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Abstract

Macroscopic traffic models have recently been severely criticized to base on

lax analogies only and to have a number of deficiencies. Therefore, this paper

shows how to construct a logically consistent fluid-dynamic traffic model from

basic laws for the acceleration and interaction of vehicles. These considera-

tions lead to the gas-kinetic traffic equation of Paveri-Fontana. Its stationary

and spatially homogeneous solution implies equilibrium relations for the ‘fun-

damental diagram’, the variance-density relation, and other quantities which

are partly difficult to determine empirically.

Paveri-Fontana’s traffic equation allows the derivation of macroscopic mo-

ment equations which build a system of non-closed equations. This system

can be closed by the well proved method of Chapman and Enskog which leads

to Euler-like traffic equations in zeroth-order approximation and to Navier-

Stokes-like traffic equations in first-order approximation. The latter are finally

corrected for the finite space requirements of vehicles. It is shown that the

resulting model is able to withstand the above mentioned criticism.
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I. INTRODUCTION

Because of analogies with gas theory [1–4] and fluid dynamics [5–9,3,10] modeling and

simulating traffic flow increasingly attracts the attention of physicists [1,5,8,9,11–14]. How-

ever, due to the great importance of efficient traffic for modern industrialized countries,

the investigation of traffic flow has already a long tradition. In the 1950s Lighthill and

Whitham [10] as well as Richards [15] proposed a first fluid-dynamic (macroscopic) traffic

model. During the 1960s traffic research focused on microscopic follow-the-leader models

[16–23]. Mesoscopic models of a gas-kinetic (Boltzmann-like) type came up in the 1970s

[24,25,4,3,2,26]. Since the 1980s simulation models [27,28] play the most important role due

to the availability of cheap, fast, and powerful computers. We can distinguish macroscopic

traffic simulation models [29–32], microscopic simulation models [33–36] which include cel-

lular automaton models [37–39,11–14], and mixtures of both [40].

In high-fidelity microscopic traffic models each car is described by its own equation(s)

of motion. Consequently, computer time and memory requirements of corresponding traffic

simulations grow proportional to the number N of simulated cars. Therefore, this kind

of models is mainly suitable for off-line traffic simulations, detail studies (for example of

on-ramps or lane mergings), or the numerical evaluation of collective quantities [33] like

the density-dependent velocity distribution, the distribution of headway distances etc., and

other quantities that are difficult to determine empirically.

For this reason, fast low-fidelity microsimulation models that allow bit-handling have

been developed for the simulation of large freeways or freeway networks [37,38]. However,

although they reproduce the main effects of traffic flow, they are not very suitable for detailed

predictions because of their coarse-grained description.

Therefore, some authors prefer macroscopic traffic models [10,41–43,30,44,5–9]. These

base on equations for collective quantities like the average spatial density ρ(r, t) per lane (at

place r and time t), the average velocity V (r, t), and maybe also the velocity variance Θ(r, t).

Here, simulation time and memory requirements mainly depend on the discretization ∆r
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and ∆t of space r and time t, but not on the number N of cars. Therefore, macroscopic

traffic models are suitable for real-time traffic simulations. The quality and reliability of the

simulation results mainly depend on the correctness of the applied macroscopic equations

and the choice of a suitable numerical integration method. The rather old and still continuing

controversy on these problems [41,45,46,42,43,47,30,44,48–50,8,9,5,1,51] shows that they are

not at all trivial.

Some of the most important points of this controversy will be outlined in Section II. It

will be shown that even the most advanced models still have some serious shortcomings.

The main reason for this is that the proposed macroscopic traffic equations were founded on

heuristic arguments or based on analogies with the equations for ordinary fluids. In contrast

to these approaches, this paper will present a mathematical derivation of macroscopic traffic

equations starting from the gas-kinetic traffic equation of Paveri-Fontana [2] which is very

reasonable and seems to be superior to the one of Prigogine and co-workers [24,25,4]. The

applied method is analogous to the derivation of the Navier-Stokes equations for ordinary

fluids from the Boltzmann equation [52–55]. It bases on a Chapman-Enskog expansion [56,57]

which is known from kinetic gas theory and leads to idealized, Euler-like equations in zeroth-

order approximation and to Navier-Stokes-like equations in first-order approximation [58,55].

In this respect, the paper puts into effect the method suggested by Nelson [1]. A similar

method was already applied to the derivation of fluid-dynamic equations for the motion of

pedestrian crowds [59], but it assumed some dissatisfactory approximations.

The further procedure of this paper is as follows: Section II presents a short history of

macroscopic traffic models and discusses the abilities and weaknesses of the different ap-

proaches. Section III introduces the Boltzmann-like model of Prigogine [4] and compares

it with the one of Paveri-Fontana [2]. From their gas-kinetic equations macroscopic (‘fluid-

dynamic’) traffic equations will be derived in Section IV. Unfortunately, they turn out to

build a hierarchy of non-closed equations, i.e. the density equation depends on average veloc-

ity V , the velocity equation on velocity variance Θ, etc. Therefore, a suitable approximation

must be found to obtain a set of closed equations. It will be shown that some of the traffic
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models introduced in section II correspond to zeroth-order approximations of different kinds.

These, however, are not very well justified. A similar thing holds for the Euler-like traffic

equations which, apart from a complementary covariance equation, contain additional terms

compared with the Euler equations of ordinary fluids [58]. These are, on the one hand, due

to a relaxation term which describes the drivers’ acceleration towards their desired velocities.

On the other hand, they are due to interactions which are connected with deceleration pro-

cesses since these do not satisfy momentum and energy conservation in contrast to atomic

collisions.

A very realistic, first-order approximation which is, in a certain sense, self-consistent can

be found by solving the reduced Paveri-Fontana equation which is obtained from the original

one by integration with respect to desired velocity. We will utilize the fact that, according

to empirical traffic data [60,61,3,62,33], the equilibrium velocity distribution has a Gaussian

form. This allows the derivation of mathematical expressions for the equilibrium velocity-

density relation, the ‘fundamental diagram’ of traffic flow, and the equilibrium variance-

density relation (cf. Sec. IV C). Afterwards an approximate time-dependent solution of

Paveri-Fontana’s equation will be calculated by use of the Euler-like equations. Due to

the additional terms in Paveri-Fontana’s equation compared with the Boltzmann equation

the corresponding mathematical procedure is more complicated than the Chapman-Enskog

expansion for ordinary gases (cf. Sec. V).

Nevertheless, it is still possible to derive correction terms of the Euler-like macroscopic

traffic equations (cf. Sec. VI). These have the meaning of transport terms (like e.g. the

flux density of velocity variance) and are related with the finite skewness γ of the velocity

distribution in non-equilibrium situations. The resulting equations are Navier-Stokes-like

traffic equations which, in comparison with the ordinary Navier-Stokes equations [58], con-

tain additional terms arising from the acceleration and interaction of vehicles. Additionally,

they are complemented by a covariance equation which takes into account the tendency of

drivers to adapt to their desired velocities.

Because of the one-dimensionality of the Navier-Stokes-like traffic equations no shear
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viscosity term occurs. However, in Section VII it is indicated how transitions between

different driving modes can cause a bulk viscosity term. Furthermore, corrections due to

finite space requirements of each vehicle (vehicle length plus safe distance) are introduced.

The resulting model overcomes the shortcomings of the former macroscopic traffic models

(that are mentioned in Sec. II). Section VIII summarizes the results of the paper and gives

a short outlook.

II. SHORT HISTORY OF MACROSCOPIC TRAFFIC MODELS

In 1955 Lighthill and Whitham [10] proposed the first macroscopic (fluid-dynamic) traffic

model. This bases on the continuity equation

∂ρ

∂t
+

∂(ρV )

∂r
= 0 (1)

which reflects a conservation of the number of vehicles. For the average velocity V , Lighthill

and Whitham assumed a static velocity-density relation:

V (r, t) := Ve[ρ(r, t)] . (2)

Inserting (2) into (1) we obtain

∂ρ

∂t
+

[

Ve + ρ
∂Ve

∂ρ

]

∂ρ

∂r
= 0 . (3)

Equation (3) describes the propagation of non-linear ‘kinematic waves’ with velocity c(ρ) =

Ve(ρ)+ρ ∂Ve/∂ρ [10,63]. In the course of time the waves develop a shock structure, i.e. their

back becomes steeper and steeper until it becomes perpendicular, leading to discontinuous

wave profiles [10,15,63].

