
ar
X

iv
:c

on
d-

m
at

/9
90

62
80

v1
  [

co
nd

-m
at

.s
of

t]
  1

7 
Ju

n 
19

99

The potential energy landscape of a model glass former:

thermodynamics, anharmonicities, and finite size effects
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Abstract

It is possible to formulate the thermodynamics of a glass forming system

in terms of the properties of inherent structures, which correspond to the

minima of the potential energy and build up the potential energy landscape

in the high-dimensional configuration space. In this work we quantitatively

apply this general approach to a simulated model glass-forming system. We

systematically vary the system size between N=20 and N=160. This analysis

enables us to determine for which temperature range the properties of the

glass former are governed by the regions of the configuration space, close to the

inherent structures. Furthermore, we obtain detailed information about the

nature of anharmonic contributions. Moreover, we can explain the presence

of finite size effects in terms of specific properties of the energy landscape.

Finally, determination of the total number of inherent structures for very

small systems enables us to estimate the Kauzmann temperature.

I. Introduction

The physics of glass forming systems is a complex multiparticle problem, as reflected, e.g.,
by the occurrence of non-exponential relaxation or non-Arrhenius temperature dependence
of transport coefficients for most systems [1,2]. Beyond phenomenological models like the
Gibbs-Adam model [3] or theoretical approaches like the mode-coupling theory [4] computer
simulations have become increasingly important to yield additional insight into the nature
of the glass transition from a microscopic viewpoint.

A fruitful approach is the concept of the potential energy landscape (PEL) [5–7]. In
this approach the total system is regarded as a single point moving in the high-dimensional
configuration space on a time-independent landscape, representing the potential energy. To
a large extent the topography of the PEL is characterized by the local energy minima, also
denoted inherent structures. Although the analysis of inherent structures has been applied
to several problems [8–12]. Until now, only limited quantitative information is available
concerning the PEL of glass forming systems. This is at least partly related to the fact that
the number of inherent structures exponentially increases with system size so that a complete
enumeration is only possible for very small systems. This has been demonstrated for small
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clusters [13,14] as well as for monatomic Lennard-Jones systems with periodic boundary
conditions for up to 32 particles [15,16]. Since monatomic systems tend to crystallize even
on computer time scales it has become common to use binary rather than monatomic systems
to suppress crystallization [17–19]. For these systems as well as for slightly larger monatomic
systems, however, a complete enumeration is no longer possible so that one has to resort
to an appropriate statistical analysis. Such an approach has been used in [20] where the
distribution of local minima for a KCl cluster is determined.

A major question, which has become of increasing importance, is the relevance of the
PEL [21–23]. In a trivial sense the PEL just reflects the full potential energy of the system
and is therefore always relevant. In a less trivial sense one may ask whether the physics

of the system is governed only by the part of the configuration space close to the inherent

structures. In a recent work it has been shown for a Lennard Jones system that exactly
for the temperature region T < Tr, for which typical features like the non-exponentiality
of the structural relaxation are observed also the average energy of inherent structures
depends on temperature [21]. From this observation the authors concluded that the PEL is
indeed relevant for temperatures below some temperature Tr. Interestingly, Tr is significantly
larger than the critical temperature Tc of the mode-coupling theory [4]. In Ref. [22] it was
shown that close to Tc the dynamics of the model glass former can be basically viewed as a
superposition of hopping processes between the different inherent structures and harmonic
vibrations around them. This is a very direct piece of evidence for the relevance of the PEL
in the sense mentioned above. Furthermore it could be shown explicitly that the presence of
fast and slow regions in a glass former, and thus the presence of non-exponential relaxation,
can be attributed to the topography of the PEL [23]. Also the relevance of the PEL for
aging has been recently demonstrated [24].

If the system mainly resides close to the inherent structures of the PEL, the potential
energy can be described in harmonic approximation around these inherent structures, re-
spectively. Therefore our question concerning the relevance of the PEL can be reformulated
by asking to which degree the properties of the system can be described in harmonic ap-
proximation. If the system always resides in a single minimum the degree of anharmonicity
can be simply determined, e.g. by analysis of the temperature dependence of the mean fluc-
tuations around an inherent structure [21]. At higher temperatures for which the residence
time close to a single inherent structure may be small these approaches become unreliable.

In this paper we want to show that computer simulations can be used to yield a variety of
information about the PEL. The main ingredients of our simulations have been already pro-
posed by Stillinger and coworkers [8,25,7]. First, we use their algorithm, combining standard
molecular dynamics (MD) simulation with regular quenching of the potential energy. Sec-
ond, we adapt their formulation of the partition function of the total system in terms of the
properties of the individual inherent structures. Combination of both ingredients will yield
quantitative information about the partition function and thus about the thermodynamics
of the system. More specifically the following aspects will be analysed: (i) Characterization
of the PEL in terms of the density of inherent structures (ii) Dependence of the PEL on
system size and comparison with scaling relations one would expect for sufficiently large
systems. (iii) Quantification of anharmonic contributions. (iv) Connection of the PEL to
dynamic properties. (v) Consequences for thermodynamic properties like the specific heat
and the presence of a Kauzmann temperature. In the field of clusters similar approaches
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have been already applied [26,27].
The organization of this paper is as follows. In Sect. II we present a detailed outline

of the conceptual background of the approach chosen in this work. Sect. III contains a
description of our simulation method and the model system. In Sect. IV the dynamics and
the structure is characterized via standard Molecular Dynamics (MD) simulations. In Sect.
V we present the main results of our simulations with respect to properties of the PEL. The
discussion of the implications of these results can be found in Sect. VI.

