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By assuming the existence of extra-dimensional sterile neutrinos in big bang nucleosynthesis
(BBN) epoch, we investigate the sterile neutrino (νs) effects on the BBN and constrain some param-
eters associated with the νs properties. First, for cosmic expansion rate, we take into account effects
of a five-dimensional bulk and intrinsic tension of the brane embedded in the bulk, and constrain
a key parameter of the extra dimension by using the observational element abundances. Second,
effects of the νs traveling on or off the brane are considered. In this model, the effective mixing angle
between a νs and an active neutrino depends on energy, which may give rise to a resonance effect
on the mixing angle. Consequently, reaction rate of the νs can be drastically changed during the
cosmic evolution. We estimated abundances and temperature of the νs by solving the rate equation
as a function of temperature until the sterile neutrino decoupling. We then find that the relic abun-
dance of the νs is drastically enhanced by the extra-dimension and maximized for a characteristic
resonance energy Eres & 0.01 GeV. Finally, some constraints related to the νs, mixing angle and
mass difference, are discussed in detail with the comparison of our BBN calculations corrected by
the extra-dimensional νs to observational data on light element abundances.

PACS numbers: 14.60.Lm, 26.35.+c

I. INTRODUCTION

Over the past few decades, a considerable number of
studies has been conducted on the neutrino oscillation
with a great success of measuring neutrino mixing an-
gles. But, some experiments for the neutrino oscillation
revealed more or less disagreements with the three-flavor
neutrino model, which termed as the neutrino anoma-
lies, as reported in LSND [1], MiniBoone [2], reactor ex-
periments [3] and gallium experiments [4]. One of the ap-
proaches for explaining the neutrino anomalies is to pre-
sume the existence of the hypothetical fourth neutrino,
which is called as sterile neutrino, because the sterile
neutrino does not interact with other particles except-
ing through a mixing with active neutrinos.

Very recently, the IceCube experiment reported a new
constrained region for the parameter space of the mix-
ing angle and the mass-squared differences for the 1 eV
mass scale sterile neutrino [5], in which the parameter
space by previous LSND and MiniBoone data are largely
excluded. But, if we recollect that 1 keV cosmological
sterile neutrino is still under discussion for a dark matter
candidate and the relic neutrino search is being consid-
ered, it would be an interesting discussion to consider
effects of the sterile neutrino in the big bang nucleosyn-
thesis (BBN) epoch and deduce related parameters from
the observational data with the comparison to the Ice-
Cube experimental data analysis.
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Among many scenarios of the sterile neutrino, Päs et
al. [6] assumed that the sterile neutrino is a gauge-singlet
particle and can travel on or off our 3 + 1 dimensional
brane embedded in a large extra dimension bulk similarly
to the graviton in the brane-world cosmology. According
to the cosmology, ordinary matter fields are confined to
a three-dimensional space in the high dimensional bulk.
Originally, the brane-world cosmology was suggested to
explain the hierarchy problem, the large scale difference
between the standard model force and the gravity [7, 8].
Randall and Sundrum suggested a new solution of the
hierarchy problem by introducing noncompact extra di-
mensions [9, 10]. Ref. [6] suggested a model, in which
a sterile neutrino can propagate in the bulk and brane
similarly to the graviton. They derived a new formula of
resonant active-sterile neutrino oscillation and found an
allowed region of the resonance energy from the compar-
ison to available experimental data.

If the production rate of this kind of sterile neutrino
is always smaller than the cosmic expansion rate, the
abundance of the sterile neutrino never reaches the equi-
librium value. The effect of the sterile neutrino on BBN
is then completely negligible. This situation has been
considered recently [11], and a parameter region where
the sterile neutrino abundance is extremely small has
been searched by an analytical estimate. However, as
shown in this paper, observational constraints on pri-
mordial abundances do not exclude the situation that
the sterile neutrino is abundantly produced in thermal
bath and its abundance attains the equilibrium value in
the early universe. Furthermore, the observational abun-
dance of 4He is possibly explained by the effect of the
sterile neutrino better than in standard BBN model, as
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argued in this paper.

