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Using computer simulation, we have studied the random sequential adsorption of stiff linear k-mers
onto a square lattice. Each such particle occupies k adjacent lattice sites. During deposition, the
two mutually perpendicular orientations of the particles are equiprobable, hence, a macroscopically
isotropic monolayer is formed. However, this monolayer is locally anisotropic, since the deposited
particles tend to form domains of particles with the same orientation. Using the “excluded area”
concept, we have classified lattice sites into several types and examined how the fraction of each
type of lattice site varies as the number of deposited particles increases. The behaviors of these
quantities have allowed us to identify the following stages of domain formation (i) the emergence of
domain seeds; (ii) the filling of domains; (iii) densification of the domains.

I. INTRODUCTION

Deposition of large particles (proteins, viruses, bacte-
ria, colloids, and macromolecules) at various interfaces is
widespread in both nature and industry [1, 2]. For in-
stance, proteins usually form monolayers on substrates,
since proteins do not adhere to each other [3, 4]. Pro-
tein adsorption at solid–liquid interfaces is important
in thrombosis, plaque formation, artificial organ failure,
and fouling of contact lenses [4, 5]. Efficient separation
and purification of proteins by chromatography, filtra-
tion, for biosensing, bioreactors, immunological assays,
etc. require controlled protein deposition [4–6]. Adsorp-
tion of colloid and bioparticles is important for filtra-
tion, electroflotation, separation of toner and ink parti-
cles, papermaking, xerography, production of magnetic
tapes, etc. [7]. In general, adsorbed particles, e.g., bio-
logical molecules or polymers, have a nonspherical shape.
For example, adsorption of fibrinogen has been studied
considering its molecule as a linear chain of touching
beads of various sizes [8]. Another important field is
nanotechnology where elongated nanoparticles (e.g., gold
nanorods [9], colloidal CdSe/CdS nanorods [10], silver
nanorods [11]) are deposited onto a substrate.

Random sequential adsorption (RSA) is a process dur-
ing which particles are randomly and irreversibly de-
posited onto a substrate without overlapping with pre-
viously adsorbed particles [3]. RSA is a useful model for
many physical, chemical, and biological processes [1, 5, 6,
12]. Both continuous and discrete substrates can be con-
sidered. A widely used kind of discrete substrate is the
square lattice. One of the simplest particle shapes is the
so-called k-mer (rod, stick, needle, stiff linear chain), i.e.,
a linear “molecule” occupying k adjacent lattice sites.
The prohibition of overlapping means a hard-core (ex-
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cluded volume) interaction between the particles. As
particles deposit, first there occurs a percolation phase
transition, i.e. the emergence of a cluster that penetrates
the whole system. Then, the system reaches a jamming
state when any additional deposition of particles is im-
possible due to the absence of any appropriate empty
space to place even one extra particle. Although there
are some empty spaces, these holes have inappropriate
shapes or sizes to accept a further particle. During the
RSA of k-mers onto a square lattice, the excluded area
effect [13] leads to the formation of domains filled with
particles all of the same orientation. Domain structures
have been observed both at percolation [14–16] and at
jamming [15, 17–19].

A qualitative description of the domain formation is
as follows [18]. At early stages of adsorption, previously
deposited k-mers affect insignificantly deposition of new-
comers since the system is fairly sparse. Almost each
new k-mer can be adsorbed in arbitrary orientations. As
the number of deposited k-mers increases, a newly de-
posited k-mers have to align to the already deposited
ones to avoid intersections. The late-stage deposition
pattern consists of domains of densely packed parallel
k-mers and regions of empty sites of sizes ranging from
single site to the length k − 1 which are inaccessible for
adsorption of k-mers. Similar behavior, i.e., formation of
domains of parallelly deposited objects, has also been ob-
served for elongated particles of the more complex shapes
on both square [18] and triangular lattices [20]. The sizes
of these domains were greater for more elongated shapes,
i.e., for the shapes that resemble more the straight lines.
Moreover, domains have been reported for RSA of binary
mixtures of line segments on a square lattice [21].