II. Partition function of glass forming systems

In this Section we present the conceptual background applied in this work and intro-
duce the notations used thereafter. This outline is rather detailed in order to make the
implications of this approach as clear as possible. Starting from the distribution function
of potential energies G(E), characterizing the total configuration space, the configurational
contribution of the canonical partition function Z(T ) can be expressed as

Z(T ) =
∫

∞

−∞

dEG(E) exp(−βE) (1)

where β = 1/T (kB ≡ 1). No specific information about inherent structures is contained.
In case that the physics is mainly determined by the inherent structures and their close
neighborhood, respectively, it may be more informative to express the partition function
in terms of the properties of the inherent structures. The main idea is to split the total
configuration space in contributions corresponding to the different inherent structures i with
energy ǫi, i.e. the minima of the potential energy of the system. Each inherent structure is
surrounded by a so-called basin of attraction Ωi. It is defined as the set of all configurations
which end up as the inherent structure i upon energy minimization. Since the mapping of
configurations on inherent structures via enery minimization is unique (except for a set of
configurations with measure zero, corresponding to the saddle points of the PEL) the total
configuration space can be decomposed in disjoint partitions Ωi. Then Z(T ) can be written
as the sum over the individual partition functions Zi(T ), i.e. Z(T ) =

∑

Zi(T ), where the
Zi(T ) are defined as

Zi(T ) ≡
∫

Ωi

d~r1...d ~rN exp(−βV (~r1, ..., ~rN)). (2)

The {~rj} denote the positions of the N particles of the system and the integration is over
the basin of attraction of the i-th inherent structure.

For the final calculation of the partition function it is helpful to rewrite the summation
over all inherent structures by combining all contributions of inherent structures with the
same energy ǫ. For this purpose we introduce the partition function Z(ǫ, T ), defined as

Z(ǫ, T ) =
∑

i

Zi(T )δ(ǫ− ǫi), (3)

such that
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Z(T ) =
∫

dǫZ(ǫ, T ). (4)

On a qualitative level Z(ǫ, T ) is a measure for the probability that a configuration at
temperature T belongs to a basin of attraction of an inherent structure with energy ǫ.
Actually, as discussed in the next Section, it is this quantity Z(ǫ, T ) which, apart from a
proportionality factor, we can extract from our simulations. If G(ǫ) denotes the number of
inherent structures with energy ǫ we can furthermore introduce the average value z(ǫ, T ) for
all inherent structures with energy ǫ via

z(ǫ, T ) ≡ Z(ǫ, T )/G(ǫ). (5)

In general, Z(ǫ, T ) may be a very complicated function of T and ǫ. In the limit of low
temperatures, however, it is reasonable to assume that apart from the energy ǫi itself the
individual partition functions Zi are mainly determined by the harmonic contributions, i.e.
Zi(T ) ≈ exp(−βǫi)Z

harm
i (T ), so that in general it is helpful to take into account harmonic

and anharmonic contributions individually. The harmonic contributions are given by

Zharm
i (T ) ≡

∏

j

(

2πT

νj,i

)1/2

≡ Y harm
i T (3N−3)/2 (6)

where νj,i denote the 3N − 3 positive eigenvalues of the force matrix evaluated for the
i-th inherent structure. Note that the temperature dependence of the vibrational parti-
tion function Zharm

i (T ) is simply given by the factor T (3N−3)/2 whereas Y harm
i contains the

temperature-independent information about the harmonic modes around this inherent struc-
ture. In analogy to above we define yharm(ǫ) as the average of the Y harm

i over all inherent
structures with energy ǫ. Then we can write

z(ǫ, T ) ≡ exp(−βǫ)yharm(ǫ)T (3N−3)/2zanh(ǫ, T ), (7)

thus introducing the term zanh(ǫ, T ), accounting for the anharmonic corrections. By defini-
tion one has zanh(ǫ, T ) = 1 for sufficiently low temperatures. In literatur, phenomenological
expressions for the description of anharmonic contributions can be found; see, e.g., [26,27].
Finally, the total partition function can be expressed as

Z(T ) = T (3N−3)/2
∫

dǫG(ǫ)yharm(ǫ)zanh(ǫ, T ) exp(−βǫ) (8)

Since all thermodynamic quantities can be derived from knowledge of the partition func-
tion it is evident from Eq.8 that it is not the density of inherent structures G(ǫ) alone which
determines the properties of the system. At sufficiently low temperatures it is rather the
product yharm(ǫ)G(ǫ) which is relevant. We denote this product effective density Geff(ǫ),
i.e.

Geff(ǫ) ≡ yharm(ǫ)G(ǫ). (9)

It can be determined from Z(ǫ, T ) via

Geff(ǫ) = T−(3N−3)/2Z(ǫ, T ) exp(βǫ)/zanh(ǫ, T ). (10)
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Thus for sufficiently low temperatures for which zanh(ǫ, T ) = 1 we can directly obtain the
effective density of states from a reweighting of the Z(ǫ, T ) with the inverse Boltzmann
factor. The resulting effective density Geff(ǫ) is independent of temperature. In practice
one has to determine Z(ǫ, T ) for several temperatures in order to obtain Geff (ǫ) for a wide
range of energies.

Finally, the total partition function can be expressed in terms of the effective density via

Z(T ) = T (3N−3)/2
∫

dǫGeff (ǫ)z
anh(ǫ, T ) exp(−βǫ). (11)

Despite the formal similarity with Eq.1 the present approach is based on a description in
terms of the distribution of inherent structures in contrast to an overall description of the
PEL, expressed in Eq.1. The main advantage of the present approach is the possibility to
uniquely identify anharmonic contributions. A straightforward way to do this is to calculate
a thermodynamic quantity like the specific heat, on the one hand, directly from the MD
configurations and, on the other hand, from Eqs. 10 and 11 with zanh(ǫ, T ) = 1, i.e. using the
harmonic approximation. Deviations between both approaches can be uniquely attributed
to anharmonic contributions, i.e. invalidation of the relation zanh(ǫ, T ) = 1.

Finally we would like to mention that there exist alternative approaches to formulate the
thermodynamics via a combination of constant energy MD simulations and quenching from
which the energy density G(E) for different systems has been estimated; see, e.g., Ref. [27].