In this study, we adopt the same scheme as Ref. [6] and
study effects of a sterile neutrino in an extra-dimensional
universe by a numerical BBN calculation in detail. Es-
pecially, we considered not only the matter effects but
also wave packet formalism to describe the oscillation be-
tween active and sterile neutrinos in the five-dimensional
universe. Since the primordial element abundances can
be measured with a good precision by the recent great
advent of astrophysical spectroscopic observations, the
BBN study turns out to be a useful test bed for deriving
the cosmological constraints on nonstandard models. For
example, some parameters in the modified gravity mod-
els, such as f(R) and f(G) gravity, were constrained in
detail [12]. In addition, effects of some supersymmetric
(SUSY) particles in the early universe have been investi-
gated and parameters, i.e., the lifetime and mass, can be
constrained [13].

We include effects of the extra dimensional sterile neu-
trino in the BBN epoch as follows. The cosmic expansion
rate is modified by the large extra dimension [14, 15] as
well as the energy density [16, 17] of the sterile neutrino
traveling on or off our 3 + 1 dimensional brane. Then the
modified Friedmann equation and the energy density of
decoupled sterile neutrino may change the primordial ele-
ment abundances. Therefore, the parameters relevant to
the extra dimension and the sterile neutrino can be con-
strained by using observational data of primordial light
element abundances.

This paper is composed as follows. In section II, we
briefly review the sterile-active neutrino oscillation in the
extra-dimension sterile neutrino model and address how
to describe the evolution for the number abundance of
sterile neutrino in the early universe in the model. In
section III, results of primordial nuclear abundances by
the model are presented. From the results, in Sec. IV, we
discuss the constrained parameter region from the com-
parison of BBN calculation results to observational abun-
dance data. Section V contains a summary and conclu-
sions of this article. We derive the flavor change probabil-
ity of the sterile neutrino in the current extra-dimension
model in Appendix A. A result of solving the Boltzmann
equation for the sterile neutrino and its comparison with
that of the rate equation are shown in Appendix B.

II. THEORETICAL MODEL

We presume that the universe is five-dimensional and
the sterile neutrino travels on or off the five-dimensional
space as in Ref. [6]. We simply consider only one sterile
neutrino and assume that sterile neutrinos interact with
matter particles only via its mixing with an active neu-
trino. The decay of the sterile neutrino is not considered
in this model.

A. Modified cosmic expansion rate from
extra-dimension

According to Ref. [18], the cosmic expansion rate in a
five-dimensional universe is given by,
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where a0 is the scale factor for the four-dimensional space
time. ρB denotes the bulk energy density in the universe.
Energy density of the brane, ρb, is given as a sum of or-
dinary energy density (ρ) and energy density (ρΛ) stem-
ming from the intrinsic tension on the brane, ρb = ρ+ρΛ.
E is an integration constant. The five-dimensional ana-
logue of the gravitational constant, G(5), is related to the
five-dimensional Planck mass, M(5) and the constant κ,
as follows

κ2 = 8πG(5) = M−3
(5) . (2)

The last term in the right-hand side of Eq. (1) vanishes in
the flat universe where the curvature constant is K = 0.
We can choose ρΛ by following Refs. [9, 10]

κ2

6
ρB +

κ4

36
ρ2

Λ = 0 . (3)

Then, the cosmic expansion rate of the standard cosmol-
ogy is recovered for ρ� ρΛ by the identification [19, 20]
of

8πG ' κ4ρΛ

6
, (4)

where G is Newton’s constant. Our final expansion rate
was obtained as

ȧ2

a2
' 8πG

3
ρ+

E
a4

, (5)

where the index 0 in the scale factor on the brane a0 has
been omitted.