In reality, density changes are not so extreme. Therefore, it was suggested to add a

diffusion term D∂2ρ/∂r2 which smoothes out the shock structures somewhat [63,64]. The

resulting equation reads

∂ρ

∂t
+ Ve

∂ρ

∂r
= −ρ

∂Ve

∂ρ

∂ρ

∂r
+D

∂2ρ

∂r2
. (4)
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For the case of a linear velocity-density relation [65]

Ve(ρ) := Vmax

(

1− ρ

ρmax

)

(5)

it can be transformed into the Burgers equation [66]

∂g

∂t
+ g

∂g

∂r
= D

∂2g

∂r2
(6)

which is analytically solvable [63]. Here, we have introduced the function

g[ρ(r, t)] := Vmax

(

1− 2ρ(r, t)

ρmax

)

. (7)

The most important restriction of models (1), (2) and (4), (2) is relation (2) which

assumes that average speed V (r, t) is always in equilibrium with density ρ(r, t). Therefore,

these models are not suitable for the description of non-equilibrium situations occuring at

on-ramps, changes of the number of lanes, or stop-and-go traffic.

Consequently, it was suggested to replace relation (2) by a dynamic equation for the

average velocity V . In 1971, Payne [41] introduced the velocity equation

∂V

∂t
+ V

∂V

∂r
= −C(ρ)

ρ

∂ρ

∂r
+

1

τ
[Ve(ρ)− V ] (8a)

with

C(ρ) := − 1

2τ

∂Ve

∂ρ
=

1

2τ

∣

∣

∣

∣

∣

∂Ve

∂ρ

∣

∣

∣

∣

∣

(8b)

which he motivated by a heuristic derivation from a microscopic follow-the-leader model

[67]. Here, V ∂V/∂r is called the ‘convection term’ and describes velocity changes at place

r that are caused by average vehicle motion. The ‘anticipation term’ −(C/ρ)∂ρ/∂r was

intended to account for the drivers’ awareness of the traffic conditions ahead. Finally, the

‘relaxation term’ [Ve(ρ)−V ]/τ delineates an (exponential) adaptation of average velocity V

to the equilibrium velocity Ve(ρ) with a relaxation time τ .

Unfortunately, for bottlenecks the corresponding computer simulation program ’FRE-

FLO’ suggested by Payne [29] produces output that “does not seem to reflect what really
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happens even in a qualitative manner” [46]. As a consequence, several authors have sug-

gested a considerable number of modifications of Payne’s numerical integration method or

of his equations [68,42,43,47,30,44,48,49,69]. A more principal weakness of Payne’s equa-

tions is that their stationary and homogeneous solution is stable with respect to fluctuations

over the whole density range which can be shown by a linear stability analysis [68,45,41].

Therefore, Payne’s model (1), (8) does not describe the well-known self-organization of stop-

and-go waves above a critical density [43,70]. This problem is removed [45] by substituting

relation (8b) by

C(ρ) :=
∂Pe

∂ρ
(9)

with the equilibrium ‘traffic pressure’

Pe(ρ) := ρΘe(ρ) . (10)

The modified velocity equation reads

∂V

∂t
+ V

∂V

∂r
= −1

ρ

∂Pe

∂r
+

1

τ
[Ve(ρ)− V ] (11a)

and can be derived from the gas-kinetic (Boltzmann-like) traffic models [4,3,2] (cf. Section

IV). For Θe(ρ), Phillips [3,71] suggested a relation of the form

Θe(ρ) := Θ0

(

1− ρ

ρmax

)

. (11b)

In contrast, Kühne [72] as well as Kerner and Konhäuser [8,9] assumed, as a first approach,

Θe to be a positive constant:

Θe(ρ) := Θ0 . (12)

Unfortunately, equations (1), (11a) predict the formation of shock waves like Lighthill and

Whitham’s equation does [43,5]. For this reason, Kühne [43,70] suggested to add a small

viscosity term ν∂2V/∂r2 which smoothes out sudden density and velocity changes somewhat.

Then, the velocity equation
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∂V

∂t
+ V

∂V

∂r
= −Θ0

ρ

∂ρ

∂r
+ ν

∂2V

∂r2
+

1

τ
[Ve(ρ)− V ] (13)

results. A linear stability analysis of Kühne’s equations (1), (13) shows that these predict

the self-organization of stop-and-go waves or of so-called ‘phantom traffic jams’ (i.e. unstable

traffic) on the condition

ρe

∣

∣

∣

∣

∣

∂Ve

∂ρ

∣

∣

∣

∣

∣

>
√

Θ0(1 + τνk2) (14)

where k denotes the wave number of the perturbation [73,5]. This condition is fulfilled if the

equilibrium density ρe corresponding to the stationary and spatially homogeneous solution

exceeds a critical density ρcr that depends on the concrete form of Ve(ρ).

For reasons of compatibility with the Navier-Stokes equations for ordinary fluids Kerner

and Konhäuser replaced Kühne’s constant ν by the density-dependent relation

ν(ρ) =
ν0
ρ

(15)

with the constant viscosity coefficient ν0. Computer simulations of their equations (1) and

(13), (15) show the development of density clusters [8,9] if the critical density ρcr given by

(14) and (15) is exceeded. On the basis of a very comprehensive study of cluster-formation

phenomena, Kerner and Konhäuser [9] presented a detailed interpretation of stop-and-go

traffic.

Despite the considerable variety of proposed macroscopic traffic models, even the most

advanced of them have still some shortcomings. For example, for a certain set of parameters

the mentioned models predict traffic densities that exceed the maximum admissible density

ρbb = 1/l0 which is the bumper-to-bumper density (l0 = average vehicle length) [5]. Fur-

thermore, in certain situations even negative velocities may occur [51]. To illustrate this,

imagine a queue of vehicles of constant density ρ0. Assume that, e.g. due to an accident

that blocks the road, this queue has come to rest (i.e. V = 0) and that it ends at r = r0

which shall imply ρ(r, t) = 0 for r < r0. Then, ∂ρ/∂r diverges at place r0 (or is at least very

large) and equations (8), (11), (13) all predict ∂V (r0, t)/∂t < 0 if Θ 6= 0.
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Of course, we wish to have a model that is not only valid in standard situations, but also

in extreme ones. Moreover, the model should provide reasonable results not only for certain

parameter values. This is particularly important for the reason that technical measures like

automatic distance control may change some parameter values considerably. Nobody knows

if the existing phenomenological models are still applicable, then. Therefore, we will derive

the specific structure of the traffic model from basic principles regarding the behavior of the

single driver-vehicle units and their interactions.

III. GAS-KINETIC (BOLTZMANN-LIKE) TRAFFIC MODELS

Let us assume that the motion of an individual vehicle α can be described by several

variables like its place rα(t), its velocity vα(t), and maybe other quantities which characterize

the vehicle type or driving style (the driver’s personality). We can combine these quantities

in a vector

~xα(t) :=
(

rα(t), vα(t), . . .
)

(16)

that denotes the state of vehicle α at a given time t. The time-dependent phase-space density

ρ̂(~x, t) ≡ ρ̂(r, v, . . . , t) (17)

is then determined by the mean number ∆n(r, v, . . . , t′) of vehicles that are at a place

between r −∆r/2 and r +∆r/2, driving with a velocity between v −∆v/2 and v +∆v/2,

. . . at a time t′ ∈ [t−∆t/2, t+∆t/2]:

ρ̂(r, v, . . . , t)∆r∆v . . . :=
1

∆t

t+∆t/2
∫

t−∆t/2

dt′∆n(r, v, . . . , t′) . (18)

For vehicles, the phase-space densitiy ρ̂ is a very small quantity. Therefore, in the limit

∆r → 0, ∆v → 0, . . ., ∆t → 0 it is only meaningful in the sense of the expected value of

an ensemble of macroscopically identical systems [1]. The interpretation of ρ̂ as a quantity

which can describe single traffic situations is only possible for “coarse-grained averaging”
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where ∆r, ∆v, . . ., and ∆t must be chosen “microscopically large but macroscopically small”

[1,59] or, more exactly,

1. smaller than the scale on which variations of the corresponding macroscopic quantities

occur,

2. so large that ∆n(r, v, . . . , t) ≫ 1 which is not always compatible with the first condi-

tion.