III. Methods

We studied a binary Lennard-Jones (LJ)-type system. The mutual interactions are
chosen such that the interaction between unlike particles is favoured, thus avoiding crys-
tallisation for an appropriately chosen mixing ratio. The pairwise interaction potential has
been proposed by Stillinger and Weber [17]

Vij(rij) = Cǫκ(i)κ(j)[(rij/σκ(i)κ(j))
−12 − 1] exp[(rij/σκ(i)κ(j) − a)−1]; rij < σκ(i)κ(j) (12)

and zero otherwise. Here κ(i) ∈ {A,B} indicates whether the i-th particle is an A or a B
type particle. The parameters are C = 8.805977, a = 1.652194, ǫAA = 1, σAA = 1.0, ǫAB =
1.5ǫAA, σAB = 2.00/2.49σAA, ǫBB = 0.5ǫAA, σAB = 2.20/2.49σAA. The system contains 80%
A-particles and 20% B-particles. Energy and length units are given in units of ǫAA and σAA.

Finally, the time unit is
√

mAσ2
AA/ǫAA. As compared to a LJ potential with a standard cut-

off at r = 2.5 (in LJ units) this potential is more short-ranged. We performed simulations
at constant density ρ = 1.204, temperatures ranging from 0.667 to 2.5, and system sizes
between N = 20 and N = 160. The glass former was propagated at a given temperature
T via standard molecular dynamics (MD) techniques, using the velocity form of the Verlet
algorithm with time steps depending on temperature but smaller than 0.00125. The tem-
perature was kept constant via velocity rescaling, i.e. by using a constant kinetic energy
during our simulation run. Alternatively, we applied the Nose equations of motion [28], with
no significant variations for the quantities discussed in this work. We checked that upon
shifting the temperature scale by 30% to lower temperatures the present Lennard-Jones type

5



model can be mapped to the model presented in [19] for temperatures in the supercooled
regime.

First we performed standard MD simulations at different temperatures yielding infor-
mation about the relaxation properties like the structural (α) relaxation time. To obtain
information about the PEL we calculated inherent structures by the conjugate gradient
minimization technique. The procedure was such that during an MD run at constant tem-
perature the system was regularly minimized and after each minimization procedure the MD
run was continued with the same configuration and momenta as before the minimization.
This is schematically shown in Fig.1. The thick line corresponds to the MD trajectory, the
thin lines sketch the path the system takes upon quenching. During every minimization
process the MD configuration is mapped on the inherent structure, whose basin of attrac-
tion comprises the MD configuration. On average we performed 20 minimization procedures
during one α relaxation time.

The probability that an arbitrary MD configuration belongs to a basin of attraction of
the i-th inherent structure is given by Zi(T )/Z(T ). Therefore the probability P (ǫ, T ) to find
an inherent structure with energy ǫ (at constant temperature) by the above procedure is
given by Z(ǫ, T )/Z(T ). This is the key feature which according to the outline of Sect. II
allows us to extract thermodynamic properties from this type of procedure.

IV. Dynamics and Structure

In this Section we present results, characterizing the dynamics of our LJ-type system
for different system sizes and different temperatures. The dynamics can be conveniently
described by the intermediate incoherent scattering function S(q, t) which is defined as

S(q, t) =
1

N

∑

i

cos(~q(~ri(t)− ~ri(0)) (13)

where ~q denotes the scattering vector and ~r(t)− ~r(0) the displacement of a particle during
time t. Here we restrict ourselves to the A particles. For isotropic systems only the absolute
value q of the scattering vector is relevant. In what follows we take a value of q close to the
first maximum of the structure factor, i.e. the inverse typical particle distance (q = 7.251).
In Fig.2 we show S(q, t) for T = 0.66 for different system sizes N . For all sizes one can clearly
see the two-stage relaxation ( fast β and α process) as predicted by the mode-coupling theory.
Starting from large values of N only minor variations of S(q, t) occur for N ≥ 60. The most
significant observation is that strong finite size effects occur for N < 60. In this regime the
relaxation time strongly increases with decreasing system size. However, even for N = 20
one observes on a qualitative level, the same two-step relaxation process as for large system
sizes. We checked for T = 0.883 that also for system sizes between N = 160 and N = 480
no systematic variation with N is observed.

In Fig.3 we show the temperature dependence of S(q, t) for N = 60. As already known
from many different experiments and simulations the α-relaxation time strongly increases
with decreasing temperature. In Fig.4 we display the α-relaxation time for a large part
of the (T,N) plane. It is defined via S(q, τα) = 1/e. One can clearly see that for all
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temperatures analysed in this work strong finite size effects start to play a role for N < 60.
The apparent step in relaxation times between N = 60 and N = 40 decreases with increasing
temperature. Interestingly, for N = 20 as well as for N = 40 one observes an Arrhenius
temperature dependence for low temperatures. In contrast, for large N one observes a
continuously increasing apparent activation energy, in agreement with typical experimental
observations on fragile glass formers. It has been already reported earlier for a monatomic
Lennard-Jones-type system with 32 particles that at low temperatures the relaxation has
an Arrhenius temperature dependence [15]. For that system the low-temperature activation
energy could be related to an effective barrier of the PEL around a particular inherent
structure with a low energy which was visited very often at low temperatures. A similar
reason will be discussed below for the present case.

As demonstrated in Fig.5, also the pair correlation function g(r) between particles of
the minority component B indicates significant finite size effects at the lowest temperature.
Again, only for N ≥ 60 the bulk limit is approximately reached. This indicates that there
is a common reason for finite size effects, relevant for static and dynamic properties. In
contrast, only very mild finite size effects can be observed between particles of the majority
component A.

V. The potential energy landscape

Based on the algorithm discussed in Sect.III we analysed runs with lengths between
300 and 1000 tα. For system size N = 60 and for three representative temperatures
(T = 1.667, 0.833, 0.667) we show ǫ(t)-curves in Fig.6, reflecting the energy variation of
the inherent structures with time. Closer inspection of the ǫ(t) time series for T = 0.833
and T = 0.667 reveals that there are long periods of time during which the system is jump-
ing back and forth between a small number of inherent structures. This scenario can be
interpreted in terms of valleys on the PEL in which the system is caught for some time [23].
Here we concentrate on the statistics of the inherent structures.

