
a “mean field fluid” (MFF) over a wide temperature and
density range.
Perhaps the most striking result is the persistence of

the linear slope of the equation of state to such low den-
sities [16]. The slope differs, however, from that deter-
mined by the (smaller) second virial coefficient. This is
further discussed in Appendix B, where it is shown that
the standard virial expansion of the equation of state [13]
has a very small radius of convergence for the GCM, and
is of limited use for this model, contrarily to the case of
the hard sphere fluid [17].

III. THE GCM NEAR A WALL

In view of the success of the HNC and RPA theories
for the GCM in the homogeneous bulk fluid phase, it is of
interest to ascertain the validity of these approximations
under inhomogeneous conditions, e.g. in the presence of
an external potential φ(r) acting on the particles. In
this section we shall consider more specifically the den-
sity profiles of GCM particles near a hard wall, using the
formalism of density functional theory (DFT). In an ex-
ternal potential the density of particles will change from
a constant bulk value, ρb, to a spatially varying local den-
sity ρ(r). The grand potential of the inhomogeneous fluid
in equilibrium with a bulk reservoir fixing the chemical
potential µ, may be cast in the generic form [18]

βΩv[ρ(r)] = βF in[ρ(r)]−
∫

dr (βµ− βφ(r)) ρ(r) (25)

where the intrinsic free energy functional F in naturally
splits into ideal and excess parts, F id and Fex. The lat-
ter is an unknown functional of the local density ρ(r).
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When the inhomogeneity is not too strong, the excess
part Fex may be expanded in a functional Taylor series
in the deviation of the local density ρ(r) from the bulk
density ρb. If the expansion is truncated after second
order the HNC functional results:

βΩv[ρ(r)] = βΩ[ρb] +

∫

dr′βφ(r′)ρ(r′)

+

∫

dr′ {ρ(r′) ln [ρ(r′)/ρb]− ρ(r′) + ρb}

−1

2

∫

drdr′(ρ(r) − ρb)c
(2)
b (|r− r

′|)(ρ(r′)− ρb). (26)

This functional is to be minimized with respect to ρ(r),
and the resulting Euler-Lagrange equation reads:

ρ(r) = ρb exp

[

−βφ(r)

+ ρb

∫

dr′c
(2)
b (|r′ − r|)

(

ρ(r′)

ρb
− 1

)

]

(27)

which is the familiar HNC approximation for the density
profile ρ(r) in terms of the external potential and the

bulk direct correlation function c
(2)
b (r) ≡ c(r). Given c(r)

from the previous HNC calculations of the pair structure
in the bulk, Eq. (27) may be solved iteratively for any
φ(r). If c(r) is replaced by its RPA form (6), then Eq.
(27) reduces to the MF form:

ρ(r) = ρb exp

[

−βφ(r)

− ρb

∫

dr′βv(|r − r
′|)
(

ρ(r′)

ρb
− 1

)

]

. (28)

Eq. (28) also follows directly from the standard mean
field approximation (MF-DFT) for for the intrinsic free
energy functional [18]:

βF in[ρ(r)] = βF id +
1

2

∫

drdr′βv(r, r′)ρ(r)ρ(r′), (29)

which, in a different context, is identical to the functional
used to derive the Poisson-Boltzmann theory for ionic flu-
ids if v(r, r′) is taken to be the Coulomb potential and ρ
the charge density.
Specializing to the case of a planar wall coinciding with

the x− y plane, and confining the particles to the z ≥ 0
half-space, without any additional external potential, we
note that the density profile ρ(z) satisfies the contact
condition [19]:

ρ(z=0) = βP (30)

where P is the pressure exerted by the particles on the
wall, equal to the bulk pressure in the absence of an
external potential. The sum rule (30) is satisfied by

the MF-DFT approach, where ρMF (0)=βPMF=ρbZMF ,
with ZMF defined by Eq. (17) since ZMF=Zc

RPA. How-
ever, the sum rule is not satisfied by the (more accurate)
HNC approximation (27), which instead leads to [20]:

ρ(0) =
1

2
ρb

[

1 +

(

∂βP

∂ρb

)

T

]

(31)
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FIG. 8. Ratio ρHNC(0)/ρ(0) from (31) compared to
the analytic ratio obtained from the RPA2 approxima-
tion to Eq. (31)) for ǫ∗ = 2. Also included is the ratio
ρMF (0)/ρ(0) ≃ Zc

RPA/Z
v
HNC . Clearly the HNC is the

better approximation, even though it does not satisfy the
sum-rule of Eq. (30)

This reduces to the exact result (30) provided the pres-
sure is a quadratic function of the bulk density. This is
very nearly true over a wide range of densities, as shown
in the previous section. In particular the simple RPA
compressibility (or MF) e.o.s. (18), which provides a fair
representation of the numerical HNC results, is of the
necessary linear form to make Eq. (30) and Eq. (31)
compatible. The deviations from the sum-rule (30) may
be traced back to the slight non-linearity of ZHNC , as
demonstrated in the inset of Fig. 5 and in Fig. 8. The
relative error does not exceed 3% for ǫ∗ = 2, although
it tends to increase with increasing ǫ∗. In fact, the ratio
ρHNC(0)/ρ(0) may be estimated from the very accurate
RPA2; since Zc

RPA2 = Zv
RPA, the required pressure may

be calculated from Eq. (23), while the RPA2 inverse com-
pressibility is calculated to be :
(

∂βP

∂ρ

)

T

= 1 + α− ǫ∗

2α

[

Li1/2(−α)− Li3/2(−α)
]

.

(32)

The resulting analytic estimate of ρHNC(0)/ρ(0) is also
shown in Fig. 8; as expected, it gives a good approxima-
tion of ρHNC(0)/ρ(0). Even though the MF approach
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exactly satisfies the sum-rule (30), the HNC approach,
which does not satisfy (30), is a better approximation.
We note that the arguments above can be extended
to the popular Percus-Yevick approximation [13], where
ρPY (0)/ρ(0) ≈ (1+1/2α)(−1/2) [20], which, in contrast
to the HNC or MF approaches, becomes increasingly less
accurate as the density increases.

We have numerically solved the HNC and MF Euler-
Lagrange equations (27) and (28) to calculate the den-
sity profiles ρ(z) of a GCM near a hard wall, for sev-
eral values of the bulk densityρb. The theoretical profiles
are compared in Fig. 9 to the results of MC simulations.
The agreement is seen to be excellent, particularly at the
higher densities. In fact, within the accuracy of the fig-
ure the difference between the HNC and MF approaches
is visible only for small z at ρ = 0.1, where, as expected,
the HNC approach is slightly more accurate.

0 0.5 1 1.5 2
z

0

2

4

6

8

ρ(z)/ρb

MF−DFT
HNC
ρ∗=0.1
ρ∗=0.5
ρ∗=1

FIG. 9. Density profiles from HNC and the MF-DFT
for Gaussian particles (ǫ = 2, R = 1) near a hard wall.
Symbols are for MC simulations at 3 densities, the solid
lines are from the MF-DFT approach, and the dashed
lines are from the HNC approach. The two theories and
simulation agree to within the accuracy of the graph for
ρ∗ = 0.5 and ρ∗ = 1, but small discrepancies appear for
ρ∗ = 0.1, where the HNC is slightly more accurate.

In Fig. 10 we show density profiles for particles inter-
acting with an external potential βφ(z) = exp[−z]/z, a
situation similar to that encountered for polymer coils
near a wall [8]. Once again, we observe that the HNC
and MF-DFT approaches are very close, implying that
both are very accurate and could potentially be fruitfully
combined with the effective potentials between polymer
CMs [8] to derive a full DFT for polymer solutions in
complex geometries.

In summary then, the results of this section confirm
that the model considered indeed behaves as a “mean
field fluid” under inhomogeneous conditions.