However, in any case a suitable gas-kinetic equation for the phase-space density ρ̂ allows the

derivation of meaningful equations for collective (‘macroscopic’) quantities like the spatial

density ρ(r, t) per lane, the average velocity V (r, t), and the velocity variance Θ(r, t). To

obtain an equation of this kind, we will bring in the well-known fact that the temporal

evolution of phase-space density ρ̂ is given by the continuity equation [74]

∂ρ̂

∂t
+∇~x

(

ρ̂
d~x

dt

)

=

(

∂ρ̂

∂t

)

tr

(19)

which again describes a conservation of the number of vehicles, but this time in phase-space

Ω = {all admissible states ~x}. Whereas ∇~x (ρ̂d~x/dt) reflects changes of phase-space density

ρ̂ due to a motion in phase space Ω with velocity d~x/dt, the term (∂ρ̂/∂t)tr delineates changes

of ρ̂ due to discontinuous transitions between states.

A. Prigogine’s model

In Prigogine’s model the state ~x is given by the place r and velocity v = dr/dt of a vehicle.

The transition term (∂ρ̂/∂t)tr consists of a relaxation term (∂ρ̂/∂t)rel and an interaction term

(∂ρ̂/∂t)int [24,25,4]. Therefore, equation (19) assumes the explicit form

∂ρ̂

∂t
+

∂(ρ̂v)

∂r
+

∂

∂v

(

ρ̂
dv

dt

)

=

(

∂ρ̂

∂t

)

rel

+

(

∂ρ̂

∂t

)

int

. (20)

The interaction term (∂ρ/∂t)int is intended to describe the deceleration of vehicles to the

velocity of the next car ahead in situations when this moves slower and cannot be overtaken.

Prigogine [24,4] suggests to describe processes of this kind by the Boltzmann equation
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(

∂ρ̂

∂t

)

int

:=

∞
∫

v

dw (1− p)|v − w|ρ̂(r, v, t)ρ̂(r, w, t) (21a)

−
v
∫

0

dw (1− p)|w − v|ρ̂(r, w, t)ρ̂(r, v, t) (21b)

= (1− p)ρ̂(r, v, t)

∞
∫

0

dw (w − v)ρ̂(r, w, t) .

where p denotes the probability that a slower car can be overtaken. Functional relations for

p ≡ p(ρ, V,Θ) (22)

are proposed in Refs. [4,3,75]. The term (21a) corresponds to situations where a vehicle

with speed w > v must decelerate to speed v, causing an increase of phase-space density

ρ̂(r, v, t). The rate of these situations is proportional

1. to the probability (1− p) that passing is not possible (which corresponds to the ‘scat-

tering cross section’ in kinetic gas theory),

2. to the relative velocity |v − w| of the interacting vehicles,

3. to the phase-space density ρ̂(r, v, t) of vehicles which may hinder a vehicle with velocity

w > v, and

4. to the phase-space density ρ̂(r, w, t) of vehicles with velocity w > v that may be

affected by an interaction.

Term (21b) describes a decrease of phase-space density ρ̂(r, v, t) due to situations in which

vehicles with velocity v must decelerate to a velocity w < v. A more detailed discussion of

interaction term (21) can be found in Refs. [4,2].

Note that approach (21) assumes an instantaneous adaptation of velocity which does not

take any braking time. Moreover, the deceleration process of the faster vehicle is assumed

to happen at the location r of the slower vehicle, i.e. vehicles are implicitly modelled as

point-like objects without any space requirements. The first assumption is only justified

for braking times that are short compared to temporal changes of phase-space density ρ̂,
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but modifications for finite braking times are possible [75]. The second assumption is only

acceptable for very small densities at which the average headway distance is much larger

than average vehicle length plus safe distance. It will, therefore, be corrected in Section

VII. The corresponding modifications also implicitly take into account the pair correlations

of succeeding vehicles [76]. These are neglected by approach (21) due to its assumption of

‘vehicular chaos’, according to which the velocities of vehicles are not correlated until they

interact with each other [2,1].

Now, we come to the description of acceleration processes by vehicles that do not move

with their desired speeds. In this connection, Prigogine suggests a collective relaxation of

the actual velocity distribution

P (v; r, t) :=
ρ̂(r, v, t)

ρ(r, t)
(23)

towards an equilibrium velocity distribution P0(v) instead of an individual speed adjustment

so that

dv

dt
:= 0 . (24)

In detail, Prigogine starts from the observation that free traffic is characterized by a certain

velocity distribution P0(v) which corresponds to the distribution P0(v0) of desired velocities

v0. Moreover, he assumes that the drivers’ intention to get ahead with their desired speeds

causes the phase-space density ρ̂(r, v, t) to approach the equilibrium phase-space density

ρ̂0(r, v, t) := ρ(r, t)P0(v) (25)

(exponentially) with a certain relaxation time τ which is given by the average duration of

acceleration processes. Therefore, Prigogine’s relaxation term has the form [24,25,4]

(

∂ρ̂

∂t

)

rel

:=
ρ(r, t)P0(v)− ρ̂(r, v, t)

τ
. (26)

Despite the merits of Prigogine’s stimulating model, this approach has been severely crit-

icized [2,51]. In a clear and detailed paper [2] Paveri-Fontana showed that Prigogine’s model
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has a number of peculiar properties which are not compatible with empirical findings. For

example, he demonstrates that the relaxation term (26) corresponds to discontinuous veloc-

ity changes which take place with a certain, time-dependent rate. Furthermore, Daganzo

criticized that, according to (26), “the desired speed distribution is a property of the road

and not the drivers” [51] which was already noted by Paveri-Fontana [2]. In reality, however,

one can distinguish different ‘personalities’ of drivers: ‘aggressive’ ones desire to drive faster,

‘timid’ ones slower. Therefore, Paveri-Fontana [2] developed an improved gas-kinetic traffic

model which corrects the deficiencies of Prigogine’s approach.

B. Paveri-Fontana’s model

Paveri-Fontana assumes that each driver has an individual, characteristic desired velocity

v0. Consequently, the associated states ~x are given by place r, velocity v, and desired

velocity v0 so that Prigogine’s phase-space density ρ̂(r, v, t) is replaced by ρ̂(r, v, v0, t). The

corresponding gas-kinetic equation (19) explicitly reads [77]

∂ρ̂

∂t
+

∂(ρ̂v)

∂r
+

∂

∂v

(

ρ̂
dv

dt

)

+
∂

∂v0

(

ρ̂
dv0
dt

)

=

(

∂ρ̂

∂t

)

tr

. (27a)

The term ∂(ρ̂dv0/dt)/∂v0 can be neglected since the desired velocity of each driver is nor-

mally time-independent during a trip which implies

dv0
dt

:= 0 . (27b)

In contrast to Prigogine, Paveri-Fontana describes the acceleration towards the desired ve-

locity v0 by

dv

dt
:=

1

τ
(v0 − v) (27c)

which means an individual instead of a collective relaxation. Relation (27c) can be easily re-

placed by other acceleration laws dv/dt or density-dependent driving programs as suggested

by Alberti and Belli [26]. Alternatively, for acceleration processes an interaction approach

can be formulated which was recently proposed by Nelson [1]. However, the assumption
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(27c) of exponential relaxation is a relatively good approximation since drivers gradually

reduce the acceleration as they approach their desired velocity v0.

Paveri-Fontana needs the transition term (∂ρ̂/∂t)tr only for the description of deceleration

processes due to vehicular interactions. For these he assumes the Boltzmann equation [2]

(

∂ρ̂

∂t

)

tr

:= (1− p)

∞
∫

v

dw
∫

dw0 |v − w|ρ̂(r, v, w0, t)ρ̂(r, w, v0, t)

− (1− p)

v
∫

0

dw
∫

dw0 |w − v|ρ̂(r, w, w0, t)ρ̂(r, v, v0, t) (27d)

which has an analogous interpretation as (21). (For details cf. Ref. [2].) Note that, according

to (27d), “the velocity of the slow car is unaffected by the interaction or by the fact of being

passed” [2] and that “no driver changes his desired speed” [2] during interactions. Therefore,

the interaction term (27d) fulfils the requirements called for by Daganzo [51]:

1. that “a car is an anisotropic particle that mostly responds to frontal stimuli” [51]

and that “a slow car should be virtually unaffected by its interaction with faster cars

passing it (or queueing behind it)” [51].