Using a local order parameter, the typical size of do-
mains has been evaluated as k×k [22]. Thus, although a
monolayer produced by RSA is macroscopically isotropic,
microscopic regions can exhibit significant anisotropy.
Visually, the domains look like winding areas with dense
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centers and diffuse edges [23]. It seems, therefore, that a
local order parameter cannot provide complete informa-
tion about the shape and structure of the domains. An
alternative characteristic of the domain structure is the
pair correlation function [24, 25].

Internal structure of domains can be described using a
concept of stacks [26]. A definition of stack states that
two neighboring parallel k-mers belong to the same stack
if the number of nearest-neighbor bonds between them is
greater than k/2 [26]. When a stack is defined in such
a way, it has a wormlike structure without branching.
Although all k-mers within the stack are aligned in the
same direction, some transverse fluctuations are allowed,
which make stacks wavy and curved. Accordingly, each
domain is a set of stacks.

A larger substructure of a domain is a cluster of k-
mers of the same orientation. Two neighboring parallel
k-mers belong to the same cluster if there is at least one
nearest-neighbor bond between them. This substructure
has been used to characterize a relaxation of the jammed
state due to random walks of k-mers [27]. Thus, the
contiguous stacks form a cluster.

When RSA of randomly oriented elongated particles
onto a continuous substrate is considered, formation of
domains has been observed in the long-time regime for
the zero-width sticks [28], rectangles [29], discorectan-
gles [24], and polymers [30]. These elongated particles
were arranged almost parallel to each other within do-
mains. Thus, formation of domains is custom for elon-
gated particles when deposited onto both discrete and
continuous substrates.

Recently, a RSA of rectangles onto a continuous plane
has been considered geometrically [31]. The three ar-
eas which are formed around a deposited rectangle have
been defined. As particles are deposited they change the
properties of the surrounding space by creating a proba-
bility field around them, i.e., create a “polarized space”.
Within this “polarized space”, a newly deposited parti-
cle is forced to align parallel to the previously deposited
particles. The proposed approach can be treated as a
refinement of the excluded area concept. Similar con-
sideration has been performed for zero-width sticks, i.e.,
rectangles with infinity large aspect ratio [32].

By means of both computer simulation and analytical
treatment using the “excluded area” concept, we have
studied the formation of domains during RSA of k-mers
onto a square lattice. The three stages have been found
and classified. In fact, we have transferred the idea of a
“polarized space” [31] from the continuous space to the
discrete one.

The rest of the paper is constructed as follows. In
Sec. II, the technical details of the simulations are de-
scribed, all necessary quantities are defined, and some
estimates of the finite-size effect are given. Section III
presents our principal findings. Section IV summarizes
the main results.

II. COMPUTATIONAL MODEL

A square lattice with L × L sites was used as a sub-
strate. Periodic boundary conditions were applied along
both directions of the lattice to reduce the finite-size ef-
fect. Linear particles occupying k adjacent lattice sites
were randomly and sequentially deposited onto the lat-
tice. To distinguish the two possible orientations of de-
posited particles, we denoted the particles oriented along
the abscissa as kx-mers, while the particles oriented along
the ordinate were ky-mers. We treated the leftmost site
of a kx-mer and the topmost site of a ky-mer as the “pri-
mary element” (origin) of the particle. The rest of the
k− 1 sites of the particle were denoted as its body. Both
the mutually perpendicular orientations of deposited par-
ticles taken as equiprobable. In our simulations, we used
k ∈ [2; 12]. As a basis, the linear size of the lattice was
chosen as L = 32k. However, the finite-size effect has
also been tested by variations of the lattice size for a
fixed value of k. All results were averaged over 100 inde-
pendent runs.