In Fig.7 we plot the average value of the energy of inherent structures, denoted 〈ǫ〉T ,
for different temperatures. This plot is similar to the curves shown in Ref. [21]. The
temperature variation for T = 0.833, 0.714, 0.667 is consistent with a 1/T behavior whereas
at high temperatures the temperature dependence becomes weaker. In Ref. [21] the authors
additionally observed a low-temperature plateau, which, however, was exclusively related
to non-equilibrium effects and correspondingly strongly depends on the thermal history.
Here, we restrict ourselves to the regime of equilibrium dynamics. In order to get a closer
understanding of this temperature dependence we have determined not only the average
value but also the whole probability curve P (ǫ, T ) that at temperature T one observes an
inherent structure with energy ǫ. As shown in Fig.8 the distribution P (ǫ, T ) continuously
shifts to lower energies when decreasing the temperature but does not change its shape or
width. Our goal is to derive the effective density Geff(ǫ), see Eq.9, of inherent structures
from knowledge of P (ǫ, T ). Since Z(ǫ, T ) is proportional to P (ǫ, T ), the effective density
Geff(ǫ) can in principle be determined from Eq.10 except for a proportionality constant
which only depends on temperature, i.e.
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Geff(ǫ)z
anh(ǫ, T ) ∝ P (ǫ, T ) exp(βǫ). (14)

Obviously, application of Eq.14 requires knowledge of zanh(ǫ, T ), which in general is not
available. If, however, zanh(ǫ, T ) does not depend on ǫ (which trivially holds in the low tem-
perature limit where zanh ≡ 1 but, of course, is a more general condition) it can be included
in the proportionality constant. Then the ǫ-dependence of Geff(ǫ) can be determined from
multiplication of P (ǫ, T ) with an inverse Boltzmann factor except for a proportionality con-
stant. In principle a single temperature is sufficient to obtain Geff (ǫ). However, as already
shown in Fig.8, for different temperatures P (ǫ, T ) is distributed around different energies.
Therefore in practice it is necessary to combine the simulations at different temperatures
to obtain larger parts of the Geff (ǫ) distribution; see e.g. [29]. The relative proportionality
factors are determined by the condition that Geff (ǫ), extracted from different temperatures,
should be identical in the overlap region. This procedure is performed in Fig.9. Obviously,
for the three lower temperatures T = 0.667; 0.714; 0.833 the overlap is close to be perfect.
It remains a single unknown proportionality constant which we accounted for by plotting
Geff(ǫ)/Geff (ǫ0) where ǫ0 is the lowest energy found during the simulations. Interestingly,
the Geff (ǫ) curves, obtained from the high-temperature simulations (T = 1.667 and T = 2.5)
do not overlap with the low-temperature data. As discussed above this directly indicates
that at high temperatures anharmonic contributions are present and furthermore depend, as
expressed by zanh(ǫ, T ), on energy ǫ. The Geff(ǫ) curves were shifted such that they agree
with the low-temperature curves in the region of large ǫ. No mapping was possible for the
low ǫ region. This behavior as well as the consequences will be discussed in Sect. VI.

The energy dependence of the effective density can be excellently fitted by a gaussian
distribution exp(−(ǫ − ǫmax)

2/2σ2) with ǫmax = −5.6N and σ2 = 0.3N . A gaussian distri-
bution naturally occurs in the limit of very large N . In this limit it is reasonable to assume
that the total system can be decomposed into only weakly interacting subsystems so that
the total energy is a sum of weakly correlated energy contributions. According to the central
limiting theorem this naturally results in a gaussian distribution. It is nevertheless surpris-
ing that already for N = 60 the gaussian distribution is a very good approximation to the
true distribution although such a small system definitely cannot be decomposed into only
weakly interacting subsystems. As shown below even for N = 20 one obtains a distribution
function which closely resembles a gaussian distribution.

Based on the knowledge of Geff(ǫ) it is possible to estimate 〈ǫ〉T in harmonic approxi-
mation; see Sect.II. This results in

〈ǫ〉harmT = ǫmax −
σ2

T
. (15)

The resulting curve for N = 60 is also included in Fig.7. Whereas in the low-temperature
regime one has 〈ǫ〉harmT ≈ 〈ǫ〉T , both curves deviate at high temperatures. As discussed in
Sect.VI this is a direct consequence of the apparent temperature dependence of Geff(ǫ) for
high temperatures, discussed above.

We also checked the ǫ-dependence of yharm(ǫ). This is essential in order to estimate
the density of inherent states G(ǫ) from Geff(ǫ). Again this analysis can be performed for
different temperatures. To be specific, we calculated the average value of ln(Y harm

i ) for all
inherent structures with energy ǫi = ǫ, obtained from our quenching procedure. Formally,
the resulting expectation value can be written as
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〈ln(yharm)〉(ǫ) =
∑

i δ(ǫ− ǫi) ln(y
harm
i )yharmi zanhi (T )

∑

i δ(ǫ− ǫi)yharmi zanhi (T )
(16)

For low temperatures where anharmonic effects can be neglected one expects temperature
independent expectation values 〈ln(yharm)〉(ǫ). The results are shown in Fig.10. For the three
lower temperatures no significant temperature dependence can be observed. Interestingly, a
weak dependence on ǫ is observed: higher energies correspond to smaller values of 〈ln yharm〉
and thus to larger harmonic force constants. This result is consistent with recent simulations
on small monatomic LJ-systems [30]. Due to the ǫ-dependence of yharm(ǫ) the density G(ǫ)
and the effective density Geff(ǫ) slightly deviate from each other. It turns out, however,
that the variances of G(ǫ) and Geff (ǫ) differ by less than 10%. In what follows this effect is
neglected and we choose G(ǫ) ∝ Geff(ǫ). Interestingly, the values of yharm(ǫ) are shifted to
smaller values if the inherent structures are analysed obtained from the high temperature
simulations (T = 1.667 and T = 2.5). Again, this is a clear signature of anharmonic effects.
Thus the temperature dependence of the average harmonic partition function (see [24]),
averaged over all inherent structures at a given temperature, has two contributions, (i)
the ǫ-dependence which via the temperature dependence of the average energy of inherent
structures 〈ǫ〉T translates into a temperature dependence of the harmonic partition function
and (ii) the temperature dependent anharmonic effects.