2. that “interactions do not change the ‘personality’ (aggressive/timid) of any car” [51].

Finally, note that the proportion of vehicles jamming behind slower cars cannot accelerate.

This circumstance can be taken into account by a density- and maybe velocity- or variance-

dependence of the relaxation time [4,3,75]:

τ ≡ τ(ρ, V,Θ) . (28)

In order to compare Paveri-Fontana’s traffic equation with Prigogine’s one we integrate

equation (27) with respect to v0 and obtain the reduced Paveri-Fontana equation

∂ρ̃

∂t
+

∂(vρ̃)

∂r
+

∂

∂v

[

ρ̃(r, v, t)
Ṽ0(v; r, t)− v

τ

]

= (1− p)ρ̃(r, v, t)

∞
∫

0

dw (w − v)ρ̃(r, w, t) . (29)

Here, we have introduced the reduced phase-space density
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ρ̃(r, v, t) :=
∫

dv0 ρ̂(r, v, v0, t) (30)

and the quantity

Ṽ0(v; r, t) :=
∫

dv0 v0
ρ̂(r, v, v0, t)

ρ̃(r, v, t)
. (31)

The only difference with respect to Prigogine’s formulation (20) to (26) is obviously the

other relaxation term.

IV. DERIVATION OF MACROSCOPIC TRAFFIC EQUATIONS

Since we are mainly interested in the temporal evolution of collective (‘macroscopic’)

quantities like the spatial density

ρ(r, t) :=
∫

dv ρ̃(r, v, t) (32)

per lane, the average velocity

V (r, t) ≡ 〈v〉 :=
∫

dv v
ρ̃(r, v, t)

ρ(r, t)
, (33)

and the velocity variance

Θ(r, t) ≡ 〈[v − V (r, t)]2〉 :=
∫

dv [v − V (r, t)]2
ρ̃(r, v, t)

ρ(r, t)

= 〈v2〉 − [V (r, t)]2 (34)

we will now derive equations for the moments mk,0 with

mk,l(r, t) ≡ ρ(r, t)〈vk(v0)l〉 :=
∫

dv
∫

dv0 v
k(v0)

lρ̂(r, v, v0, t) . (35)

By multiplying Paveri-Fontana’s equation (29) with vk and integrating with respect to v we

obtain [2], via partial integration,

∂

∂t
mk,0 +

∂

∂r
mk+1,0 +

∫

dv vk
∂

∂v

(

ρ̃
Ṽ0(v)− v

τ

)

=
∂

∂t
mk,0 +

∂

∂r
mk+1,0 −

∫

dv kvk−1

(

ρ̃
Ṽ0(v)− v

τ

)

15



=
∂

∂t
mk,0 +

∂

∂r
mk+1,0 −

k

τ
(mk−1,1 −mk,0) (36a)

= (1− p)
∫

dv ρ̃(r, v, t)
∫

dw (wvk − vk+1)ρ̃(r, w, t)

= (1− p)(m1,0mk,0 −mk+1,0m0,0) . (36b)

Applying the analogous procedure to Prigogine’s model (20) to (26), for the moments

mk,0(r, t) ≡ ρ(r, t)〈vk〉 :=
∫

dv vkρ̂(r, v, t) (37)

one can derive the equations

∂

∂t
mk,0 +

∂

∂r
mk+1,0 =

1

τ
(m0,k −mk,0)

+ (1− p)(m1,0mk,0 −mk+1,0m0,0) (38)

(cf. [2]) where

m0,k(r, t) :=
∫

dv0 (v0)
kρ̂0(r, v0, t)

= ρ(r, t)
∫

dv0 (v0)
kP0(v0) . (39)

A comparison of moment equations (36) with (38) shows that Prigogine’s and Paveri-

Fontana’s model lead to identical equations for spatial density ρ(r, t) = m0,0(r, t) and average

velocity V (r, t) = m1,0(r, t)/ρ(r, t), despite the different approaches for the relaxation term.

However, the equations for higher order moments mk,0(r, t) with k ≥ 2 differ.

Obviously, equations (36) as well as (38) represent a hierarchy of non-closed equations

since the equation for the kth moment mk,0 depends on the (k + 1)st moment mk+1,0. As a

consequence, the density equation

∂ρ

∂t
+

∂(ρV )

∂r
= 0 (40)

depends on average velocity V , the velocity equation

∂V

∂t
+ V

∂V

∂r
= −1

ρ

∂(ρΘ)

∂r
+

1

τ
(V0 − V )− (1− p)ρΘ

= −1

ρ

∂P
∂r

+
1

τ
[Ve(ρ, V,Θ)− V ] (41)
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on variance Θ, etc. Here, we have introduced the average desired velocity

V0(r, t) :=
∫

dv
∫

dv0 v0
ρ̂(r, v, v0, t)

ρ(r, t)
, (42)

the so-called ‘traffic pressure’ [25,3,71]

P(r, t) :=
1

ρ(r, t)

∫

dv (v − V )ρ̃(r, v, t)
∫

dw (v − w)ρ̃(r, w, t)

=
∫

dv (v − V )2ρ̃(r, v, t) = ρ(r, t)Θ(r, t) , (43)

and the equilibrium velocity

Ve(ρ, V,Θ) := V0 − τ(ρ, V,Θ)[1− p(ρ, V,Θ)]P (44)

which is related with stationary and spatially homogeneous traffic flow.

Equations (40) and (41) are easily derivable from the moment equations (36) and (38)

respectively by use of m0,0 = ρ and

∂m1,0

∂t
=

∂(ρV )

∂t
= ρ

∂V

∂t
+ V

∂ρ

∂t
. (45)

The variance equation is obtained analogously. For the traffic equation of Paveri-Fontana it

reads

∂Θ

∂t
+ V

∂Θ

∂r
= −2Θ

∂V

∂r
− 1

ρ

∂(ρΓ)

∂r

+
2

τ
(C −Θ)− (1− p)ρΓ

= −2P
ρ

∂V

∂r
− 1

ρ

∂J
∂r

+
2

τ
[Θe(ρ, V,Θ, C,J )−Θ] (46)

and depends on the covariance

C(r, t) ≡ 〈(v − V )(v0 − V0)〉

:=
∫

dv0

∫

dv (v − V )(v0 − V0)
ρ̂(r, v, v0, t)

ρ(r, t)

=
∫

dv (v − V )[Ṽ0(v)− V0]
ρ̃(r, v, t)

ρ(r, t)
(47)
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as well as the third central moment

Γ(r, t) ≡ 〈(v − V )3〉 :=
∫

dv (v − V )3
ρ̃(r, v, t)

ρ(r, t)
. (48)

In addition, we have introduced the flux density of velocity variance

J (r, t) :=
1

ρ(r, t)

∫

dv (v − V )2ρ̃(r, v, t)
∫

dw (v − w)ρ̃(r, w, t)

=
∫

dv (v − V )3ρ̃(r, v, t) = ρ(r, t)Γ(r, t) (49)

(which corresponds to the ‘heat flow’ in conventional fluid-dynamics) and the equilbrium

variance

Θe(ρ, V,Θ, C,J ) := C − τ(ρ, V,Θ)

2
[1− p(ρ, V,Θ)]J . (50)

A. Approximate closed macroscopic traffic equations

We will now face the problem of closing the hierarchy of moment equations by a suitable

approximation. The simplest approximations replace a macroscopic quantity Q(r, t) (which

would be determined by a dynamic equation) by its equilibrium value Qe which belongs to

the stationary and spatially homogeneous solution. Approximations of this kind are zeroth-

order approximations. The simplest one is obtained by a substitution of V (r, t) (which

actually obeys Eq. (41)) by the equilibrium velocity

Ve(ρ) := V0 − τ(ρ)[1− p(ρ)]ρΘe(ρ) (51)

(cf. (44)). Equations (40), (51) obviously correspond to the model (1), (2) of Lighthill and

Whitham. Relation (51) specifies the equilibrium velocity-density relation (2) in accordance

with Paveri-Fontana’s traffic equation. It could be interpreted as a theoretical result con-

cerning the dependence of Ve(ρ) on the microscopic processes of traffic flow: According to

(51), the equilibrium velocity Ve(ρ) is given by the average desired velocity V0 diminished

by a term arising from necessary deceleration maneuvers due to interactions of vehicles.
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However, according to equation (41), the approximation V (r, t) ≈ Ve[ρ(r, t)] is only

justified for τ → 0 which is not compatible with empirical data. Consequently, the latter

does not adequately describe non-equilibrium situations like on-ramp traffic or stop-and-go

traffic where the velocity is not uniquely given by the spatial density ρ(r, t).