The first term of the right-hand side in Eq. (5) is iden-
tical with the cosmic expansion rate in the standard cos-
mological model. Note that only the second term comes
from the effect of the extra dimension. The free param-
eter E , which is a kind of an integration constant in the
five-dimensional Einstein equation, affects the primordial
abundances [14, 15]. The initial temperature of our BBN
calculation is T9 = T/(109 K) = 100 with T the temper-
ature. We then take the value of the second term at
T9 = 100, i.e., E/a4

i with ai the scale factor at the initial
temperature, as a parameter.

Figure 1 shows calculated abundances of the deuterium
(number ratio of D/H) and 4He (the mass fraction Yp)
as a function of E/a4

i . The abundances of D and 4He are
monotonically increasing with the increase of E/a4

i . The
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FIG. 1. (Color online) Deuterium (the top panel) and 4He
(the bottom panel) abundances as a function of E/a4i . Shaded
and dark-shaded regions are 4 σ and 2 σ ranges, respec-
tively, for the observational primordial abundances. We adopt
the observational value of D/H=(2.53± 0.04)× 10−5 [21] and
Yp = (0.2551±0.0022) [22]. From the observational data, the
E value is constrained as 120 < E/a4i (s−2) < 149 (2 σ) and
−18 < E/a4i (s−2) < 248 (4 σ).

standard BBN model corresponds to the case of E = 0. In
this case, the predicted deuterium abundance is within
the observational 2σ limit, while the 4He abundance is
out of the 2σ limit. When the nonzero value of E is
considered, we find the 2σ allowed region from the both D
and 4He abundances in the region of 120 < E/a4

i (s−2) <
149.

When the E value is increased, the cosmic expansion
rate is also increased. Since the cosmic time scale for a
fixed temperature is shorter, the neutron to proton ra-
tio at the 4He synthesis is larger. As a result, the 4He
abundance after the BBN is larger. In the late time of
BBN, the deuterium is effectively destroyed by the re-
actions 2H(d,n)3He and 2H(d,p)3H. The shorter cosmic
time scale leads to the earlier freeze-out of the destruc-
tion reactions. Subsequently, the larger final deuterium
abundance is obtained.

B. Relic abundance of sterile neutrino

Since we include the sterile neutrino which has a finite
mass mνs , its energy density ρνs is added to the ordi-
nary density in Eq. (5). The total energy density is thus

changed as,

ρ = ρstandard + ρνs , (6)

where the first and the second terms indicate energy den-
sities of standard model particles and sterile neutrinos,
respectively. The value of ρνs is roughly evaluated as,

ρνs '

{
nνs 〈Eνs〉 (for relativistic case)

nνsmνs (for non-relativistic case).
(7)

Here nνs and 〈Eνs〉 are the number density and the aver-
aged energy of the sterile neutrino, respectively. The
energy density is separated into relativistic and non-
relativistic cases which depend on temperature Tνs and
mνs . Namely, for mνs > 〈Eνs〉 ∼ 3Tνs , the sterile neu-
trino is non-relativistic. Otherwise, it is relativistic.
Since the nνs in Eq. (7) is a key quantity to determine
the energy density of the sterile neutrino, we calculate
the number density of the sterile neutrino in the follow-
ing way.

In the hot early universe, the sterile neutrino can stay
in an equilibrium state when its production rate is enough
large. However, with the decrease of temperature, the
sterile neutrino is decoupled from the equilibrium state.
The decoupling condition is that the reaction rate of the
sterile neutrino Γνs becomes smaller than the cosmic ex-
pansion rate H ≡ ȧ/a. At that time, the ratio Yνs be-
tween nνs and the entropy density s freezes out, i.e., does
not change (see Chap. 5 of Ref. [23]). In order to de-
scribe the Yνs evolution, we exploit the following rate
equation,

x

YEQ

dYνs
dx

= −Γνs
H

[(
Yνs
YEQ

)2

− 1

]
, (8)

where x ≡ mνs/T and YEQ = nEQ/s is a ratio of the
equilibrium number density to the entropy density in the
co-moving unit volume given in terms of temperature T ,

s =
2π2

45
g∗ST

3 , (9)

where g∗S is defined in terms of the degrees of freedom
of particle i,

g∗S = Σi=boson gi

(
Ti
T

)3

+
7

8
Σi=fermion gi

(
Ti
T

)3

. (10)

We note that the temperature of the sterile neutrino is
the same as that of thermal bath, i.e., Tνs = T , until the
decoupling of the sterile neutrino.