In order to independently check the degree of gaussianity of Geff(ǫ) one may check the
temperature dependence of the energy variance σ2

P (T ) of P (ǫ, T ). In case of a gaussian
distribution one expects σ2

P (T ) = σ2. In Fig.11 we display σ2
P (T )/N . Extending the re-

sults, reported above, we have also included the data for different system sizes N . We first
concentrate on the data for N = 60 and for reasons, mentioned above, concentrate on the
three low-temperature data. It turns out that the energy variance is indeed constant, and is
consistent with the value, directly obtained from Geff(ǫ). It is very illuminating to discuss
the N-dependence of σ. In the macroscopic limit N → ∞ application of the central limiting
theorem suggests ǫmax ∝ N and σ2 ∝ N . Interestingly, within statistical error all data for
σ2/N agree for N ≥ 60.

Systems with size smaller than N = 60 display significant finite size effects in terms of
the distribution of inherent structures. Interestingly, the variance decreases with decreasing
temperature for N = 20 and N = 40. The reason for this temperature dependence can
be directly understood from the plot of ǫ(t)/N for N = 20 at T = 0.667; see Fig.12a. It
becomes evident that it is a single inherent structure which dominates the distribution of
inherent structures. This dominance directly explains the decreasing variance. The frequent
occurrence of this low-energy inherent structure does not mean that the system does no
longer relax. In order to clarify this point we introduce the mobility µ(t) via

µ(t) =
N
∑

i=1

(~ri(t+ tα/2)− ~ri(t + tα/2))
2. (17)

It denotes the mobility at time t on the time-scale of the α-relaxation time tα. As shown
in Fig.12b there exists times when the system is very mobile. Indeed, at these times the
system leaves its ground-state type structure and after larger rearrangements ends up in a
new configuration which except for permutations and some translational shift is identical to
the former structure. During the other times the system only jumps between a small number
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of inherent structures, resulting in a small value of the mobility µ(t). For comparison we
also show the time dependence of the true potential energy E(t) for the same run, directly
obtained for the MD trajectory; see Fig.12c. Here, no specific features can be observed.
This examplifies the large information content when analyzing inherent structures rather
than the original MD configurations.

The observation that the low-temperature dynamics of the N = 20 sample is dominated
by a single inherent structure gives a straightforward interpretation of the dependence of
the pair correlation function on N since the structure of gBB(r) is also dominated by this
inherent structure. Calculating gBB(r) for the corresponding inherent structure, shown in
Fig.13, reveals that there only exists a single distance between the four B-particles. This
type of behavior can be understood from the Hamiltonian of the system. Since A-A and
A-B contacts are preferred due to the large binding energy the system tries to maximize the
distance between B particles. Indeed, the distance between B particles is much larger than
the optimum binding distance between B particles. For N = 60 all distinct features have
disappeared.

In a next step we want to analyze the dependence of Geff(ǫ) on system size and particle
composition. It has been argued in literature that for large N the number of inherent
structures should scale like exp(αN) where the constant α depends on the type of system.
Of course, for small N the value of α may depend on N . Since to a very good approximation
Geff(ǫ) ∝ G(ǫ) (see above) also the latter distribution can be described as a gaussian.
For small systems where we can identify an inherent structure with minimum energy ǫmin,
determination of the absolute value of the number of inherent structures is possible. Here
this is the case for N = 20 and N = 30. Some technical points enter a quantitative analysis.
We have introduced G(ǫ) as the density of inherent structures such that G(ǫ)dǫ denotes
the number of inherent structures in the interval [ǫ − dǫ/2, ǫ+ dǫ/2]. The normalization is
achieved by setting G(ǫmin) = 1. Since we are dealing with binary systems we can to a very
good approximation neglect any contributions which arise due to intrinsic symmetries of the
configurations. A similar analysis has been performed in Ref. [26] for the case of (KCl)32.
In that work two gaussians rather than a single gaussian were needed to fit P (ǫ, T ) and thus
G(ǫ).

For both values of N the resulting G(ǫ) curves are plotted in Fig.14. On a qualitative
level one can already see that the number of inherent structures is by orders of magnitudes
larger for N = 30 than for N = 20. For a quantitative analysis of the number of inherent
structures we assume that the description of G(ǫ) as a gaussian also holds for ǫ > ǫmax.
From the present simulations these inherent structures are not accessible because they are
unfavoured from the entropic as well as from the energetic point of view. In a previous work,
however, it has been shown for a monatomic Lennard-Jones-type system with 32 particle that
the distribution of inherent structures(for that system approximately 400 inherent structures
were found) can indeed be qualitatively described by a gaussian also for the high-energy wing
[15]. For a gaussian the number of inherent structures Nis are related to G(ǫ) via

Nis = G(ǫmax)
√
2πσ2. (18)

From this relation we can estimate α(N = 20) = 0.53± 0.02 and α(N = 30) = 0.70± 0.05.
Thus the value of α slightly increases when going from N = 20 to N = 30. Unfortunately,
this value cannot be estimated for larger N by the present approach since no information
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about the inherent structure with the lowest energy is available so that normalization of
G(ǫ) is not possible.

