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We measure the branching fraction and time-dependent CP-violating asymmetry for B0 → J=ψπ0

decays using a data sample of 711 fb−1 collected on the ϒð4SÞ resonance by the Belle experiment
running at the KEKB eþe− collider. The branching fraction is measured to be BðB0 → J=ψπ0Þ ¼
½1.62� 0.11ðstatÞ � 0.06ðsystÞ� × 10−5, which is the most precise measurement to date. The measured
CP asymmetry parameters areS¼−0.59�0.19ðstatÞ�0.03ðsystÞ andA ¼ −0.15� 0.14ðstatÞ þ0.04

−0.03 ðsystÞ.
The mixing-induced CP asymmetry (S) differs from the case of no CP violation by 3.0 standard deviations,
and the direct CP asymmetry (A) is consistent with zero.

DOI: 10.1103/PhysRevD.98.112008

At the quark level, the decay B0 → J=ψπ0 proceeds via
b → cc̄d “tree” and “penguin” amplitudes, as shown in
Fig. 1. Both amplitudes are suppressed in the Standard
Model (the first one is color and Cabibbo suppressed), and
thus the branching fraction is small. The tree-level ampli-
tude has the same weak phase as that of the b → cc̄s
amplitude governing, e.g., B0 → J=ψK0

S decays, while the
penguin amplitude has a different weak phase. The former
dominates mixing-inducedCP violation, while the addition
of the latter gives rise to direct CP violation.
In the process ϒð4SÞ → B0B̄0, one of the two B mesons

can decay into a CP eigenstate fCP at time tCP, while the
other can decay into a flavor-specific state ftag at time ttag.
The decay time evolution for the B → fCP is [1]

PðΔt; qÞ ¼ e−jΔtj=τB0

4τB0

× ð1þ q½S sinðΔmdΔtÞ þA cosðΔmdΔtÞ�Þ;
ð1Þ

whereΔt ¼ tCP − ttag is the difference in proper decay times
between the two B mesons; q ¼ þ1ð−1Þ for signal B̄0ðB0Þ
decays; Δmd is the mass difference between the two mass
eigenstates of theB0 − B̄0 system; and τB0 is the B0 lifetime.
The parameters S and A are CP violating and characterize
mixing-induced and direct CP violation, respectively. In
the absence of the penguin amplitude, A ¼ 0 and S¼
−sinð2ϕ1Þ, where ϕ1 ¼ arg½−ðV�

cbVcdÞ=ðV�
tbVtdÞ�. How-

ever, this amplitude and any new physics (NP) process
having a different weak phase will shift S andA from these
values. Thus, measuring these parameters provides a way
to search for NP. The values of S and A measured in

B0 → J=ψπ0 decays can also be used to constrain the small
penguin contribution to B0 → J=ψK0

S decays [2–7]. This
small contribution is important as the decay B0 → J=ψK0

S
provides the most precise determination of ϕ1.
The parameter S for B0 → J=ψπ0 has previously been

measured by Belle [8] and BABAR [9], but the results are
not in good agreement. The BABAR result lies outside the
physically allowed region, but the uncertainties are large.
The previous result from Belle was based on 535 × 106 BB̄
pairs [8]. Here we update that measurement using the final
Belle data set of 772 × 106 BB̄ pairs. We also update the
B0 → J=ψπ0 branching fraction, for which our previous
measurement used only 32 × 106 BB̄ pairs [10]. In addi-
tion to more data, the analysis presented here also uses
improved tracking and photon reconstruction.
The Belle detector is a large-solid-angle magnetic

spectrometer consisting of a silicon vertex detector
(SVD), a 50-layer central drift chamber (CDC), an array
of aerogel threshold Cherenkov counters, a barrel-like
arrangement of time-of-flight scintillation counters, and
an electromagnetic calorimeter (ECL) comprising CsI(Tl)
crystals. These detector components are located inside a
superconducting solenoid coil that provides a 1.5 T mag-
netic field. An iron flux-return (KLM) located outside the
coil is instrumented to detect K0

L mesons and to identify
muons. Two inner detector configurations were used: a
2.0 cm radius beampipe and a three-layer SVD were used
for the first 152 × 106 BB̄ pairs of data, while a 1.5 cm
radius beampipe, a four-layer SVD, and a small-cell inner
drift chamber were used for the remaining 620 × 106 BB̄