Another zeroth-order approximation is found by leaving Eq. (41) unchanged but replac-

ing the dynamic variance Θ(r, t) by the equilibrium variance

Θe(ρ, V ) := Ce(ρ, V )− τ(ρ, V )

2
[1− p(ρ, V )]ρΓe(ρ, V ) (52)

(cf. (50)). (Here, the subscript e shall again indicate the equilibrium-value or -relation of a

function.) The resulting model (40), (41), (52) obviously corresponds to the model (1), (11)

of Phillips, this time specifying the equilibrium variance-density relation in accordance with

Paveri-Fontana’s traffic model. A complete agreement between (52) and (11b) results for

Ce(ρ, V ) ≡ Ce(ρ), Γe(ρ, V ) ≡ Γe(ρ), and a special choice of the functional relation τ(ρ, V )[1−

p(ρ, V )] ≡ τ(ρ)[1 − p(ρ)].

However, it is not fully justified to assume that the variance Θ(r, t) is always in equilib-

rium Θe(ρ, V ), since the corresponding relaxation time 2/τ is of the order of the relaxation

time 1/τ for the velocity V (r, t). Moreover, the approximation Θ(r, t) ≈ Θe[ρ(r, t), V (r, t)]

does not describe the empirically observed increase of variance Θ directly before a traffic jam

develops [43,5]. Therefore, we also need the dynamic variance equation (46). The remaining

problem is how to obtain suitable relations for Γ(r, t) and C(r, t).

B. Euler-like traffic equations

Before looking for dynamic relations for Γ(r, t) and C(r, t), it is plausible first to look

for equilibrium relations which apply to stationary and spatially homogeneous traffic. For

this purpose we require the equilibrium solution ρ̂e(v, v0) of Paveri-Fontana’s traffic equation

(27).

Unfortunately, it seems impossible to find an analytical expression for ρ̂e(v, v0), but in

order to derive equations for the velocity moments 〈vk〉 we are mainly interested in, it is
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sufficient to find the stationary and spatially homogeneous solution ρ̃e(v) of the reduced

Paveri-Fontana equation (29). For this we need to know the relation

Ṽ0(v) = a0 + a1 δv + a2 (δv)
2 + . . .+ an (δv)

n (53)

with

δv := v − V (54)

and arbitrary n. However, the equation that determines Ṽ0(v) depends on the unknown

quantity

Θ̃0(v) :=
∫

dv0 (v0 − V0)
2 ρ̂e(v, v0)

ρ̃e(v)
(55)

etc. so that we are again confronted with a non-closed hierarchy of equations.

Luckily, from empirical data and microsimulations we know that the equilibrium velocity-

distribution

Pe(v) :=
ρ̃e(v)

ρe
(56)

(at least in the range of stable traffic without stop-and-go waves) is approximately a Gaussian

distribution [60,61,3,62,33]:

Pe(v) =
1√

2πΘe

e−(v−Ve)2/(2Θe) . (57)

Inserting (53) and (57) into the equation

∂

∂v

(

ρ̃e
Ṽ0(v)− v

τ

)

= −(1− p)ρ̃eρe δv (58)

which corresponds to equation (29) in the stationary and spatially homogeneous case, we

find the condition

∂

∂v

(

ρ̃e
Ṽ0(v)− v

τ

)

=
Ṽ0(v)− v

τ

∂ρ̃e
∂v

+
ρ̃e
τ

(

∂Ṽ0(v)

∂v
− 1

)

=
ρ̃e
τ

[

(a1 − 1) +
(

2a2 −
a0 − Ve

Θe

)

δv +
(

3a3 −
a1 − 1

Θe

)

(δv)2

. . .+
(

kak −
ak−2

Θe

)

(δv)k−1 . . .− an−1

Θe
(δv)n − an

Θe
(δv)n+1

]

(59a)

!
= −(1− p)ρ̃eρe δv . (59b)
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A comparison of the coefficients of (δv)k in (59a) and (59b) leads to

an = 0 , an−1 = 0 , . . . a2 = 0 , a1 = 1 , (60)

and

a0 = Ve + τ(1− p)ρeΘe = V0 , (61)

where we have utilized relation (44) with (43). Consequently, for equilibrium situations

velocity distribution (57) implies

Ṽ0(v) = V0 + δv . (62)

With (57) and (62) we can now derive equilibrium relations for C and Γ. One obtains

Γe = 0 (63)

and

Ce = Θe . (64)

Next, we are looking for relations for non-equilibrium cases. Assuming that the velocity

distribution

P (v; r, t) :=
ρ̃(r, v, t)

ρ(r, t)
(65)

locally approaches the equilibrium distribution Pe[V (r, t),Θ(r, t)] very rapidly, we can apply

the zeroth-order approximation of local equilibrium:

P (v; r, t) ≈ P(0)(v; r, t) := Pe[V (r, t),Θ(r, t)]

= 1√
2πΘ(r,t)

e−[v−V (r,t)]2/[2Θ(r,t)] . (66)

Furthermore, in order to fulfil the compatibility condition

C(r, t) =
∫

dv[v − V (r, t)][v0 − Ṽ0(v; r, t)]P (v; r, t) (67)
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(cf. (47)), we must generalize relation (62) to

Ṽ0(v; r, t) = V0 +
C(r, t)
Θ(r, t)

δv (68)

which is fully consistent with (64). Relations (66) and (68) yield zeroth-order relations for

the spatio-temporal variation of C(r, t) and J (r, t): For the flux density of velocity variance

we find

J (r, t) ≈ J(0)(ρ, V,Θ) = ρΓ(0)(ρ, V,Θ) = 0 , (69)

whereas for the covariance the dynamic equation

∂C
∂t

+ V
∂C
∂r

= −C ∂V
∂r

− P
ρ

∂V0

∂r
+

1

τ
(Θ0 − C)− 2(1− p)ρC

√

Θ

π
(70)

can be derived from the reduced Paveri-Fontana equation (29) due to

∫

dv
∫

dv0 (δv)
2δv0ρ̂(r, v, v0, t)

=
∫

dv (δv)2[Ṽ0(v)− V0]ρ̃(r, v, t)

=
∫

dv (δv)3
C
Θ
ρ̃(r, v, t) = J C

Θ
(71)

(δv0 := v0 − V0). (The somewhat lengthy but straightforward calculation is presented in

Ref. [79].)

In the zeroth-order covariance equation (70) the quantity

Θ0(r, t) :=
∫

dv
∫

dv0 [v0 − V0(r, t)]
2 ρ̂(r, v, v0, t)

ρ(r, t)
(72)

denotes the variance of desired velocities. The term −Θ∂V0/∂r normally vanishes since the

average desired velocity V0 is approximately constant almost everywhere (cf. [77]). Due to

(64), the equilibrium variance related to stationary and homogeneous traffic is obviously

determined by the implicit relation

Θe(ρe, Ve,Θe) = Ce(ρe, Ve,Θe) = Θ0 − 2τ(1− p)ρeΘe

√

Θe

π
. (73)

Inserting the above results into equations (40), (41), and (46), we obtain the following

zeroth-order approximations of the density-, velocity-, and variance-equation respectively:
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∂ρ

∂t
+ V

∂ρ

∂r
= −ρ

∂V

∂r
, (74)

∂V

∂t
+ V

∂V

∂r
= −1

ρ

∂(ρΘ)

∂r
+

1

τ
(V0 − V )− (1− p)ρΘ

= −1

ρ

∂P
∂r

+
1

τ
[Ve(ρ, V,Θ)− V ] , (75)

∂Θ

∂t
+ V

∂Θ

∂r
= −2Θ

∂V

∂r
+

2

τ
(C −Θ)

= −2P
ρ

∂V

∂r
+

2

τ
(C −Θ) . (76)

Equations (74), (75), and (76) are the ‘Euler-like equations’ of vehicular traffic [58].

In comparison with the Euler equations for ordinary fluids [52–55] they contain additional

terms:

1. The terms (V0−V )/τ and 2(C−Θ)/τ arise from the acceleration of vehicles towards the

drivers’ desired velocities v0, i.e. they are a consequence of the fact that driver-vehicles

units are active systems.