In Fig.15 we show G(ǫ) for two different compositions (NA = 25, NB = 5 vs. NA =
24, NB = 6). Starting from a monatomic system and having only slightly different properties
of A as compared to B particles one expects that the number of inherent structures with
different energies is proportional to the binomial coefficient N !/NA!NB!. According to this
argument one would expect that for the standard composition (NA = 24, NB = 6) the
number of inherent structures is approximately 25/6 ≈ 4 times higher. Determination of α
yields α(24 : 6) = 0.70±0.05 and α(25 : 5) = 0.58±0.04. The number of inherent structures
has therefore increased by a factor of approximately exp(∆αN) = exp(0.12×30) ≈ 36. Thus
the increase of the number of inherent structures is larger than a factor of four, following
from purely statistical considerations. Having in mind that this argument only holds for
nearly identical A and B particles, the present case of two significantly different species may
be a source for additional disorder and thus for an increased number of inherent structures
[31].

Finally we calculate the specific heat. From the partition function in Eq.11 one can
calculate the specific heat c(T ) per particle in harmonic approximation

charm(T ) = 3 + σ2/(NT 2). (19)

The second term expresses the configurational contributions. In Fig.16 this is compared
with the specific heat, obtained from our simulations via the fluctuations of the potential
energy, i.e.

c(T ) = 3/2 +
〈(E − 〈E〉)2〉

NT 2
. (20)

We have plotted the average specific heat for N = 60, 80, 120, 160, which within statistical
error are identical. It turns out that the agreement between both curves is good for the
three lower temperatures. Interestingly, the simulated data are significantly larger than
charm, indicating the relevance of anharmonic terms. In contrast, for the higher temperatures
T = 1.667 and T = 2.5 the specific heat is much smaller than charm(T ). For T → ∞ the
specific heat will approach the ideal gas limit 3/2.

VI. Discussion

Anharmonicity

For several observables discussed above predictions can be made in harmonic approx-
imation which are based on the effective density Geff(ǫ), determined at sufficiently low
temperatures on the basis of P (ǫ, T ). Thus any deviations from this prediction can be
directly related to anharmonic contributions. In this Section we try to characterize the an-
harmonic contributions. Specifically we observe anharmonic contributions for the following
observables: (i) For the two highest temperatures it was not possible to determine Geff(ǫ)
on the basis of P (ǫ, T ); see Fig.9. Qualitatively the plot in Fig.9 indicates that at high
temperatures the low-energy inherent structures are found more often than expected from
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extrapolation of the low-temperature data. It will be discussed below why anharmonic effects
may lead to this effect. In contrast, for the three lower temperatures scaling was possible,
thus enabling us to determine the effective density Geff (ǫ). From the observed Geff(ǫ),
which closely resembles a gaussian distribution, one expects a linear increase of 〈ǫ〉T with
inverse temperature as long as anharmonic effects are negligible. However, since due to an-
harmonic effects low-energy inherent structures were found too often at high temperatures
the average energy of inherent structures 〈ǫ〉T must be smaller than expected. In agreement
with the results of Sastry et al. we indeed observe a much weaker increase of 〈ǫ〉T for the two
highest temperatures; see Fig.7. Thus it is the effect of anharmonicities which dominates
the temperature behavior of 〈ǫ〉T at high temperatures. Note that this type of conclusion
can be drawn since we have measured the total distribution function P (ǫ, T ) rather than
only its first moment. (ii) For all temperatures there were small but significant deviations
of the specific heat. Whereas for the three lower temperatures the anharmonicities give rise
to a slightly increased specific heat, for the higher temperatures one observes a dramatic
decrease. (iii) The expectation values 〈ln yharm〉(ǫ) depend on temperature which again can
be only rationalized by anharmonic effects.

These effects of anharmonicity, found in our simulations, can be rationalized on the basis
of a simple model potential

V (x) = (1/2)ax2 − (1/4)b1x
4 − (1/6)b2x

6 (21)

with the minimum at x = 0 (a, b1, b2 > 0) and maxima at ±xc so that its basin of attraction
is the interval [−xc, xc]. It is sketched in Fig.17. For reasons of simplicity we restrict
ourselves to a one-dimensional potential. The anharmonic contributions are represented by
the coefficients b1 and b2. Whereas b1 corresponds to the local anharmonicity around the
origin x = 0, b2 reflects the overall anharmonicity of the well. We therefore assume that
close to xc the term proportional to b2 is much more relevant than the term proportional to
b1. With simple algebra the anharmonic corrections to the harmonic partition function as
well as the specific heat of V (x) can be calculated in the limit of low and high temperatures.
We obtain for low temperatures

zanh(T ) = 1 +
3b1T

2a2
, (22)

canh(T ) =
3b1T

2a2
(23)

and for the limit T → ∞ to lowest order in 1/T

zanh(T ) =

√

12

π

√

Vc

T
, (24)

canh(T ) = −1 (25)

where canh(T ) = c(T )− charm(T ). Here we defined

Vc ≡ V (±xc) ≈ (1/3)a1.5b−0.5
2 (26)
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which corresponds to the energy difference between maximum, corresponding to a saddle in
the PEL, and minimum.

It is straightforward to explain the temperature dependence of the specific heat. From
Eq.23 it is evident that there exist positive anharmonic contributions and ambient tempera-
tures for which the anharmonicity is dominated by the local anharmonicity term proportional
to b1. For some temperature Tc,r, however, the system realizes the finite size of the potential
well and correspondingly the presence of an upper energy cutoff. This results in a strong
decrease of the specific heat until for very high temperatures the ideal gas limit is recovered,
i.e. vanishing configurational contribution to c(T ). This effect is governed by the global
anharmonicity term proportional to b2. Interestingly, Tc,r is close to the temperature for
which upon cooling the PEL starts to become relevant ( [21,32] and Fig.7).

For explaining the anharmonicity effects related to the temperature dependence of
Geff(ǫ) and 〈ln yharm〉(ǫ) additional properties of the PEL have to be postulated: (i) The
local anharmonicity, i.e. b1, only mildly depends on energy. This assumption is compatible
with the observation that also the local force constants, i.e. a, only show a very weak de-
pendence on energy; see Fig.10. (ii) Low-energy inherent structures possess larger barrier
heights, corresponding to larger values of Vc in our simple model potential. Evidence for
this assumption have been presented in [21,32].