FIG. 1. (a) Tree and (b) penguin amplitudes for the decay
B0 → J=ψπ0.
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pairs of data. The detector is described in detail in
Ref. [11]. Event selection requirements are optimized using
Monte Carlo (MC) simulation. MC events are generated
using EVTGEN [12], and the detector response is modeled
using GEANT3 [13]. Final-state radiation is taken into
account using the PHOTOS package [14].
The ϒð4SÞ is produced with a Lorentz boost of βγ ¼

0.425 along the þz axis, which is defined as antiparallel
to the eþ beam direction. Since the B0 and B̄0 mesons are
approximately at rest in the ϒð4SÞ center-of-mass (CM)
system, Δt is determined from the displacement in z
between the two B decay vertices: Δt ≈ Δz=cβγ.
The reconstruction of B0 → J=ψπ0 proceeds by first

reconstructing π0 → γγ candidates. An ECL cluster not
matched to any track is identified as a photon candidate.
Such candidates are required to have an energy greater than
50 MeV in the barrel region and greater than 100 MeV in
the end-cap regions, where the barrel region covers the
polar angle 32° < θ < 130° and the end-cap regions cover
the ranges 12° < θ < 32° and 130° < θ < 157°. We require
that the γγ invariant mass be within 20 MeV=c2 (about 3.5σ
in resolution) of the π0 mass [15]. To improve the π0

momentum resolution, we perform a mass-constrained fit
and require that the resulting χ2 be less than 30. This
requirement is relatively loose, retaining more than 99% of
events.
We subsequently combine π0 candidates with J=ψ

candidates, which are reconstructed in the eþe− and
μþμ− decay channels. All charged tracks are required to
have a minimum number of SVD hits: ≥ 2 in the beam
direction, and ≥ 1 in the transverse direction. Electron
identification is based on the ratio of the ECL cluster
energy to the particle momentum as measured in the CDC,
as well as the position and shape of the electromagnetic
shower in the ECL. In order to account for radiative energy
loss in eþe− decays, we include up to two bremsstrahlung
photons that lie within 50 mrad of each of the reconstructed
tracks when calculating the eþ and e− four-momenta.
Muons are identified by corresponding hit positions and
the track penetration depth in the KLM. The reconstructed
J=ψ invariant massesMeeðγÞ andMμμ are required to satisfy
−150 MeV=c2 < MeeðγÞ − mJ=ψ < þ36 MeV=c2 and
−60MeV=c2<Mμμ−mJ=ψ <þ36MeV=c2, where mJ=ψ

is the nominal J=ψ mass [15]. The asymmetric mass
ranges account for the radiative tail, which biases the
reconstructed mass towards lower values. For selected J=ψ
candidates, vertex- and mass-constrained fits are performed
to improve the momentum resolution.
Candidate B0 mesons are identified using the beam-

energy-constrained mass Mbc ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
beam − jp⃗Bj2c2

p
Þ=c2,

and the energy difference ΔE¼EB−Ebeam, where Ebeam
is the beam energy, and EB and p⃗B are the reconstructed
energy and momentum, respectively, of the B0 candidate.
All quantities are evaluated in the CM frame. Events

satisfying Mbc > 5.24 GeV=c2 and −0.20 GeV < ΔE <
0.10 GeV are retained for further analysis. To calculate
the signal yield, we define a smaller signal region:
5.27 GeV=c2 < Mbc < 5.29 GeV=c2 and −0.10 GeV <
ΔE < 0.05 GeV. In order to suppress “continuum” back-
ground arising from light quark production (eþe− → qq̄,
q ¼ u, d, s, c), we require that the event shape variable R2,
which is the ratio of the second to zeroth Fox-Wolfram
moments [16], satisfies R2 < 0.4.
After applying all selection criteria, 2.9% of events

have multiple B0 candidates in the signal region. For these
events, we retain the candidate having the smallest sum
of χ2 values obtained from the π0 → γγ mass-constrained
fit and the J=ψ → lþl− vertex- and mass-constrained
fit. According to MC simulations, this criterion selects
the correct B0 candidate in 74% of multiple-candidate
events.
We tag (identify) the flavor of the accompanying B