0 1 2 3 4
z

0

1

2

ρ(z)/ρb

φ(z)
exp[−βφ(z)]
MF−DFT
HNC ρ∗=0.1
HNC ρ∗=0.5
HNC ρ∗=1

FIG. 10. Density profiles from HNC (symbols) and
MF-DFT (lines) for Gaussian particles (ǫ = 2, R = 1) in-
teracting with an external potential βφ(z) = exp[−z]/z.

IV. PHASE SEPARATION IN

TWO-COMPONENT REPULSIVE GAUSSIAN

MIXTURES

Since the underlying polymer mixtures exhibit inter-
esting phase behavior under a variety of physical condi-
tions, it is natural to consider binary mixtures of Gaus-
sian core mixtures, interacting via pair potentials:

βvνµ(r) = ǫ∗νµ exp[−(r/Rνµ)
2], (33)

where the species indices 1 ≤ ν, µ ≤ 2. The total num-
ber density is still denoted by ρ = (N1 + N2)/V , while
the concentration variable x = N2/N . We are inter-
ested in the possibility of a phase separation, or de-
mixing transition, of the two species. The thermody-
namic stability conditions for any binary mixture can be
expressed in terms of the Helmholtz free energy per par-
ticle, f(x, v) = F (N1, N2, V )/N , considered as a function
of the intensive variables x and v (or ρ = 1/v), for any
fixed temperature. These conditions are [21]:

(

∂2f

∂v2

)

x

> 0 (34a)

(

∂2f

∂x2

)

v

> 0 (34b)

(

∂2f

∂v2

)

x

(

∂2f

∂x2

)

v

−
(

∂2f

∂v∂x

)2

> 0. (34c)

The first inequality expresses mechanical stability, (i.e.
positive compressibility), the second is the condition for
stability against spontaneous de-mixing at constant vol-
ume while the last inequality ensures stability at constant
pressure; it is equivalent to the more familiar condition
(∂2g(x, P )/∂x2)P > 0, where g is the Gibbs free energy
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per particle. We note that if either of the first two sta-
bility conditions (34a) or (34b) are violated, the more
restrictive stability condition, (34c), is violated as well.
Spinodal instability occurs when Eq. (34c), is satisfied as
an equality. The condition is equivalent to the k → 0
divergence of the concentration-concentration structure
factor:

Scc(k) = x2S11(k) + (1− x)2S22(k)− 2x(1− x)S12(k),

(35)

where the Sνµ(k) are the usual partial structure factors
[13]. From the OZ relations for a binary mixture it is
easily inferred that Scc(0) diverges when:

[1− (1− x)ρĉ11(0)] [1− xρĉ22(0)]

−x(1− x)ρ2 [ĉ12(0)]
2
= 0. (36)

We now examine the implications of these conditions
within the MF approximation, which we have shown to
yield reliable results, except at low reduced density ρ∗.
The MF free energy (19), properly generalized to the bi-
nary situation, reads:

f(x, ρ) = f id(ρ) + fmix(x) +
1

2
ρV̂0(x) (37)

where the first, ideal gas, term is irrelevant in the subse-
quent considerations, fmix is the ideal mixing term:

fmix(x) = x lnx+ (1− x) ln(1− x), (38)

and the MF interaction term is:

V̂0(x) = (1 − x)2βv̂11(0) + 2x(1− x)βv̂12(0) + x2βv̂22(0).

(39)

The {βv̂νµ(0)} are the k → 0 limits of the FTs of the
interaction potentials. In fact, the MF free-energy (37)
has the same mathematical form as a second-virial theory
which would be valid for very low densities [22].
With the MF free energy (37), the stability conditions

(34a - 34c) reduce to:

1 + ρV̂0(x) > 0 (40a)

1− ρx(1 − x)χ > 0 (40b)

1 + ρV̂1(x) − ρ2x(1 − x)∆ > 0 (40c)

respectively, where the following parameters were de-
fined:

χ = 2βv̂12(0)− (βv̂11(0) + βv̂22(0)) (41)

∆ = (βv̂12(0))
2 − βv̂11(0)βv̂22(0) (42)