2. The term −(1 − p)ρΘ results from the vehicles’ interactions. It would vanish if mo-

mentum would be a collisional invariant during vehicular interactions like this is the

case for atomic collisions [74]. However, without this term the ‘vehicular fluid’ would

speed up at bottlenecks which is, of course, unrealistic.

Moreover, the covariance equation (70) is a complementary equation which arises from the

drivers’ tendency to move with their desired velocities v0.

C. Equilibrium relations and fundamental diagram

For vehicular traffic, the only dynamic quantity that remains unchanged in a closed sys-

tem (i.e. a circular road) is the average spatial density ρ̄ (due to the conservation of the

number of vehicles). As a consequence, the equilibrium traffic situation is uniquely deter-

mined by ρ̄ which obviously agrees with the equilibrium density ρe. Equilibrium relations
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for the average velocity Ve(ρe) and the velocity variance Θe(ρe) in dependence of ρe = ρ̄

can be obtained from equations (44) and (73) if the relations p(ρ, V,Θ) and τ(ρ, V,Θ) are

given (cf. [4,3]). A simple procedure for finding a solution of these implicit equations is to

numerically integrate the equations

dV

dy
= Ve[ρe, V (y),Θ(y)]− V (y)

= V0 − τ(ρe, V,Θ)[1− p(ρe, V,Θ)]̺eΘ− V , (77)

dΘ

dy
= Θe[ρe, V (y),Θ(y)]−Θ(y)

= Θ0 − 2τ(ρe, V,Θ)[1− p(ρe, V,Θ)]̺eΘ

√

Θ

π
−Θ (78)

until dV/dy = 0 and dΘ/dy = 0. Here, we have replaced ρe by ̺e = ̺e(ρe, V ) in accor-

dance with section VII B in order to take into account the space requirements of vehicles.

The theoretical results for the equilibrium velocity-density relation Ve(ρe) = lim
y→∞

V (y), the

equilibrium variance-density relation Θe(ρe) = lim
y→∞

Θ(y), and the fundamental diagram

qe(ρe) := ρeVe(ρe) (79)

can be directly compared with empirical data.

If, however, p(ρ, V,Θ) or τ(ρ, V,Θ) are unknown relations, it is still possible to derive

from the fundamental diagram qe(ρe) the equilibrium variance-density relation Θe(ρe) for

which an empirical relation seems to be missing: From (77) and (79) we get

τ(1− p)̺eΘe(ρe) = V0 − Ve(ρe) = V0 −
qe(ρe)

ρe
. (80)

Inserting this into (73) we find

Θe(ρe) = Θ0 − 2τ(1− p)̺eΘe(ρe)

√

Θe(ρe)

π

= Θ0 − 2[V0 − Ve(ρe)]

√

Θe(ρe)

π
. (81)

This results in a quadratic equation for the standard deviation
√

Θe(ρe) of vehicle velocities

which is solved by

√

Θe(ρe) = −V0 − Ve(ρe)√
π

+

√

[V0 − Ve(ρe)]2

π
+Θ0 . (82)
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V. APPROXIMATE SOLUTION OF PAVERI-FONTANA’S TRAFFIC EQUATION

The traffic equation of Paveri-Fontana was mathematically investigated in several papers

dealing with the existence, uniqueness, and numerical determination of a solution which

satisfies the non-linear initial-value boundary problem [80–82]. However, the approximate

dynamic solution of the reduced Paveri-Fontana equation (29) which will be presented in

this section has not been proposed before.

As one would expect, in non-equilibrium situations the zeroth-order approximation (66)

does not solve the reduced Paveri-Fontana equation (29) exactly. Therefore, we write

ρ̃(r, v, t) =: ρ̃(0)(r, v, t) + ρ̃(1)(r, v, t) (83)

with

ρ̃(0)(r, v, t) := ρ(r, t)P(0)(v; r, t) =
ρ(r,t)√
2πΘ(r,t)

e−[v−V (r,t)]2/[2Θ(r,t)] (84)

and try to derive a relation for the deviation ρ̃(1)(r, v, t). Utilizing that the correction term

ρ̃(1)(r, v, t) will usually be small compared to ρ̃(0)(r, v, t) we have

ρ̃(1)(r, v, t) ≪ ρ̃(0)(r, v, t) (85)

and get

∂ρ̃

∂t
+ v

∂ρ̃

∂r
+

∂

∂v

(

ρ̃
Ṽ0(v)− v

τ

)

≈ ∂ρ̃(0)
∂t

+ v
∂ρ̃(0)
∂r

+
∂

∂v

(

ρ̃(0)
Ṽ0(v)− v

τ

)

=
∂ρ̃(0)
∂t

+ v
∂ρ̃(0)
∂r

+
Ṽ0(v)− v

τ

∂ρ̃(0)
∂v

+
ρ̃(0)
τ

(

∂Ṽ0(v)

∂v
− 1

)

. (86)

(For a detailled discussion of this approximation cf. [52,53,55].) Now, introducing the ab-

breviation

d

dt
:=

∂

∂t
+ v

∂

∂r
(87)

we can write
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∂ρ̃(0)
∂t

+ v
∂ρ̃(0)
∂r

=
dρ̃(0)
dt

=
∂ρ̃(0)
∂ρ

dρ

dt
+

∂ρ̃(0)
∂V

dV

dt
+

∂ρ̃(0)
∂Θ

dΘ

dt

=
ρ̃(0)
ρ

dρ

dt
+

ρ̃(0)
Θ

δv
dV

dt
+

ρ̃(0)
2Θ

(

(δv)2

Θ
− 1

)

dΘ

dt
. (88)

Relations for dρ/dt, dV/dt, and dΘ/dt can be obtained from the Euler-like equations (74),

(75), and (76) via

d

dt
=

∂

∂t
+ V

∂

∂r
+ δv

∂

∂r
. (89)

We find

dρ

dt
= δv

∂ρ

∂r
− ρ

∂V

∂r
, (90a)

dV

dt
= δv

∂V

∂r
− 1

ρ

∂(ρΘ)

∂r
+

1

τ
[Ve(ρ, V,Θ)− V ] , (90b)

and

dΘ

dt
= δv

∂Θ

∂r
− 2Θ

∂V

∂r
+

2

τ
(C −Θ) . (90c)

For the interaction term we apply a linear approximation in ρ̃(1)(r, v, t) which is justified by

relation (85). The result is

(1− p)ρ̃(r, v, t)
∫

dw (w − v)ρ̃(r, w, t)

≈ (1− p)ρ̃(0)(r, v, t)ρ(V − v)−
∫

dw L(v, w; r, t)ρ̃(1)(r, w, t) (91a)

where we have introduced a linear operator L with the components

L(v, w; r, t) := (1− p)ρ(r, t){[v − V (r, t)]δ(v − w) + P(0)(v; r, t)(v − w)} . (91b)

Here, δ(v − w) denotes Dirac’s delta function. The linear operator L possesses an infinite

number of eigenvalues 1/τµ (cf. [55,83–86]). The relevant eigenvalue is the smallest one since

it characterizes temporal changes that take place on the time scale we are interested in. It

is of the order of the average interaction rate per vehicle [53,52,54]
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1

τ0
:=

1− p

ρ(r, t)

∫

dv
∫

w<v

dw |w − v|ρ̃(r, w, t)ρ̃(r, v, t)

≈ (1− p)ρ(r, t)
∫

dv
∫

w<v

dw |w − v|P(0)(w; r, t)P(0)(v; r, t)

= (1− p)ρ(r, t)

√

Θ

π
. (91c)

The other eigenvalues are somewhat larger [55,83–86] (i.e. τµ < τ0 for µ 6= 0) and they

describe fast fluctuations which can be adiabatically eliminated [78]. As a consequence, we

can make the so-called ‘relaxation time approximation’ [87]

∫

dw L(v, w; r, t)ρ̃(1)(r, w, t) ≈
ρ̃(1)(r, v, t)

τ0
. (91d)

Now, we calculate

Ṽ0(v)− v

τ

∂ρ̃(0)
∂v

+
ρ̃(0)
τ

(

∂Ṽ0(v)

∂v
− 1

)

− (1− p)ρ̃(0)ρ(V − v)

=
1

τ

(

V0 +
C
Θ
δv − v

)(

− ρ̃(0)
Θ

δv
)

+
ρ̃(0)
τ

( C
Θ

− 1
)