meson using inclusive properties of particles not associated
with the signal B0 → J=ψπ0 decay. The algorithm for
flavor tagging is described in Ref. [17]. Two parameters, q
and r, are used to represent the tagging information. The
former is the implied flavor of the signal B decays as used
in Eq. (1). The latter is an event-by-event MC-determined
quality factor that ranges from r ¼ 0 for no flavor dis-
crimination to r ¼ 1 for unambiguous flavor assignment. It
is used for sorting candidate events into seven r ranges. For
events having r > 0.10, we determine the wrong-tag
fractions ωl (l ¼ 1, 7) and their differences Δωl between
B0 and B̄0 decays from a control sample of self-tagged
semileptonic and hadronic b → c decays [18,19]. If
r < 0.10, the wrong tag fraction is set to 0.5.
The vertex position for the B0 → J=ψπ0 decay is

reconstructed using lepton tracks from the J=ψ decays.
We perform a vertex fit with a constraint to the interaction
point (IP) profile. A vertex position for ftag is obtained
using tracks that are not assigned to the B0 → J=ψπ0

candidate, plus the IP constraint. This constraint allows for
reconstruction of an ftag vertex even in cases when only one
track candidate satisfies the requirement on SVD hits. The
fraction of single-track vertices for ftag is approximately
12%, estimated from MC. To reject events with poorly
reconstructed vertices, we require σz < 200 μm and h < 50
for multitrack vertices, and σz < 500 μm for single-track
vertices, where σz is the error on the vertex z coordinate,
and h is the χ2 value calculated in three-dimensional space
without using the IP constraint [19]. We retain events in
which both the J=ψ and ftag vertices satisfy jΔtj < 70 ps.
To extract the signal yield, we perform a two-

dimensional unbinned maximum likelihood fit to the
variables Mbc and ΔE. The probability density function
(PDF) of signal events consists of two parts: one for
candidates that are correctly reconstructed, and one for
those incorrectly reconstructed, i.e., at least one daughter

B. PAL et al. PHYS. REV. D 98, 112008 (2018)

112008-4



originates from the other (tag-side) B. For the former
case, both the Mbc and ΔE distributions are modeled
with Crystal Ball (CB) functions [20]. For the latter case,
the correlated two-dimensional Mbc − ΔE distribution is
modeled with a nonparametric PDF [21]. The fraction of
incorrectly reconstructed decays (∼10% in the signal
region) is taken from MC simulation. The CB parameters
that describe the lower tail of the Mbc and ΔE distributions
are also fixed to MC values.
The remaining background is small and dominated

by BB̄ events in which one of the B mesons decays into
a final state containing a J=ψ . We divide this background
into three categories: (a) B0 → J=ψK0

S, (b) B
0 → J=ψK0

L,
and (c) B → J=ψX other than B0 → J=ψK0. We use
two-dimensional nonparametric PDFs [21] to model the
Mbc − ΔE distributions for all three categories. We fix the
background yields to those expected based on MC simu-
lation: 10.8 J=ψK0

S events, 10.0 J=ψK0
L events, and 17.5

other J=ψX events in the Mbc − ΔE signal region. The
remaining background comes from continuum qq̄ events.
We model the Mbc and ΔE distributions of continuum
background with an ARGUS [22] function having its end
point fixed to 5.29 GeV=c2, and a first-order polynomial,
respectively. Background coming from BB̄ not containing a
real J=ψ is negligible. From the fit we obtain 330.2� 22.1
signal events and 16.3� 3.5 continuum events. The purity
of the signal is 86% in the signal region. Projections of the
fit are shown in Fig. 2.
The branching fraction is calculated from the formula

BðB0 → J=ψπ0Þ ¼ Ysig

ε × NBB̄ × BJ=ψ × Bπ0
; ð2Þ

where Ysig is the fitted signal yield; NBB̄ ¼ ð772� 11Þ ×
106 is the number of BB̄ events; ε ¼ ð22.3� 0.1Þ% is the
signal efficiency for eþe− and μþμ− combined as obtained
from MC simulation; BJ=ψ is the sum of BðJ=ψ → μþμ−Þ
and BðJ=ψ → eþe−Þ [15]; and Bπ0 is the branching fraction
of π0 → γγ [15]. In Eq. (2) we assume equal production of
B0B̄0 and BþB− pairs at the ϒð4SÞ resonance. The result is