V̂1(x) = (1− x)βv̂11(0) + xβv̂22(0) (43)

Eq. (40a) can only be violated if the potentials them-
selves violate a 2-component extension of Eq. (A5) from

Appendix A, which is a necessary (but not sufficient) con-
dition for the existence of a well-defined thermodynamic
limit. The limit of stability of the mixture (i.e. the spin-
odal line) at constant volume or pressure is reached when
the inequalities (40b) and (40c) turn into equalities; the
latter condition also follows from (36), when the ĉνµ are
replaced by their RPA limits ĉνµ(k) = −βv̂νµ(k) . De-
mixing at constant volume is possible, provided χ > 0;
the density along the spinodal is then easily calculated
to be:

ρs(x) =
1

x(1 − x)χ
. (44)

De-mixing at constant pressure is only possible provided
∆ > 0. The corresponding density along the spinodal
satisfies:

ρs(x) =
V̂1(x) +

√

V̂1(x)2 + 4x(1− x)∆

2x(1− x)∆
, (45)

the pressure along the spinodal is:

Ps(x) = ρs(x) +
1

2
ρ2s(x)V̂0(x), (46)

and the critical consolute point is determined by the con-
dition:

dPs(x)

dx
= 0. (47)

The simple quadratic expression for the pressure P (46),
is easily inverted to obtain an expression for the spinodal
density as a function of concentration x and pressure P .
We now apply these general considerations within the

MF framework to the binary Gaussian core model for
which

βv̂νµ(0) = π3/2ǫ∗νµR
3
νµ. (48)

Inserting the binary GCM expression for v̂νµ(0) into ex-
pressions (42) and (43) for χ and ∆, we find that phase-
separation at constant volume or at constant pressure is
possible provided:

χ = π3/2
[

2ǫ∗12R
3
12 − (ǫ∗11R

3
11 + ǫ∗22R

3
22)
]

> 0. (49)

or:

∆ = π3
[

(ǫ∗12)
2R6

12 − ǫ∗11ǫ
∗
22R

3
11R

3
22)
]

> 0. (50)

In order to focus on physically relevant values of the
parameters ǫ∗νµ and Rνµ, it is important to make contact
with known results for polymer coils in a good solvent
[6,7]. Simulations on binary solutions of self-avoiding
polymer coils carried out in the low concentration limit
[7] suggest that the effective pair potentials between cen-
ters of mass are reasonably well represented by the Gaus-
sian form (33), with :

ǫ∗12 ≤ ǫ∗11 ≃ ǫ∗22 (51)
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and

R2
12 ≃ 1

2

(

R2
11 +R2

22

)

. (52)

The relation (51) between the ǫνµ favors mixing. On the
other hand R12 > 1/2(R11 + R22), which resembles the
positive non-additivity that can drive de-mixing in hard-
core mixtures [24]. Substituting (52) into (49), we find
that a spinodal instability of the mixture is possible at
constant volume provided:

ǫ∗12
ǫ∗11

>
√
2

1 + (R22/R11)
3

(1 + (R22/R11)2)
3/2

≥ 1 (53)

which contradicts the requirement (51). On the other
hand, if (52) is substituted into (50), de-mixing at con-
stant pressure may occur provided:

(ǫ∗12)
2

ǫ∗11ǫ
∗
22

>

[

2(R22/R11)

1 + (R22/R11)2

]3

≤ 1, (54)

which is compatible with the requirement (51).

More specifically, we have chosen values of the pa-
rameters ǫ∗νµ and Rνµ appropriate for a polymer mix-
ture of self-avoiding polymers of L = 200 (species 1) and
L = 100 (species 2) monomers [7,23]. The resulting spin-
odal line (45) in the x− ρ plane, calculated from the MF
free energy (37) with (48), is shown in Fig. 11. Phase
separation into two solutions of different composition x
occurs above a critical density ρ∗c = 5.6/R3

11 and critical
composition xc = 0.70. Note that since all terms in the
free energy are of entropic origin, the temperature scales
out, i.e. the mixture behaves as an athermal system. In
view of the remarkable accuracy of the MF theory at high
density, as illustrated in sections II and III for the one
component GCM fluid, we expect the phase-diagrams,
calculated within MF (or equivalently RPA) to be reli-
able; full calculations of the binodal line, based on RPA2
and HNC theories, will be reported elsewhere.