We used the reduced (normalized) coverage, i.e., the
number of occupied sites, N , divided by the number of
occupied sites at jamming, Nj,

x =
N

Nj
, (1)

in such a way that x ∈ [0; 1].
Each adsorbed particle blocks k lattice sites from fur-

ther deposition of both kx- and ky-mers. Furthermore,
some sites in the vicinity of the adsorbed particle are
forbidden for the deposition of only one kind of parti-
cle (Fig. 1). Figure 1(a) demonstrates a kx-mer and a
ky-mer together with their non-overlapping excluded ar-
eas. Figure 1(b) demonstrates a kx-mer and a ky-mer
when their excluded areas are partially overlapping. De-
posited particles are shown using solid fill. Darker cells
correspond to the “primary element” of particles, while
lighter ones form their bodies. The “primary elements”
of any additional kx- or ky-mers can be placed in open
cells. Only ky-mer “primary elements” can be placed in
cells with vertical hatching. The “primary elements” of
only kx-mers can be placed in cells with horizontal hatch-
ing. The “primary elements” of neither kx- nor ky-mers
can be placed into cross-hatched cells.

We classified each of the lattice sites under one of sev-
eral types:

Type 0: Lattice sites that are forbidden for the depo-
sition of both kx- and ky-mers. This type can be
additionally divided into two subtypes:

Subtype −0: Occupied sites [filled squares in
Fig. 1(a)]. No site of the newly deposited par-
ticle can be placed in these sites.

Subtype +0: Empty sites that are forbidden for
the deposition of the “primary elements” of
both kx- and ky-mers. However, a body-site of
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a newly deposited particle may be placed into
a site of subtype +0. These sites are shown in
Fig. 1(b) as cross-hatched squares.

Type 1: Empty sites that allow deposition of the “pri-
mary elements” of the either kx- or ky-mers. These
sites are shown in Fig. 1 as horizontally, or verti-
cally hatched squares, respectively.

Type 2: Empty sites that can allow the deposition of
the “primary elements” of both kx- and ky-mers.
These sites are shown in Fig. 1 as open squares.

Sites of types 0 and 1 belong to the excluded area.

FIG. 1. Example of a kx-mer and a ky-mer (k = 4) with (a)
non-overlapping excluded areas and (b) partially overlapping
excluded areas.

The fractions of lattice sites belonging to one of these
types are denoted as f−0(x), f+0(x), f1(x), and f2(x),
respectively. Naturally, f−0(x)+f+0(x)+f1(x)+f2(x) =
1, hence, only three of the four functions are independent.
By definition, f−0(x) is a linear function. It is therefore
uninformative, and is not discussed further.

Figure 2 presents an example of the functions f+0(x),
f1(x), and f2(x) for one particular case (k = 8, L =
256). f2(x) is a monotonically decreasing function, while
each of the functions f+0(x) and f1(x) has one maximum
and one inflection point. The coordinates of the maxima
look promising for characterizing the kinetics of domain
formation.

Figure 3 presents the functions f+0(x) and f1(x) for a
fixed k = 8 and different lattice sizes (L = 64, 256, 1024).
Figure 3 suggests that the finite-size effect is significant
only in the vicinity of the jammed state (x = 1). In any
case, the curves for L = 32k and L = 128k are hardly
distinguishable. Since domain formation is a continuous
process, i.e., there is no jump between any two stages,
the exact location of the maxima is not so important.
This is the reason for the use of L = 32k in our main
evaluations.

We investigated the mean stack size, 〈s〉, and the num-
ber of stacks per lattice site, ns, which quantify internal
structure of domains. Figure 4 demonstrates an example
of the dependencies of these quantities on the normalized
coverage, x, for k = 8, L = 256. Quite expectedly, the
mean stack size monotonically increases. The number of

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 

 

f

x

k = 8, L =256
 f

+0
(x)

 f
1
(x)

 f
2
(x) = arg max f

+0
  arg max f

1
 

FIG. 2. Example of the functions f+0(x), f1(x), and f2(x) for
k = 8, L = 256.
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FIG. 3. Example of the finite-size effect: functions f+0(x)
and f1(x) for k = 8, L = 64, 256, 1024.

stacks per lattice site has a maximum at a certain value
of the normalized coverage, x = arg maxns(x).