From the assumption that the sterile neutrino interacts
with other particles via only mixing, the production rate
of the sterile neutrino Γνs is given by a product of the
probability of the flavor change of νa ↔ νs via mixing,
Pas, and averaged weak interaction rate 〈Γweak〉 [24–26],

Γνs = Pas 〈Γweak〉 . (11)

3



In this study, we adopt the simplest case in which one
sterile neutrino mixes with only one active neutrino [6],
and assume that the tau neutrino has the mixing for sim-
plicity. We then adopt the average weak interaction rate
of ντ , i.e., 〈Γweak〉 → Γτ = 2.9G2

FT
5 [26], where GF is

the Fermi constant. We set the initial condition Yi = 0 in
Eq. (8). Because the reaction rate of sterile neutrino de-
pends on parameters, the sterile neutrino does not always
stay in equilibrium at the initial time within all parame-
ter space. This is in contrast to active neutrinos that are
consistently in equilibrium well before BBN. The distri-
bution function of the sterile neutrino is then not always
the equilibrium function. For large reaction rates relative
to the cosmic expansion rate, the equilibrium abundance
realizes quickly, while for small reaction rates, the abun-
dance remains much smaller than YEQ. This is the reason
why we assume that the initial abundance of the sterile
neutrino is equal to zero.

In addition, in Eq. (8), we neglect the effect of an
extra-dimension on the cosmic expansion rate. As shown
in Sec. II A, observations of light element abundances
strongly constrain the value of E/a4

i . The cosmic expan-
sion rate in the early epoch until the sterile neutrino de-
coupling is, therefore, not allowed to deviate significantly

from that in the standard model. The rate equation is
then not affected significantly.

C. Modified flavor-change probability

In solving the rate equation, flavor-change probability
in Eq. (11) should account for the extra-dimensional and
matter effects. Since the trajectories of sterile neutrinos
in the bulk and active neutrinos on the brane are differ-
ent, their flavor-change probability is different from that
in free space [6]. In addition, the neutrino oscillation is
affected by the matter effect. These two effects can be
treated similarly to the effective potential in the Mikheev-
Smirnov-Wolfenstein (MSW) physics [27, 28]. When the
matter effect [24, 31, 32] and difference of geodesic are
included, the effective mixing angle is derived as

sin22θ̃ =
sin2 2θ

Q2
α(θ, δm2, Eres;T,E)

, (12)

where we defined a parameter Qα for the modification of
the mixing angle given by

Qα(θ, δm2, Eres;T,E) =

√√√√ sin2 2θ + cos2 2θ

[
1 +

CαG2
FT

4E2

cos 2θαδm2
−
(

E

Eres

)2
]2

, (13)

where α is the fine structure constant, Ce = 1.22 (for νe)
and Cµ,τ = 0.34 (for νµ and ντ ) are flavor (α) dependent
constants. We used Cτ = 0.34 because we considered
only ντ . θ is the bare mixing angle between the sterile
and active neutrinos, δm2 denotes the mass squared dif-
ference, and E is the energy of the sterile neutrino. The
resonance energy Eres is given [6] by

Eres =

√
δm2 cos 2θ

2εs
, (14)

where εs = (Db − DB)/Db is a shortcut parameter de-
scribing the fractional difference between the geodesic in
the bulk DB and that on the brane Db.

We assume that the sterile neutrino is relativistic be-
fore the decoupling, and use the value of E = 3.151Tνs ,
which is the averaged energy for the relativistic fermion
with Tνs the temperature of the sterile neutrino.