0 0.2 0.4 0.6 0.8 1
x

0

5

10

15

ρR11

3

FIG. 11. Constant pressure spinodal (45) for param-
eters taken from simulations of L = 100 and L = 200
monomer effective polymer CM potentials [7]. The x-axis
denotes the composition x = x2 = N2/N . The y-axis de-
notes the density ρR3

11, where R11 is the = radius of
gyration RG for the L = 200 polymers. The dot is the
critical point at (x = 0.70, ρR3

11 = 5.6).

V. CONCLUSIONS

The calculations carried out in this paper, and in re-
lated work [8], lead to the conclusion that a system of
classical particles interacting via a repulsive Gaussian
core potential behaves like a weakly correlated “mean
field fluid” over a wide range of temperatures and densi-
ties. In fact for any temperature there is always a (sur-
prisingly low) density beyond which the excess free en-
ergy per particle is a linear function of density and the
resulting excess pressure increases like a quadratic func-
tion of the density. On the other hand, in the opposite
low density regime, a virial expansion of the equation of
state in powers of the density appears to converge only at
extremely low densities. This is in sharp contrast to hard-
core systems, for which the virial expansion provides a
good estimate of the equation of state up to relatively
high packing fractions [17], while the pressure diverges
near close packing according to a simple free volume pic-
ture. At very strong interaction strength (ǫ∗ & 100),
the GCM behaves effectively as a hard core fluid that
freezes at intermediate densities, but re-melts under fur-
ther compression to return to mean-field like behavior
[9,10]. The small correlational effects at low and inter-
mediate densities are adequately described by the simple,
analytic RPA2 extension of RPA theory, or by the HNC
integral equation (requiring numerical solution), which is
nearly thermodynamically consistent over a broad range
of temperatures and densities.
The MF theory performs equally well in the inhomo-

geneous situation of Gaussian core particles near a hard
wall. The binary version of the model phase-separates at
high densities, when the widths of the Gaussian repulsion
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satisfy the composition rule (52), provided condition (54)
is satisfied. This provides an interesting example of phase
separation in systems with purely repulsive interactions.
To conclude it seems worthwhile to consider the rel-

evance of the GCM for the description of polymer so-
lutions. The latter enter the semi-dilute regime when
polymer coils start to overlap, i.e. when ρ∗ ∼ 3/(4π).
For densities of this order we have seen that the GCM
behaves like a “mean field fluid”, with a quadratic density
dependence of the pressure. The exponent 2 is close to
the 9/4 power observed for the osmotic pressure of semi-
dilute polymer solutions [25]. The difference between the
exponent 9/4 and 2 is due in part to the weak, but sig-
nificant density dependence of the effective pair potential
between the centers of mass of self-avoiding polymers [8],
which leads to an additional density dependence of the
RPA or MF equation of state (17). This possibility is
being explored in more detail [26].
The effective polymer-wall potentials derived in ref. [8]

show a significant variation with density. Nevertheless,
the form of the ρ(z)/ρb for the GCM in a fixed external
potential follows the same qualitative trends as the dis-
tribution of the polymer CM’s near a wall, ρCM (z)/ρb,
suggesting that the physics of polymer coils near a wall
is well captured by the GCM.
The de-mixing transition of binary Gaussian core mix-

tures is reminiscent of the tendency of polymers of differ-
ent molecular weight to phase separate at high concentra-
tion and in the melt. Again, further analysis is required
to decide if the analogy between the de-mixing of Gaus-
sian core mixtures and of polymer blends is fortuitous,
or has some deeper foundation.
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APPENDIX A: THERMODYNAMIC STABILITY