BðB0 → J=ψπ0Þ ¼ ð1.62� 0.11� 0.06Þ × 10−5;

where the first uncertainty is statistical and the second is
systematic.
The systematic uncertainty on BðB0 → J=ψπ0Þ arises

from several sources, as listed in Table I. The uncertainty
due to the fixed parameters in the PDF is estimated by
varying each parameter individually according to its
statistical uncertainty. The resulting changes in the branch-
ing fraction are added in quadrature and the result is taken
as the systematic uncertainty. The nonparametric shapes are
also varied by changing their smoothing, and the associated
systematic uncertainty is found to be negligible. We assign
a 1.5% systematic uncertainty due to π0 reconstruction, as

determined from a study of τ− → π−π0ντ decays [23]. The
uncertainty due to charged track reconstruction is 0.35%
per track, as determined from a study of partially recon-
structedD�þ → D0πþ,D0 → K0

Sπ
þπ− decays. We assign a

2.1% uncertainty due to lepton identification, as obtained
from a study of two-photon γγ → lþl− production events.
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FIG. 2. Projections of the two-dimensional fit: (a) Mbc in the
ΔE signal region, and (b) ΔE in theMbc signal region. The points
are data, the (green) dashed curves show the signal, the (red)
dotted-dashed curves show the qq̄ background, the (magenta)
dotted curves show the BB̄ background, and the (blue) solid
curves show the total PDF.

TABLE I. Fractional systematic uncertainties for
BðB0 → J=ψπ0Þ.
Source Uncertainty (%)

PDF parametrization 0.1
π0 reconstruction 1.5
Tracking 0.7
Lepton identification selection 2.1
Incorrectly reconstructed signal events 0.8
B → J=ψðK0

S; K
0
L; XÞ background þ1.8

−2.0
MC statistics 0.4
Secondary branching fractions 0.8
Number of BB̄ pairs 1.4

Total þ3.7
−3.9
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The uncertainty due to the estimated fraction of incorrectly
reconstructed signal events is obtained by varying this
fraction by �100%. As B → J=ψðK0

S; K
0
L; XÞ decays are

well measured, we evaluate the uncertainty due to their
estimated amounts by varying them by �20%. The uncer-
tainty due to the number of BB̄ pairs is 1.4%, and the
uncertainty on the reconstruction efficiency ε due to the
MC sample size is 0.4%. The total systematic uncertainty
is obtained by summing all individual contributions in
quadrature.
We determine S and A by performing an unbinned

maximum likelihood fit to the Δt distribution of candidate
events in the signal region. The PDF for the signal com-
ponent, PsigðΔt;S;A; q;ωl;ΔωlÞ, is given by Eq. (1) with
the parameters τB0 and Δmd fixed to the world-average
values [24]. We modify this expression to take into account
the effect of incorrect flavor assignment, which is para-
metrized by ωl and Δωl. This PDF is then convolved with
the decay-time resolution function RsigðΔtÞ. The resolution
function is itself a convolution of four components: the
detector resolutions for zJ=ψπ0 and ztag; the shift of the ztag
vertex position due to secondary tracks from charmed
particle decays; and the kinematic approximation that the B
mesons are at rest in the CM frame [19]. The PDFs for the
B0 → J=ψK0

S and B0 → J=ψK0
L backgrounds are the same

as Psig but with CP parameters A and S fixed to the recent
Belle results [19]. The PDF for the B → J=ψX background
is taken to have the same form as Psig but with A and S set
to zero, and with an effective lifetime τeff determined from
MC simulation. The PDF for continuum background is
taken to be the sum of two Gaussian functions whose
parameters are obtained by fitting events in the sideband
region 5.20GeV=c2<Mbc<5.26GeV=c2 and 0.10 GeV <
ΔE < 0.50 GeV.
We assign the following likelihood to the ith event:

PiðΔtÞ ¼ ð1 − folÞ
Z

dðΔt0Þ½RsigðΔti − Δt0Þ

× ðfsigPsigðΔt0Þ þ fJ=ψK0
S
PJ=ψK0

S
ðΔt0Þ

þ fJ=ψK0
L
PJ=ψK0

L
ðΔt0Þ þ fJ=ψXPJ=ψXðΔt0ÞÞ

þ fqq̄Pqq̄ðΔtiÞ� þ folPolðΔtiÞ; ð3Þ

where fsig, fJ=ψK0
S
, fJ=ψK0

L
, fJ=ψX, and fqq̄ are the fractions

of the signal, B0 → J=ψK0
S, B0 → J=ψK0

L, B → J=ψX,
and qq̄ continuum background, respectively. All fractions
depend on the flavor tagging quality r and are functions of
ΔE and Mbc. The term PolðΔtÞ is a broad Gaussian
function that represents an outlier component with a small
fraction fol ≈ 0.5%. The only free parameters in the fit
are S and A; these are determined by maximizing the
likelihood LðS;AÞ ¼ Q