The probability of the flavor change of sterile and ac-
tive neutrinos is derived from the wave packet treatment
[33, 34] as

Pas ≈

{
sin2 2θ̃ sin2

(
δm2

mattsc
4E

)
(for T ≥ Teq)

1
2 sin2 2θ̃ (for T ≤ Teq),

(15)

where we defined the effective mass-squared difference in

matter, i.e.,

δm2
mat = δm2Qα(θ, δm2, Eres;T,E), (16)

and the scattering time scale of active neutrino

tsc '
1

G2
FT

5
. (17)

The typical temperature Teq is defined related to the
flavor-change probability as

Teq =

(
δm2

G2
F

)1/6

= 44 MeV

(
δm2

1 eV2

)1/6

. (18)

At this temperature, the scattering time scale of active
neutrino and the overlap time scale of neutrino wave
packets equal. In addition, the matter effect becomes
negligible somewhat below this equality temperature.

A formulation of the flavor-change probability includ-
ing Eqs. (12), (13), (15)–(18) is shown in Appendix A.
By using Eqs. (8), (11), and (15), the abundance of the
sterile neutrino is calculated.
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FIG. 2. (Color online) Contours for the final value of Yνs as
a function of θ and Eres [GeV] for mνs = 1 eV.

III. RESULT OF THE RATE EQUATION

By using the modified mixing probability, we solve the
rate equation in the temperature interval of 100 GeV
≥ T ≥ 1 MeV. This rate equation is approximation of the
Boltzmann equation. The comparison of results of Boltz-
mann and rate equations is described in Appendix B.
Figure 2 shows the contours for the final values of Yνs cal-
culated by the rate equation as a function of θ and Eres.
For this figure and Figs. 3–5 in this section, the mass of
sterile neutrino is taken to be mνs ≈ (δm2)1/2 = 1 eV for
example. We discuss the result from three viewpoints.

A. Mixing angle vs. Yνs

First, we explain the results in Fig. 2 as a function of
mixing angle for a given Eres. The value of Yνs is larger
for larger mixing angle. As seen in Eqs. (11) and (15),
the larger mixing angle produces the larger flavor-change
probability and reaction rate.

Figure 3 shows the temperature evolution of the abun-
dance of sterile neutrino derived by solving the rate equa-
tion. The red-solid line indicates the equilibrium abun-
dance YEQ and other lines show the abundance of the
sterile neutrino Yνs for θ = 0.1 (higher dashed line), 0.01
(lower dashed line), and 0.001 (dotted line), respectively.
The resonance energy is fixed as Eres = 0.1 GeV for ex-
ample. The black vertical dashed line at T = 150 MeV
shows the temperature of the quark-hadron transition.

The equilibrium abundance YEQ is increased with de-
creasing T because the number of degrees of freedom g∗S
decreases. This behavior is remarkably contrary to the
decrease of Yνs by the exponential decrease of the equi-
librium number density nEQ after the sterile neutrino be-
comes non-relativistic. Because of the hadronization of
the quark-gluon plasma (QGP) the abundance Yνs is in-
creased with decreasing temperature in this epoch. This
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FIG. 3. (Color online) Temperature evolution of the abun-
dance of sterile neutrino. The red-solid line indicates the equi-
librium abundance YEQ and other lines show the abundance
of the sterile neutrino Yνs for the mixing angle θ = 0.1 (higher
dashed line), 0.01 (lower dashed line), and 0.001 (dotted line),
respectively. The mass is mνs = 1 eV and the resonance en-
ergy is fixed as Eres = 0.1 GeV. The black vertical dashed line
at T = 150 MeV shows the temperature of the quark-hadron
transition.

feature can be seen at the vertical line. For this figure,
the entropy density is calculated by a standard method
[23] described in Ref. [29]

No sterile neutrino exists at initial time by the assump-
tion. When the temperature decreases to T ∼ Teq = 44
MeV, however, the effective mixing angle increases (Sec.
II C). The production rate of the sterile neutrino then
becomes large, and its number density approaches to the
equilibrium line. In this parameter set, no resonance of
the effective mixing angle occurs as the universe evolves.
This can be understood by noting that the square bracket
in Eq. (13) is always close to or larger than unity. The
temperature where the second and the third terms in
the square bracket equal is given by Tres,1 = 11.2 MeV
[Eq. (B65)]. At this temperature, the factor (E/Eres)