+ (1− p)ρ̃(0)ρ δv

=
ρ̃(0)
τΘ

[

(C −Θ)

(

1− (δv)2

Θ

)

− (Ve − V )δv

]

. (92)

Inserting (86), (88), and (90) to (92) into the reduced Paveri-Fontana equation (29) we

finally obtain

ρ̃(1)(r, v, t) ≈ −τ0

{

ρ̃(0)
ρ

(

δv
∂ρ

∂r
− ρ

∂V

∂r

)

+
ρ̃(0)
Θ

δv

(

δv
∂V

∂r
− Θ

ρ

∂ρ

∂r
− ∂Θ

∂r
+

1

τ
(Ve − V )

)

+
ρ̃(0)
2Θ

(

(δv)2

Θ
− 1

)(

δv
∂Θ

∂r
− 2Θ

∂V

∂r
+

2

τ
(C −Θ)

)

− ρ̃(0)
Θ

[

C −Θ

τ

(

(δv)2

Θ
− 1

)

+
Ve − V

τ
δv

]}

= −ρ̃(0)τ0

(

(δv)3

2Θ2
− 3 δv

2Θ

)

∂Θ

∂r
. (93)

Obviously, the correction term ρ̃(1)(r, v, t) is a consequence of the finite interaction free

time τ0 which causes a delayed adjustment of ρ̃(r, v, t) to the local equilibrium ρ̃(0)(r, v, t).

However, in order to take into account the effects of finite reaction time and braking time we
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must add a time period τ ′ > 0 to the interaction free time τ0. Hence, τ0 must be replaced

by the adaptation time

τ∗ = τ0 + τ ′ . (94)

VI. NAVIER-STOKES-LIKE TRAFFIC EQUATIONS

With the corrected phase-space density

ρ̃(r, v, t) ≈ ρ̃(0)(r, v, t) + ρ̃(1)(r, v, t)

≈ ρ̃(0)(r, v, t)

[

1− τ∗

(

(δv)3

2Θ2
− 3 δv

2Θ

)

∂Θ

∂r

]

(95)

we can calculate corrected relations for the collective (‘macroscopic’) quantities

F (r, t) ≡ 〈f(v)〉 :=
∫

dv f(v)
ρ̃(r, v, t)

ρ(r, t)
≈ F(0)(r, t) + F(1)(r, t) (96)

where

F(i)(r, t) ≡ 〈f(v)〉(i) :=
∫

dv f(v)
ρ̃(i)(r, v, t)

ρ(r, t)
. (97)

We find

ρ(r, t) ≈ ρ(0)(r, t) , V (r, t) ≈ V(0)(r, t) ,

Θ(r, t) ≈ Θ(0)(r, t) , P(r, t) ≈ P(0)(r, t) , (98)

and

C(r, t) ≈ C(0)(r, t) . (99)

However, for the flux density of velocity variance we get

J (r, t) ≈ J(1)(ρ, V,Θ) ≡ ρΓ(1)(ρ, V,Θ) = −κ
∂Θ

∂r
, (100)

where
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κ := 3ρτ∗Θ (101)

is called a ‘kinetic coefficient’. Therefore, the macroscopic traffic equations (40), (41), and

(46) assume form

∂ρ

∂t
+

∂(ρV )

∂r
= 0 , (102)

∂V

∂t
+ V

∂V

∂r
= −1

ρ

∂P
∂r

+
1

τ
[Ve(ρ, V,Θ)− V ] , (103)

and

∂Θ

∂t
+ V

∂Θ

∂r
= −2P

ρ

∂V

∂r
+

1

ρ

∂

∂r

(

κ
∂Θ

∂r

)

+
2

τ
(C −Θ) + (1− p)κ

∂Θ

∂r
. (104)

Additionally, the corrected covariance equation becomes

∂C
∂t

+ V
∂C
∂r

= −C ∂V
∂r

− P
ρ

∂V0

∂r
+

1

ρ

∂

∂r

(

ζ
∂Θ

∂r

)

+
1

τ
[Ce(ρ, V,Θ, C)− C] + (1− p)

2
ζ
∂Θ

∂r
(105)

with the kinetic coefficient

ζ := κ
C
Θ

= 3ρτ∗C (106)

and the equilibrium covariance

Ce(ρ, V,Θ, C) := Θ0 − 2τ(1 − p)ρC
√

Θ

π
. (107)

(For a detailed derivation of (105) to (107) cf. Ref. [79].)

Equations (102), (103), and (104) are the Navier-Stokes-like traffic equations [58]. Com-

pared with the Navier-Stokes equations for ordinary fluids they possess the additional terms

(Ve − V )/τ and 2(Θe − Θ)/τ with Θe = C + (τ/2)(1 − p)κ∂Θ/∂r which are due to accel-

eration and interaction processes. Because of the spatial one-dimensionality of the consid-

ered traffic equations, the velocity equation (103) does not include a shear viscosity term
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(1/ρ)∂/∂r(ν0∂V/∂r). The variance equation (104) is related to the equation of heat conduc-

tion. However, Θ does not have the interpretation of ‘heat’ but only of velocity variance,

here. Finally, the Navier-Stokes-like traffic equations are complemented by the additional

covariance equation (105) arising from the tendency of drivers to get ahead with a certain

desired velocity v0.

We recognize that the first-order macroscopic traffic equations (102), (103), (104), and

(105) build a closed system of equations. Moreover, according to (98), the relations for the

spatial density, average velocity, velocity variance, and traffic pressure did not change. In

this sense, the chosen Chapman-Enskog method for closing the hierarchy of macroscopic

equations is consistent with its assumption, according to which only the expressions for the

flux density of velocity variance J ≡ ρΓ and the covariance C were to be improved by the

non-equilibrium correction ρ̃(1)(r, v, t). However, note that another relation for Ṽ0(v) than

(68) would have led to modifications of ρ, V , and/or Θ.

We also recognize that the finite adaptation time τ∗ for approaching the equilibrium

distribution (66) causes a finite skewness

γ :=
Γ

Θ3/2
=

J
ρΘ3/2

= − κ

ρΘ3/2

∂Θ

∂r
= − 3τ∗√

Θ

∂Θ

∂r
(108)

of the non-equilibrium velocity distribution

P (v; r, t) ≈ ρ̃(0)(r, v, t) + ρ̃(1)(r, v, t)

ρ(r, t)
. (109)

This leads to the so-called transport terms

− κ
∂Θ

∂r
and − ζ

∂Θ

∂r
. (110)

The effect of these terms in equations (104) and (105) is to smooth out sudden changes of

variance and covariance via second spatial derivatives of Θ(r, t), namely

∂

∂r

(

κ
∂Θ

∂r

)

and
∂

∂r

(

ζ
∂Θ

∂r

)

. (111)
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VII. CORRECTIONS OF THE MODEL

A. Driver behavior and bulk viscosity

We remember that the term −(1/ρ)∂P/∂r describes an anticipation effect. It reflects

that drivers accelerate when the ‘traffic pressure’ P = ρΘ lessens, i.e. when the density ρ or

the variance Θ decreases. However, drivers additionally react to a spatial change of average

velocity. This effect can be modelled by the modified pressure relation

P(ρ, V,Θ) := ρΘ− η
∂V

∂r
(112)

which gives velocity equation (103) a similar form like variance equation (104) and covariance

equation (105).

In order to present reasons for relation (112) let us assume that drivers switch between

two driving modes m ∈ {1, 2} depending on the traffic situation. Let m = 1 characterize

a brisk, m = 2 describe a careful driving mode. Then, we can split the density ρ(r, t) into

partial densities ρm(r, t) that delineate drivers who are in state m:

ρ1(r, t) + ρ2(r, t) = ρ(r, t) . (113)

Both densities are governed by a continuity equation, but this time we have transitions

between the two driving modes with a rate R(ρ1, V ) so that

∂ρ1
∂t

= − ∂

∂r
(ρ1V )−R(ρ1, V ) , (114a)

∂ρ2
∂t

= − ∂

∂r
(ρ2V ) +R(ρ− ρ2, V ) . (114b)

Adding both equations we see that the original continuity equation (102) is still valid. Now,

defining the substantial time derivative

D

Dt
:=

∂

∂t
+ V

∂

∂r
(115)

we can rewrite (114a) and obtain
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Dρ1
Dt

= −ρ1
∂V

∂r
− R(ρ1, V ) . (116)

D/Dt describes temporal changes in a coordinate system that moves with velocity V . As-

suming that ρ1 relaxes rapidly we can apply the adiabatic approximation [78]

Dρ1
Dt

≈ 0 (117)

which is valid on the slow time-scale of the macroscopic changes of traffic flow. This leads

to

R(ρ1, V ) ≈ −ρ1
∂V

∂r
. (118)

Relation (117) implies that the density ρ1 of briskly behaving drivers is approximately con-

stant in the moving coordinate system whereas the density ρ2 = ρ−ρ1 of carefully behaving

drivers varies with the traffic situation:

Dρ2
Dt

≈ −ρ
∂V

∂r
. (119)

ρ2 increases when the average velocity spatially decreases (∂V/∂r < 0) since this may

indicate a critical traffic situation.