Additionally, we investigated the mean cluster size, 〈c〉,
and the number of clusters per lattice site, ns, which
quantify internal structure of domains. Figure 5 demon-
strates an example of the dependencies of these quanti-
ties on the normalized coverage, x, for k = 8, L = 256.
As expected, the mean cluster size monotonically in-
creases. The number of clusters per lattice site has a
maximum at a certain value of the normalized coverage,
x = arg maxnc(x).

III. RESULTS AND DISCUSSION

For k ∈ [2; 12], the abscissae of the extremal points of
the functions f1(x) and f+0(x) decrease as the value of k
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FIG. 4. Example of the dependencies of the mean stack size,
〈s〉, and the number of stacks per lattice site, ns, on the nor-
malized coverage, x, for k = 8, L = 256.
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FIG. 5. Example of the dependencies of the mean cluster
size, 〈c〉, and the number of clusters per lattice site, nc, on
the normalized coverage, x, for k = 8, L = 256.

increases (Fig. 6). However, this behavior may differ for
larger values of k.

The extremal points of the functions f1(x) and f+0(x)
as well as direct observation of the particle deposition [33]
suggest the following stages of domain formation. Nat-
urally, the boundaries of the stages are approximate
(Fig. 6).

Stage I: Emergence of domain seeds. During the
initial stage of particle deposition when x ∈
[0; arg max f1(x)], particles stake out the future domains.
The number of empty sites of type 2 decreases, while the
number of empty sites of type 1 increases. Since a sig-
nificant fraction of the empty sites can accept deposited
particles of only one orientation, they can be treated as
the progenitors of future domains [Fig. 7(a)].

Stage II: Filling of domains. As the num-
ber of deposited particles increases, x ∈
[arg max f1(x); arg max f+0(x)], the number of sites
of type 1 decreases due to overlapping of the excluded

2 3 4 5 6 7 8 9 10 11 12
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Stage III

Stage II

 

 

x

k

 arg max f+0

 arg max f1
 pc

Stage I

FIG. 6. Dependencies of arg max f+0, arg max f1, arg maxns,
and arg maxnc on the particle size, k. The lines between
the markers are drawn simply for convenience. The error
bars correspond to the standard deviation. When not shown
explicitly, they are of the order of the marker size.

areas produced by the deposited particles of mutually
perpendicular orientations [Fig. 7(b)].

Stage III: Densification of domains. At this stage
when x ∈ [arg max f+0(x); 1], almost all newly deposited
particles fall only into the already formed domains. A
feature of this stage is the reduction in the number of
sites of type +0 due to their overlapping by newly de-
posited particles. At this stage, the number of sites of
type 2 is already negligible. A reduction in the num-
ber of sites of type 1 occurs since the newly deposited
particles overlap sites of types 1 and +0. Almost all
newly deposited particles are placed into already formed
and limited domain structures. This densification of the
domains little changes their formed structure, since al-
most all the newly deposited particles are placed inside
domains between, and aligned with, previously placed
particles [Fig. 8(c)].

For the values of k under consideration, the width of
stage II seems to be a constant within the precision of
our evaluations

∆ = arg max f+0 − arg max f1 ≈ 0.42± 0.01.

With increasing value of k, the width of stage I decreases
while that of stage III increases (Fig. 6).

During Stage II, the number of clusters reaches its
maximum value and then decreases (Fig. 6). Merging
of clusters seems to be independent of evolution of the
“polarized space”.