iPiðΔti;S;AÞ. Figure 3 shows
the fitted Δt distribution and the time-dependent decay

rate asymmetry ACP, where ACP ¼ ðYðq¼þ1Þ
sig − Yðq¼−1Þ

sig Þ=
ðYðq¼þ1Þ

sig þ Yðq¼−1Þ
sig Þ, and Yðq¼�1Þ

sig is the signal yield with
q ¼ �1. The results of the fit are

S ¼ −0.59� 0.19� 0.03

A ¼ −0.15� 0.14þ0.04
−0.03 ;

where the first uncertainty is statistical and the second is
systematic. The correlation between A and S is −0.005.
The systematic uncertainties for S and A are listed in

Table II. They are small compared to the corresponding
statistical uncertainties. The largest contributions to S arise
from vertex reconstruction and the resolution function. The
uncertainty due to the former includes uncertainties in the
IP profile, charged track selection, vertex quality selection,
and SVD misalignment. We vary each parameter of the
resolution function by one standard deviation (�1σ) and
compare the resulting fit result with that of the nominal fit;
the difference between the two is taken as the systematic
uncertainty. Each physics parameter that is fixed to its
world average value [24], e.g., τB0 and Δmd, is varied by
the corresponding error; the uncertainty is taken to be the
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FIG. 3. (a) Distributions of Δt. The (blue) solid and (red) open
points represent the q ¼ þ1 and q ¼ −1 events, respectively, and
the solid curves show the corresponding fit projections. The gray
shaded region represents the sum of all backgrounds. (b) Time-
dependent CP asymmetry ACP (see text).
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resulting difference with the nominal fit result. The uncer-
tainty due to possible fit bias is evaluated using large
ensembles of MC signal events; the differences of the fit
results with the MC inputs are assigned as systematic
uncertainties. The uncertainties due to ωl and Δωl are
estimated by varying these parameters individually by�1σ.
The Mbc and ΔE shape parameters, and the fractions of
signal and background, are varied to estimate their con-
tributions to the systematic uncertainty. We vary each
parameter in Pqq̄ðΔtÞ and PJ=ψXðΔtÞ by �1σ. For
PJ=ψK0

S
ðΔtÞ and PJ=ψK0

L
ðΔtÞ, we vary the CP asymmetry

parameters by their statistical errors [19]. We include the
effect of tag-side interference [25], which introduces a
significant contribution to the systematic uncertainty forA.
Tag-side interference is caused by interference between the
two tree-level amplitudes contributing to B → DX decays.
In summary, we have measured the branching

fraction and time-dependent CP asymmetry for B0 →
J=ψπ0 decays using the full Belle ϒð4SÞ data set. The
results are

B ¼ ð1.62� 0.11� 0.06Þ × 10−5

S ¼ −0.59� 0.19� 0.03

A ¼ −0.15� 0.14þ0.04
−0.03 ;

where the first uncertainty is statistical and the second is
systematic. The measured value for the branching fraction
is the most precise value to date and supersedes the
previous measurement [10]. It is consistent with mea-
surements made by other experiments [9,26]. The mea-
sured CP asymmetries are consistent with, and supersede,
our previous results [8]. The direct CP asymmetry A is
consistent with zero. The mixing-induced CP asymmetry
S differs from zero (i.e., no CP violation) by 3.0σ, and it
differs from the BABAR result [9] (which is outside the
physical region) by 3.2σ. The value is consistent with the

value of sin 2ϕ1 measured using b → cc̄s decays [15].
These results indicate that the penguin and any NP
contribution to B0 → J=ψπ0 are small.
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TABLE II. Absolute systematic uncertainties for S and A.

Source σS (%) σA (%)

Vertex reconstruction þ2.36
−1.75

þ1.40
−2.22

Resolution function þ1.43
−2.37

þ1.00
−0.91

Physics parameters þ0.04
−0.03 �0.04

Fit bias �0.68 �0.27
Wrong tag fraction þ0.41

−0.20
þ0.43
−0.17

Mbc, ΔE shapes þ0.52
−0.45

þ0.50
−0.48

Signal and background fraction þ0.71
−0.62

þ0.49
−0.72

Background Δt shape þ0.20
−0.12 �0.10

Tag-side interference �0.20 þ3.80
−0.00

Total þ3.02
−3.14

þ4.26
−2.57
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