2

is significantly smaller than 1. Therefore, no resonance
occurs in this model (see Appendices A and B for details
on the resonant mixing in the early universe). After the
matter term becomes negligible in Eq. (13), the effec-
tive mixing angle is close to the bare mixing angle, i.e.,
sin2 2θ̃ ≈ sin2 2θ. Since the reaction rate is proportional
to θ̃2, the final abundance is almost proportional to θ2

for small θ values (see curves of θ = 0.01 and 0.001).
For large θ values, the equilibrium abundance is realized
before the decoupling of the sterile neutrino (the case of
θ = 0.1). Fig. 3 shows that the small mixing angle gives
low abundance of the sterile neutrino for this parameter
set.

B. The resonance energy vs. Yνs

Second, the resonance energy dependence is inter-
preted similarly, because it is related to the reaction rate

5
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FIG. 4. (Color online) Temperature evolution of the reac-
tion rate and the cosmic expansion rate (upper panel) and
the abundance (lower panel). The mass is mνs = 1 eV and
the mixing angle is fixed as θ = 0.01. The red-solid line indi-
cates the cosmic expansion rate (upper panel) and the equi-
librium abundances YEQ (lower panel). Other lines show the
abundance of the sterile neutrino Yνs for the resonance energy
Eres = 0.01 GeV (long dashed line), 0.03 GeV (dashed-dotted
line) and 0.1 GeV (dotted line).

of the sterile neutrino. Figure 4 shows the temperature
evolution of reaction rate Γνs and H (upper panel) and
Yνs (lower panel). The value of mixing angle θ is fixed as
0.01. The black vertical dashed line at T = 150 MeV cor-
responds to the temperature of the quark-hadron tran-
sition. At the temperature, the equilibrium abundance
of the sterile neutrino is increased because of decreasing
g∗S.

The reaction rate is very small in the high temperature
region, T & Teq = 44 MeV since a large matter term
hinders the effective mixing angle [Eqs. (12) and (13)].
For the cases of Eres = 0.01 and 0.03 GeV, maximal
enhancements of the effective mixing angle occur twice,
respectively. At the peaks, the production rate of the
sterile neutrino is larger than the cosmic expansion rate.
As a result, the abundance of sterile neutrino approaches
the equilibrium abundance. However, resonances occur
for short periods [cf. Eqs. (B16), (B17) and (B54)], and
the equilibrium abundance is not reached. At the first
resonance, the second term of the square brackets in Eq.
(12) cancels the third term, and the effective mixing angle
increases. At the second resonance, the first term, i.e.,
unity, cancels the third term, and the effective mixing
angle increases again (See Appendix B 6 for details). At

these resonances, the abundance of the sterile neutrino
suddenly increases (the lower panel). The abundance is
flat excepting the resonance epochs because the sterile
neutrino is decoupled from the equilibrium.

For the case of Eres = 0.1 GeV, there is no resonance
of the effective mixing angle, as explained for Fig. 3.
Therefore, the reaction rate does not have a peak, and
the abundance evolves smoothly.

As seen in Fig. 4, the abundance of sterile neutrino
is significantly enhanced by the extra-dimensional cor-
rection to the effective mixing angle. For large values of
Eres & 0.04 GeV, no resonance in the effective mixing
angle appears along the cosmic evolution. This parame-
ter region asymptotes to the standard model of four di-
mensional universe. For small values of Eres . 0.04 GeV,
resonances appear in the mixing angle, and the final ster-
ile neutrino abundance is enhanced. We observe that the
final abundance is smaller for smaller Eres values for the
reason explained below. As Eres decreases, the temper-
ature of the first resonance increases, and that of the
second resonance decreases (see Appendix B 6).