According to relations (114), (118) incessant transitions between the two driving modes

take place as long as traffic flow is spatially non-homogeneous (i.e. ∂V/∂r 6= 0). This leads

to corrections of the pressure relation. Expanding P with respect to the variable R which

characterizes the disequilibrium between the two driving modes we find [74]

P(ρ,Θ, R) = P(ρ,Θ, 0)− ∂P
∂R

∣

∣

∣

∣

∣

R=0

ρ1
∂V

∂r
+ . . . . (120)

With the equilibrium relation P(ρ,Θ, 0) = ρΘ and

η := ρ1
∂P
∂R

∣

∣

∣

∣

∣

R=0

(121)

we finally obtain the desired result

P(ρ,Θ, R) ≡ P(ρ, V,Θ) = ρΘ− η
∂V

∂r
. (122)

A more detailed discussion can be found in Ref. [74].
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B. Modifications due to finite space requirements

We will now introduce some corrections that are due to the fact that vehicles are no

point-like objects but need, on average, a space of

s(V ) = l + V T (123)

each. Here, l ≥ l0 is about the average vehicle length whereas V T corresponds to the safe

distance each driver should keep to the next vehicle ahead. T is about the reaction time.

Consequently, if ∆N(r, t) := ρ(r, t)∆r means the number of vehicles that are at a place

between r −∆r/2 and r +∆r/2, the effective density is

̺(r, t) =
∆N(r, t)

∆r −∆N(r, t)s[V (r, t)]
=

ρ(r, t)

1− ρ(r, t)s[V (r, t)]
. (124)

Since ∆N(r, t)s(V ) is the space which is occupied by ∆N(r, t) vehicles, the effective density

is the number ∆N(r, t) of vehicles per effective free space ∆r −∆N(r, t)s(V ).

The reduction of available space by the vehicles leads to an increase of their interaction

rate. Therefore, we have

(

∂ρ̂

∂t

)

tr

:= (1− p)

∞
∫

v

dw
∫

dw0 |v − w| ˆ̺(r, v, w0, t)ρ̂(r, w, v0, t)

− (1− p)

v
∫

0

dw
∫

dw0 |w − v| ˆ̺(r, w, w0, t)ρ̂(r, v, v0, t) (125)

with

ˆ̺(r, v, v0, t) :=
ρ̂(r, v, v0, t)

1− ρ(r, t)s[V (r, t)]
. (126)

Consequently, we obtain the corrected relation

1

τ0
:= (1− p)̺

√

Θ

π
. (127)

In addition, we must replace P and J by

P ′ :=
P

1− ρs(V )
and J ′ :=

J
1− ρs(V )

(128)
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respectively [76]. For the kinetic coefficients η, κ, and ζ we obtain the corrected relations

η′ :=
η

1− ρs(V )
, κ′ :=

κ

1− ρs(V )
= 3̺τ∗Θ ,

and ζ ′ :=
ζ

1− ρs(V )
= 3̺τ∗C . (129)

The corrected formula

̺Θ =
ρΘ

1− ρs(V )
(130)

for the equilibrium pressure corresponds to the pressure relation of van der Waals for a ‘real

gas’. According to (130), the traffic pressure diverges for ρ → ρmax := 1/l which causes a

deceleration of vehicles.

The corrected kinetic coefficients η′(ρ, V,Θ), κ′(ρ, V,Θ), and ζ ′(ρ, V,Θ, C) also diverge

for ρ → ρmax [76]. We find for example

κ′ ρ≈ρmax−→ 3̺τ ′Θ =
3ρτ ′Θ

1− ρs(V )
(131)

so that the divergence of κ′ is a consequence of the finite reaction- and braking-time τ ′.

This divergence causes a homogenization of traffic flow since the second spatial derivatives

∂/∂r(η∂V/∂r), ∂/∂r(κ∂Θ/∂r), and ∂/∂r(ζ∂Θ/∂r) produce a spatial smoothing of average

velocity V , variance Θ, and covariance C respectively.

It is the divergence of ‘traffic pressure’ and kinetic coefficients for ρ → ρmax that prevents

the spatial density ρ from exceeding the maximum density ρmax [5].

VIII. SUMMARY AND OUTLOOK

This paper started with a discussion of the most widespread macroscopic traffic models.

Each of them is suitable for the description of certain traffic situations on freeways but fails

for others. Therefore, an improved fluid-dynamic model was derived from the gas-kinetic

traffic equation of Paveri-Fontana [2] which is very well justified and does not show the

peculiar properties of Prigogine’s Boltzmann-like approach [4].

34



For the derivation of the improved traffic model, moment equations for collective (’macro-

scopic’) quantities like the spatial density, average velocity, and velocity variance had to be

calculated. The system of macroscopic equations turned out to be non-closed so that a

suitable approximation was necessary. Here, the well proved Chapman-Enskog method was

applied. In zeroth-order approximation the velocity distribution is assumed to be in ‘local

equilibrium’. According to empirical data, the latter is characterized by a Gaussian velocity

distribution. Depending on the respective kind of zeroth-order approximation one arrives

at the Lighthill-Whitham model [10], the model of Phillips [3,71], or the Euler-like traffic

equations.

For the derivation of a first-order approximation, the reduced Paveri-Fontana equation

was linearized around the local equilibrium solution and solved by application of the Euler-

like traffic equations. The resulting correction term for the non-equilibrium velocity distri-

bution allowed the calculation of additional transport terms which describe a flux density of

velocity variance and covariance in spatially non-homogeneous situations. They are related

with a finite skewness of the velocity distribution. The shear-viscosity term vanishes because

of the one-dimensionality of the considered traffic equations. Nevertheless, a bulk-viscosity

term results from transitions between two different driving modes: a brisk and a careful one.

The resulting Navier-Stokes-like traffic equations were finally corrected in order to take

into account the finite space requirements of vehicles. They overcome the deficiencies of the

former macroscopic traffic models so that the criticism by Daganzo [51] and others could be

invalidated:

1. The anticipation term which, in other models, is responsible for the prediction of

negative velocities vanishes in problematic situations like the one described at the end

of Sec. II since the variance becomes zero, then.

2. The density ρ(r, t) does not exceed the maximum admissible density ρbb (= bumper-

to-bumper density) [5] since the diverging viscosity term causes a homogenization

of traffic flow and the diverging traffic pressure suppresses an unrealistic growth of
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velocity which stops a further increase of traffic density.

3. The model takes into account different driving styles by a distribution of desired ve-

locities v0 which are directly associated with the individual drivers. An extension of

the Navier-Stokes-like traffic equations to different vehicle types (cars and trucks) is

possible [88].

4. The interaction between drivers is modelled anisotropically since the slower vehicle is

assumed not to be affected by a faster vehicle behind it or overtaking it.

5. According to the Navier-Stokes-like equations, disturbances may propagate with a

velocity c > V since a certain proportion of vehicles moves faster than the average

velocity V due to the finite velocity variance Θ. Therefore, in contrast to what was

claimed by Daganzo [51], it is admissible that macroscopic traffic models “exhibit one

characteristic speed greater than the macroscopic fluid velocity” [51,89].

Present investigations focus on the computer simulation of the Navier-Stokes-like traffic

equations. This work has already been successfully started for a circular road [5,90] and is

now extended to complex freeway networks.

Moreover, the gas-kinetic and Navier-Stokes-like traffic models can be generalized to

models for multi-lane traffic where overtaking and lane-changing is explicitly taken into

account [88]. By this, formulas for the relations τ(ρ, V,Θ) and p(ρ, V,Θ) can be derived [91].
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