The number of stacks reaches its maximum value near
the transition from Stage II to Stage II and then de-
creases (Fig. 6). Non-monotonic dependence ns(k) occurs
due to definition of stacks [26] since there are the two dif-
ferent branches corresponding to even and odd values of
k. For example, according to the definition of stacks [26],
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FIG. 7. Example of a system under consideration (a) at the
end of stage I and (b) at the end of stage II; k = 8, L = 8k.
Both deposited particles and different types of empty sites
are shown. Darker regions correspond to deposited particles
(sites of subtype −0). Empty sites belonging to subtype +0
are shown as white regions. Light gray regions correspond
to type 2 sites. Two shades of gray (light blue and light red
online) depict sites belonging to type 1.

two common lateral bonds are needed for two particles
to belong to the same stack both in the case of dimers

and trimers.

IV. CONCLUSION

Using computer simulation, we have studied an
isotropic random sequential adsorption of stiff linear seg-
ments (k-mers) onto a square lattice with periodic bound-
ary conditions along both directions. Due to the excluded
area effect, deposited particles form domains of particles
of the same orientation. Using the excluded area con-
cept, we have classified lattice sites into several types.
We have examined how the fraction of each type of lat-
tice site varies with the number of deposited particles.
The behaviors of these quantities provide for a classifica-
tion of the stages of domain formation: (i) the emergence
of domain seeds [Fig. 8(a)]; (ii) the filling of domains
[Fig. 8(b)]; (iii) densification of the domains [Fig. 8(c)].
Our approach and results are closely related to that for
RSA of needles [32] and rectangles [31] onto a plane.
Since our computer simulation is restricted only to short
particles, an additional study is needed for larger values
of k (k > 12); however, such study is expected to be
time-consuming.

Our study offers an approach to classify the RSA
stages. The proposed approach is expected to be useful
for other kinds of regular discrete substrates (e.g., tri-
angular lattice) and other shapes of particles (e.g., rect-
angles). Application of the approach to other kinds of
substrates as well as to other particle shapes suggests an
additional independent study.
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sequential adsorption on a triangular lattice, Phys. Rev.
E 56, 6904 (1997).

[21] J. W. Lee, Irreversible random sequential adsorption of
mixtures, Colloids Surf. A: Physicochem. Eng. Asp. 165,
363 (2000).

[22] Y. Y. Tarasevich, A. V. Eserkepov, V. V. Chirkova, and
V. A. Goltseva, Monte Carlo simulation of entropy-driven
pattern formation in a two-dimensional system of rectan-
gular particles, J. Phys. Conf. Ser. 1163, 012007 (2019).

[23] M. G. Slutskii, L. Y. Barash, and Y. Y. Tarasevich, Per-
colation and jamming of random sequential adsorption

samples of large linear k-mers on a square lattice, Phys.
Rev. E 98, 062130 (2018).

[24] S. M. Ricci, J. Talbot, G. Tarjus, and P. Viot, A struc-
tural comparison of random sequential adsorption and
equilibrium configurations of spherocylinders, J. Chem.
Phys. 101, 9164 (1994).

[25] R. C. Hart and F. D. A. Aarão Reis, Random sequen-
tial adsorption of polydisperse mixtures on lattices, Phys.
Rev. E 94, 022802 (2016).

[26] J. Kundu, R. Rajesh, D. Dhar, and J. F. Stilck, Nematic-
disordered phase transition in systems of long rigid rods
on two-dimensional lattices, Phys. Rev. E 87, 032103
(2013).

[27] Y. Y. Tarasevich, V. V. Laptev, A. S. Burmistrov, and
N. I. Lebovka, Pattern formation in a two-dimensional
two-species diffusion model with anisotropic nonlinear
diffusivities: a lattice approach, J. Stat. Mech: Theory
Exp. 2017, 093203 (2017).

[28] J. D. Sherwood, Random sequential adsorption of lines
and ellipses, J. Phys. A: Math. Gen. 23, 2827 (1990).

[29] R. D. Vigil and R. M. Ziff, Random sequential adsorption
of unoriented rectangles onto a plane, J. Chem. Phys. 91,
2599 (1989).
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