OF SOFT-CORE POTENTIAL SYSTEMS

It was pointed out in section IIA that the GCM sat-
isfies Ruelle’s condition (3) for the existence of a finite
thermodynamic limit. In this appendix we give two ex-
amples of pair potentials involving a repulsive core and
a small attractive component which do not satisfy Ru-
elle’s stability condition, and hence belong to the class of
potentials referred to by him as “catastrophic”. The fol-
lowing considerations are not completely academic, since

it has been shown in ref [26] that the effective pair po-
tential between the centers of mass of two polymer coils
in a good solvent indeed exhibits a small attractive part
at distances of the order of several times the radius of
gyration Rg for intermediate densities. When the poly-
mer coils are no longer in a good solvent the potentials
can develop even larger attractive parts [7].
According to proposition 3.2.2 in Ruelle [12], given an

interaction energy V
(2)
N built up by pair potentials v2,

the grand partition function is finite only if the follow-
ing two equivalent properties hold for all N ≥ 0 and all
{ri} ∈ R

N:

N
∑

i

N
∑

j

v2(|ri − rj|) ≥ 0 (A1)

and

V
(2)
N (r1, ...., rN) =

∑

1≤i<j≤N

v2(|ri − rj|) ≥ −NB (A2)

for a B ≥ 0. Note that in (A1) the double sum includes
the self-interaction (i = j).

0 1 2 3 4 5 6
r/RG

−0.5

0

0.5

1

1.5

2

V(r)

ρ=0 polymer potential
VA(r): catastrophic potential
VB(r): catastrophic potential

FIG. 12. Two “catastrophic” potentials compared to
a typical CM potential for two polymers in a good sol-
vent. Potential vA(r) (A3) violates the conditions (A1)
and (A2) for homogeneous fluid configurations, while po-
tential vB(r) (A4) violates (A1) and (A2) only for inho-
mogeneous configurations like the fcc crystal.

We consider two examples of potentials which do not
satisfy these conditions:

vA(r) = 1.87 cos

[

√

(2 + δ)

(

r

1.7RG

)]

exp

[

−
(

r

1.7RG

)2
]

(A3)

vB(r) = 1.87 cos

[√
π

(

r

1.7RG

)]

exp

[

−
(

r

1.7RG

)4
]

, (A4)

and compare them in Fig. 12 to the polymer CM po-
tential between two isolated L = 500 SAW polymer
coils. Here δ is an arbitrary positive constant taken to be
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δ = 0.001 in Fig. 12. Although at first sight they don’t
appear very different from the purely repulsive polymer
potential, they are both “catastrophic”.
If δ > 0, the first potential, vA(r), violates a weaker

condition than (A1) or (A2), namely

v̂(0) =

∫

v(r)dr > 0, (A5)

which is necessary (but not sufficient) for a thermody-
namic limit. When it doesn’t hold, conditions (A1)
and (A2) can be violated for a homogeneous “gas” with
g(r) = 1. This has a further implication for fluids de-
scribed by a mean-field free-energy (19), since the inverse
compressibility ∂βP/∂ρ = 1+ βv̂(0)ρ cannot go through
zero without violating the condition (A5), which implies
that one-component soft-core fluids described by a mean-
field e.o.s. cannot support a spinodal instability.
The second potential, vB(r), has an integral v̂B(0) > 0,

but it still violates (A1) and (A2) for an inhomogeneous

configuration. For example, for an fcc lattice with single

occupancy
∑N

i

∑N
j vB(|rj − ri|) = −0.13N . The po-

tential is catastrophic because one can always lower the
total energy indefinitely through multiple occupancy of
the lattice sites.
The θ point in polymer solutions can be defined as the

temperature where the effective second osmotic virial co-
efficient, B2, passes through 0 [7]. Above the θ point the
solvent is said to be “good”, while below the θ point the
solvent is said to be “poor”. Simulations of a model for
two polymers in a poor solvent show that the effective
pair potential is no longer strictly positive definite be-
low the θ point [7], implying that the pair potentials can
become catastrophic. In fact, for the type of polymer
CM potentials considered, this seems to occur just below
the θ point temperature where B2 = 0. It is tempt-
ing to speculate that the coil-globule transition, which
also typically occurs slightly below the θ temperature,
is related to the point at which the effective pair poten-
tial becomes catastrophic. However, it is not yet clear
whether the pair-potential picture of polymer solutions
[8] remains valid for poor solvents.