1. The first resonance

For 0.007 GeV . Eres . 0.04 GeV, the effective mixing
angle for temperatures around the first resonance tem-
perature is given by

sin2 2θ̃ =
sin2 2θ

sin2 2θ + cos2 2θ

[
1 +

CαG2
FT

4E2

cos 2θαδm2 −
(

E
Eres

)2
]2

≈ 4θ2

4θ2 +
(

E
Eres

)4
[(

T
Tres,1

)4

− 1

]2

≈ 4θ2

4θ2 +
(

E
Eres

)4 [
4∆ lnT1 + 6 (∆ lnT1)

2
]2 , (19)

where we took ∆ lnT1 = (T − Tres,1)/Tres,1 � 1, and
assumed θ � 1 and that amplitudes of the second and
the third terms in the square brackets in the first line are
much larger than unity. The duration of the resonance,
e.g., the full width of temperature at 1/e maximum, is
estimated as(

E

Eres

)4 [
4∆ lnT1 + 6 (∆ lnT1)

2
]2

= 4θ2(e− 1)

=⇒ ∆ lnT1 ∝
E2

res

E2
. (20)

Since the sterile neutrino energy at the first resonance

has a scaling of E = 3.15Tres,1 ∝ E
−1/2
res [Eq. (B65)],

the temperature step is given by ∆ lnT1 ∝ E3
res. When

the final abundance is much smaller than the equilibrium
abundance, the abundance change at the first resonance
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roughly scales as

Γνs(Tres,1)∆tres,1 ∝ Γνs(Tres,1)∆ lnT1H(Tres,1)−1(21)

∝ T 5
res,1E

3
resT

−2
res,1 (22)

∝ E3/2
res . (23)

Therefore, the abundance is smaller for smaller Eres val-
ues.

2. Deactivation of the first resonance

A discontinuity in contours is seen at a specific en-
ergy of Eres,cr ≈ 7 MeV. For Eres > Eres,cr the codition
Tres,1 < Teq = 44 MeV is satisfied, while for Eres < Eres,cr

the codition Tres,1 > Teq is satisfied. In the latter case,
the sterile neutrino production rate is significantly hin-
dered by small neutrino oscillation phase [Eq. (15)].
The clear discontinuity results from present approximate
treatment of Eq. (15).

3. Second resonance

The temperature step during the second resonance
∆ lnT2 is constant (see Appendix B 3). Using the scaling
Tres,2 ∝ Eres [Eq. (B66)], we obtain a rough scaling of
the abundance change for the case that the final abun-
dance is much smaller than the equilibrium abundance,
i.e.,

Γνs(Tres,2)∆tres,2 ∝ Γνs(Tres,2)∆ lnT2H(Tres,2)−1(24)

∝ E3
res. (25)

Since the first resonance is not effective for Eres < Eres,cr,
the abundance change at the second resonance is the final
abundance. The abundance is smaller for smaller Eres

values.
We note that for such a small Eres value, the effective

mixing angle is much smaller than the bare mixing angle
until E ∼ Eres is realized [Eq. (13)]. Therefore, the final
abundance is smaller than that of very large Eres or the
four dimensional model for a fixed θ value.

C. Decoupling temperature

Finally, we discuss νs decoupling temperature in order
to describe time evolution of energy density of the sterile
neutrino during BBN. First, we define a parameter

rs =
Tνs
Tν

, (26)

where Tνs and Tν are temperatures of sterile neutrino and
active neutrinos, respectively, for a fixed cosmic time.
This ratio is unity when the sterile neutrino is in equilib-
rium. When the sterile neutrino is decoupled, the tem-
peratures can be different, and the ratio is smaller than

1, in general. After active neutrino decoupling, the two
temperatures have the same scaling with a scale factor of
the universe. The ratio is, therefore, kept constant again.

The rs value after the decoupling is given by

rs =
Tνs
Tν

=

(
g∗S

g∗S,dec

)1/3

, (27)

where g∗S and g∗S,dec denote the relativistic degrees of
freedom, which does not contain the contribution of the
sterile neutrino, at the decoupling temperature of active
and sterile neutrinos, respectively. The second equality
is derived from the evolution of the active neutrino tem-
perature by taking into account the entropy conservation
[23].