First we deal with the apparent temperature dependence of the effective density of inher-
ent structures Geff (ǫ). For the three lower temperatures we already learned from analysis of
the specific heat that local anharmonicity effects are already present. According to assump-
tion (i) the anharmonic contribution only mildly depends on energy ǫ. Therefore to a good
approximation these anharmonic effects are not visible in Fig.9 since they are irrelevant for
the scaling analyis. As discussed above only a strong ǫ-dependence of zanh(ǫ, T ) renders
Geff temperature dependend. For the two high temperatures however, where according to
the specific heat analysis the high-temperature expansion, i.e. Eq.24, becomes relevant, the
anharmonicity depends on Vc. Following assumption (ii) the anharmonic contributions are
significantly larger for low-energy inherent structures. This leads to an overestimation of
Geff(ǫ) in the region of low energies. This explains why the effective densities, obtained for
different temperatures by the above analyis, do not overlap at high temperatures.

For elucidating the temperature dependence of 〈ln yharm〉(ǫ) one has to take into account
the variation of Y harm

i for inherent structures with the same energy ǫi = ǫ. According to
Eq.26 one can expect that inherent structures with larger force constants a, i.e. smaller
Y harm
i possess somewhat larger barrier heights, i.e. larger Vc. According to Eq.24 this

results in frequent sampling of inherent structures with small Y harm
i . As a consequence

the average value 〈ln yharm〉(ǫ) at fixed ǫ should decrease with temperature at sufficiently
high temperatures in agreement with the numerical findings in Fig.10. In summary, our
simple model potential qualitatively reproduces all anharmonicity features observed in our
simulations.

Kauzmann temperature and finite-size effects

The Kauzmann temperature TK has been introduced as the temperature for which the
configurational entropy of the glass-forming system would disappear in equilibrium condi-
tions. Thus knowledge of G(ǫ) enables one to estimate TK . For T = TK one expects the
relaxation time to diverge since only a single configuration is accessible. In analogy to phase
transitions one might expect modifications for finite systems: the Kauzmann temperature
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is smeared out and for T < TK the system still has a finite relaxation time.
In our case G(ǫ) is mainly determined by the parameters α, σ, and N . For N = 20 the

dynamics at low temperatures is also determined by a single inherent structure. In what
follows we restrict ourselves to a perfect Gaussian distribution and consider the effects which
arise from the fact that at sufficiently low temperatures the system is sensitive to the fact
that one has a low-energy cutoff of G(ǫ), i.e. G(ǫ) = 0 for ǫ < ǫmin one has G(ǫ) = 0 due to
the finite (albeit exponential large) number of inherent structures. A good indicator is the
variance of P (ǫ, T ). For large temperatures (but not too large in order to avoid anharmonic
effects, see above) one expects this variance to be constant and identical to the variance of
G(ǫ). In contrast, for T → 0 the system is stuck in the inherent structure with the lowest
energy, giving rise to a vanishing variance. The temperature where this crossover occurs and
which can be identified as the Kauzmann temperature TK can be estimated by the condition
that the energy interval [〈ǫ〉T − aσ, 〈ǫ〉T + aσ] (〈ǫ〉T : maximum of P (ǫ, T )), for which the
distribution P (ǫ, T ) has its main contributions, starts to approach the value of ǫmin, i.e.

〈ǫ〉TK
− aσ = ǫmin. (27)

a is a constant of order unity. The strength of the dependence of TK on this parameter a
is a meausure for the temperature width of the transition. Thus one would expect that for
large systems the dependence on a vanishes; see above. The value of ǫmin is determined by
the condition G(ǫmin) = 1. For a gaussian distribution the value of 〈ǫ〉T is given by

〈ǫ〉T = 〈ǫ〉T=∞
− σ2

T
. (28)

Thus we obtain

1

2πσ2
exp(−(−σ2/TK − aσ)2/2σ2) expαN = 1 (29)

Neglecting corrections of order 1/N this relation can be rewritten as

σ/
√
N

TK

=
√
2α− a/

√
N. (30)

For large systems the last term disappears and thus TK is independent of the value of a
in agreement with expectation. We do not know the value of α for systems larger than
N = 30. However, since already for N ≥ 60 the parameter σ2/N (Fig.11) and ǫmax/N
(Fig.7) have reached their limiting value one may speculate that together with the values of
α for N = 20 and N = 30 the value of α for large N is larger than 0.7 and smaller than 1.2
(linear extrapolation). On this basis the Kauzmann temperature can be estimated as TK =
0.39 ± 0.05. As a comparison the mode-coupling critical temperature has been estimated
for the present system as Tc = 0.56; see Ref. [19], taking into account the temperature shift
of 30% (see below). For smaller systems the additional term a/

√
N clearly incraeses the

value of TK . As has been already discussed in the context of Fig.11 the dynamics at the
three lower temperatures for N = 20 is already significantly influenced by the presence of
the lower cutoff of G(ǫ). A quantitative analysis, however, is hampered by the fact that the
structure of G(ǫ) close to the lower cutoff is more complicated due to the presence of a single
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or a few inherent structure, dominating the physics; see also Ref. [25]. Summarizing this
line of argumentation, the N-dependence of TK as expressed in Eq.30 clearly leads to finite
size effects and it is exactly this type of finite size effect which we have explicitly found in
our simulations. Finally we note that this derivation is similar to what has been done for
the random energy model [33].