APPENDIX B: VIRIAL EXPANSION FOR THE

GCM FLUID

In this appendix we briefly consider the convergence
of the virial expansion of the equation of state of the
GCM in powers of the density ρ. The FT of the Mayer
f-function in Eq. (10) is given by the convergent sum:

f̂(k) = π3/2
∞
∑

n=1

exp(− k2

4n )(−ǫ∗)n

n!n3/2
. (B1)

Here the width parameter R in the Gaussian potential
(1) has been chosen as unit of length for convenience.
The second and third virial coefficients B2 and B3, of

the GCM can then be expressed as the following conver-
gent sums:

B2 = −1

2
f̂(0) = −π3/2

2

∞
∑

n=1

(−ǫ∗)n

n!n3/2
(B2)

B3 = −1

3
π3

∞
∑

i=1

∞
∑

j=1

∞
∑

k=1

(−ǫ∗)i+j+k

i!j!k!(ij + jk + ik)3/2
(B3)
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FIG. 13. Second virial coefficients for a Gaus-
sian potential as a function of interaction strength ǫ∗.
(Bc

2 > B2 > Bvir
2 ). Also included is the empirical rela-

tion BHS
2 (

√

ln(2ǫ∗)), where BHS
2 (σ) is the hard-sphere

second-virial coefficient.

The variations of B2 and B3 with ǫ∗ are shown in Figs
13 and 14; both virial coefficients are always positive.
The virial expansion of the equation of state reads:

Z =
βP

ρ
= 1 +B2ρ+B3ρ

2 +O(ρ3) (B4)

and the results from the 2 and 3 term series are compared
in Figs. 5-7 of section II to the predictions of the RPA
and HNC theories, and to MC simulations for ǫ∗ = 2, 10
and 90. The virial expansion is seen to break down very
early. In particular, although the MF e.o.s., which be-
comes very accurate at high density, predicts a linear
variation of Z with density, the slope differs more and
more from B2 as the interaction strength ǫ∗ increases.
Adding the B3 contribution leads to rapid deterioration
of the predicted e.o.s. as the density increases.
The shortcoming of the virial expansion in powers of

density is further illustrated by considering the RPA.
From Eqns. (18) and (23), one may extract the following
compressibility and virial estimates of the 2nd and 3rd
virial coefficients:

Bc
2 =

1

2
π3/2ǫ∗;Bc

3 = 0 (B5)

Bvir
2 =

1

2
π3/2ǫ∗

(

1−
√
2

8
ǫ∗

)

;Bvir
3 =

π3(ǫ∗)3

9
√
3

(B6)
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As shown in Figs. 13 and 14, the exact virial coefficients
are bracketed by the virial and compressibility estimates
extracted from the RPA:

Bc
2 > B2 > Bvir

2 (B7)

Bvir
3 > B3 > Bc

3 = 0 (B8)

The large deviations shown in Figs. 13 and 14 imply that,
in contrast to the case at high densities, the RPA is ex-
pected to perform poorly at very low densities and large
ǫ∗, where it is thermodynamically inconsistent. In fact,
Bvir

2 even goes negative for ǫ∗ & 5.7! The effect this has
on the RPA virial e.o.s. is demonstrated in the inset of
Fig. 6 and in Fig. 15. However, even though for ǫ∗ = 2,
Bvir

2 is 13% less than B2, and Bvir
3 is over 300% larger

than B3, Z
v
RPA remains within 1% of the exact e.o.s. over

the entire density range! Thus, in spite of the fact that
the RPA virial approximation grossly misrepresents the
first two virial coefficients, it nevertheless accurately de-
scribes the e.o.s., implying that the density is not a good
expansion parameter for the GCM fluid phase.
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FIG. 14. Third virial coefficients for a Gaus-
sian potential as a function of interaction strength
ǫ∗. Bc

3 = 0, Bvir
3 > B3. Also included is the

empirical relation B3(ǫ
∗) = BHS

3 (
√

ln(2ǫ∗)), where
BHS

3 (σ) is the hard-sphere third-virial coefficient. In-

set: ρm = 1/(π3/2ǫ∗) is the maximum density for which
the RPA virial e.o.s. (23) can be written as an expan-
sion in powers of the density. ρcp =

√
2/(σHS

eff )
3 is the

density at which the effective hard-sphere system with
the same second virial coefficient as the GCM would be
close-packed, and beyond which a virial equation would
no longer be expected to exist.

A further hint at the breakdown of the virial expan-
sion comes from summing the virial series to all orders in
the high temperature limit, where, from the diagramat-
tic representation of the virial coefficients [13], it can be
shown that the Bn are given by:

Bn = −1

2
π

3(n−1)
2

(−ǫ∗)n(n− 1)

n5/2
+O(ǫ∗)n+1 (B9)

for n ≥ 3. This, Bvir
2 (B6) is added, recovers exactly

the virial RPA equation of state (23), which can only be
expanded in powers of density for α < 1, i.e. for

ρ∗ < ρ∗m =
1

π3/2ǫ∗
≈ 0.1796/ǫ∗. (B10)

This implies that in the high-temperature limit, the virial
expansion does not converge for densities higher that ρ∗m.
For ǫ∗ = 2, there is no convergent density expansion of
the RPA virial e.o.s. for ρ∗ > ρ∗m ≈ 0.0898. A similar
breakdown in convergence may be expected for the ex-
act virial expansion. The physical reason for this lack
of convergence lies in the possibility of multiple overlap
of soft core particles, giving much more weight to higher
order cluster integrals compared to the case of fluids with
hard-core interactions.

At large enough ǫ∗, the overlap probability becomes
exponentially small, and the GCM can be mapped onto
an effective hard-sphere system [9,10]. One possible cri-
terion for the mapping is to equate the second virial co-
efficients. From this we obtain an effective hard-sphere
radius of:

σHS
eff (ǫ) =

(

3

2π
B2(ǫ

∗)

)1/3

(B11)

which for ǫ∗ > 1 is well approximated by the empirical
expression σHS

eff ≈
√

ln(2ǫ∗). For large ǫ∗ and low densi-
ties, the equation of state resembles that of hard-spheres
(see e.g. Fig.15), suggesting that a virial expansion does
indeed exist for low densities. We note that for this large
value of ǫ∗, the true virial expansion appears to have a
larger radius of convergence than that of the RPA virial
e.o.s., for which ρm(σHS

eff )
3 ≈ 0.023. For ǫ∗ & 100 there is

a freezing transition at roughly the density expected for
the effective hard-sphere system (ρ(σHS

eff )
3 ≈ 1), not far

above which any effective virial expansion is expected to
break down (see e.g. the inset of Fig. 14). In fact, since
Gaussian potentials don’t have an infinitely hard core,
it is possible to achieve much higher densities than are
normally available to simple liquids. At the lowest densi-
ties the fluid is described by a linear second virial theory
e.o.s., but as the density increases, this rapidly turns over
to a mean field like linear e.o.s. with a different (larger)
slope. Thus, even though the e.o.s. is well described by
a first order polynomial in the density ρ it is not at all
equivalent to a second virial theory, and the density is
generally not a good expansion parameter.
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FIG. 15. Z v.s. ρ(σHS
eff )

3 in the low density limit.
Here ǫ∗ = 90 so that (σHS

eff ) = 2.27; ρ(σHS
eff )

3 = 1 corre-
sponds to ρ∗ = 0.085. For low effective density the e.o.s.
follows the hard-sphere e.o.s. (here approximated by the
Carnahan-Starling form [13]). For higher densities the
fluid moves towards the mean-field fluid limit (see Fig.
7). Note that the two RPA expressions for the e.o.s. are
very poor approximations in this low density regime.
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