Very recently, Kim and Yamamoto have analysed soft sphere systems and found a sig-
nificant finite size effect when comparing systems with N = 108 and N = 10000 particles
[34]. The interaction of adjacent particles in LJ systems under high pressure is dominated
by the first term proportional to r−12. Therefore it is reasonable to assume that the physics
of very dense LJ systems is somewhat similar to that of soft sphere systems. Recent work on
monatomic LJ-type systems [15] as well as theoretical predictions [31] show that the number
of inherent structures strongly decreases with increasing pressure. In our terminology this
would result in a much smaller value of α for LJ systems at high density and thus soft
sphere systems than for LJ systems at ambient densities, discussed in this work. According
to the above discussion of Eq.30 this would mean that finite size effects, related to the finite
range of energies of inherent structures, occur for much larger N as compared to LJ-type
glasses. In contrast, Kim and Yamamoto have explained their finite size effect on the basis
of dynamic heterogeneities, i.e. the presence of fast and slow particles. Finite size effects
were observed at a temperature for which the length scale ξ of dynamic heterogeneities,
i.e. the cluster size of slow or fast particles, became as large as the simulation box. The
interesting question arises whether the temperature for which ξ is of the order of the box
size is strongly related to the temperature for which the finite number of inherent structures,
i.e. the energy ǫmin becomes relevant. This picture would be consistent with the notion that
for macroscopic systems the length scale of the glass transition diverges at the Kauzmann
temperature.

Physical picture

Based on our results as well as previous work on PELs the following picture seems
to emerge. Coming from low temperatures the system mainly stays close to the inherent
structures and the dynamics can be described by a superposition of local vibrations and
hopping processes. Around a temperature close to the mode-coupling temperature Tc local

anharmonic effects start to play a role as seen, e.g., from the temperature dependence of the
mean-square-displacement around one inherent structure [21], from the comparison of the
inherent and the real trajectories [22], and from the presence of anharmonic contributions of
the specific heat above Tc, seen in this work. Despite the anharmonic effects, the PEL still
has a strong influence on the dynamics as explicitly shown in Ref. [23]. At a temperature
of the order 2Tc global anharmonic effects start to dominate the dynamics which are partly
related to the presence of saddles between inherent structures and thus to the finite size
of the basins of attraction. It is, of course, still the PEL, representing the total potential
energy of the system, which is responsible for the dynamics. However, the topography of the
individual inherent structures, including their close neighborhood, becomes irrelevant [23].

In summary, we have obtained a thermodynamic picture of LJ-type glasses based on an
appropriate numerical analysis of the PEL. Questions concerning the Kauzmann temper-
ature, finite-size effects, and anharmonicities have been approached. The present work is
a step in elucidating the nature of the supercooled state on the basis of the PEL, which
hopefully stimulates further research along this direction.

15



We gratefully acknowledge helpful discussions with B. Doliwa, H.W. Spiess, and K.
Binder. After finishing this work we learned about simultaneous independent activities by
F. Sciortino, W. Kob, and P. Tartaglia along a similar line of thought [35]. This work was
supported by the DFG via the SFB 262.

16



REFERENCES

[1] Disorder Effects on Relaxational Processes, edited by R. Richert and A. Blumen
(Springer-Verlag, Berlin Heidelberg, 1994).

[2] M. D. Ediger, C. A. Angell, and S. R. Nagel, J. Phys. Chem. 100, 13200 (1996).
[3] G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).
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FIG. 1. Schematic presentation of the algorithm. On a regular basis MD configurations are

quenched, giving information about the energy ǫ(t) of the corresponding inherent structure.
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FIG. 2. The incoherent scattering function SAA(q, t) for T = 0.667 for different system sizes

N , ranging from N = 20 to N = 160.
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FIG. 3. The temperature dependence of the incoherent scattering function SAA(q, t) for

N = 60.
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FIG. 4. The α-relaxation time for different temperatures and system sizes, determined by the

condition S(q, τα) = 1/e.
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FIG. 5. The pair correlation functions (a) gAA(r) and (b) gBB(r) for system sizes

N = 20, 40, 60, 160, determined for T = 0.667. The offset has been shifted for better compari-

son.
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FIG. 6. The time-dependence of the energy of inherent structures ǫ(t) for three representative

temperatures (a)T = 0.667, (b) T = 0.833, (c) T = 1.667 and for system size N = 60.
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FIG. 7. The average value of the energy of inherent structures 〈ǫ〉T for different temperatures

and different system sizes. The solid line corresponds to an estimation for N = 60, based on

Geff (ǫ), see Fig.9.
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FIG. 8. The distribution P (ǫ, T ) of inherent structures at three different temperatures

(T = 0.667, 0.833, 1.667 from left to right).
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FIG. 9. Determination of Geff (ǫ) on the basis of P (ǫ, T ) for N = 60. The individual curves

have been shifted in order to obtain an optimum overlap.
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FIG. 10. The average 〈ln yharm〉(ǫ) evaluated at different temperatures in dependence on

energy. Note that small values of yharm correspond to large force constants around the respective

inherent structures.
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FIG. 11. The variance σ2
P (T ) of P (ǫ, T ) calculated for different temperatures and system sizes.

The strong temperature dependence for N = 20 and N = 40 is explained in the text.
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FIG. 12. (a) The time series of the energy of inherent structures ǫ(t) for N = 20 at T = 0.833;

the broken line indicates the activation energy of the dynamics at low temperatures; see Fig.4; (b)

the corresponding time series of mobilities µ(t); (c) the corresponding time series of the energy of

the MD configurations E(t).
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FIG. 13. The pair correlation function gBB(r) for N = 20, 40, 60, and 160 at T = 0.833

determined from the inherent structures.
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FIG. 14. The density of inherent structures G(ǫ) for N = 20 and N = 30 obtained from

simulations at a single temperature.
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FIG. 15. The density of inherent structures G(ǫ) for two different compositions

(NA = 25, NB = 5 vs. NA = 24, NB = 6).
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FIG. 16. The specific heat as obtained from Geff (ǫ) and averaged over all system sizes N ≥ 60

together with the actual specific heat obtained from analysis of the energy fluctuations in the MD

simulation. The deviations correspond to anharmonic contributions.

33



x
xc-xc 0

Vcý
FIG. 17. Sketch of the model potential V(x) as described in the text. The size of the basin of

attraction and the potential height are indicated.
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