This ratio is constant between the initial temperature
of BBN calculation, which is taken to be T9 = 100, and
the active neutrino decoupling temperature T9 ∼ 10,
due to the following reason. In this temperature inter-
val, numbers of degree of freedom for entropy does not
change. Therefore, both temperatures of the sterile and
active neutrinos simply scale as T ∝ 1/a. We then use
this constant ratio in the BBN calculation.

Figure 5 shows calculated ratio rs in the parameter
plane of θ and Eres. This ratio rs depends on θ and
Eres since the decoupling temperature of the sterile neu-
trino depends on its reaction rate determined by those
parameters. The ratio is rapidly increased at the curved
boundary. In the light region, the sterile neutrino decou-
ples later than the quark-hadron transition. The value
of rs is therefore close to unity in the region. The dark
region is corresponding to the small abundance region
due to a small reaction rate in Fig. 2. The final abun-
dance Yνs is smaller than the equilibrium abundance at
the initial temperature, YEQ ∼ 0.002 (see Fig. 3), in that
region. The equilibrium is never realized there. When
the reaction rate does not become larger than the ex-
pansion rate, there is no good way of estimation for the
temperature of the sterile neutrino. However, in such a
case, the final abundance of the sterile neutrino is always
negligibly small, and the temperature is not important.
We then just take the initial temperature T = 100 GeV
as the decoupling temperature for this case.

IV. RESULTS OF BBN

From the rate equation, final abundances and energy
density of the sterile neutrino are determined. Then the
cosmic expansion rate is modified as follows

H2 =
8πG

3
(ρstandard + ρνs) +

E
a4 .

(28)

The modified expansion rate changes primordial abun-
dances. We can then constrain the relevant parameters,
θ, Eres, mνs and E , by comparing calculated abundances
to the observational data. The primordial elemental
abundances depend on the sterile neutrino abundance,
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FIG. 5. (Color online) Color map of rs in the parameter plane
of θ and Eres [GeV] for mνs = 1 eV.

Yνs shown in Fig. 2 because the cosmic expansion rate
depends on the energy density of the sterile neutrino.

A. BBN Calculation and Observational Constraints

We use updated reaction rates [37, 38] in the BBN
calculation code [39, 40]. The neutron lifetime is taken
from the central value of the Particle Data Group, 880.3±
1.1 s [41]. The baryon-to-photon ratio is adopted from
the value η = (6.037±0.077)×10−10 corresponding to the
baryon density in the base ΛCDM model (Planck+WP)
determined from Planck observation of cosmic microwave
background, Ωmh

2 = 0.02205± 0.00028 [42].
The primordial D abundance comes from observations

of quasistellar object (QSO) absorption systems and its
value is D/H=(2.53 ± 0.04) × 10−5. We take 2σ limit
(2.53± 0.08)× 10−5 and 4σ limit (2.53± 0.16)× 10−5 in
the following analysis. For 4He, we adopt Yp = 0.2551±
0.0022 which is observed from metal-poor extragalactic
HII region [21] and also consider their 2σ limit (0.2551±
0.0044) and 4σ limit (0.2551± 0.0088).

B. E = 0 and mνs = 1 keV

Figure 6 shows the result of the primordial abundance
in the case of E = 0 and mνs = 1 keV. This 1 keV scale
of the sterile neutrino is one of candidates for dark mat-
ter. Since E is equal to zero, only the energy density
of the sterile neutrino affects the cosmic expansion rate.
Since the mass of the sterile neutrino is 1 keV, it is rel-
ativistic during BBN epoch. For deuterium abundance,
all parameter regions adopted here are allowed by the 4
σ abundance limit. We find a parameter region in which
the calculated 4He abundances satisfy the observational
2σ constraints although most of this region does not sat-
isfy the 2σ limit of D abundance. This allowed 2σ region
is not seen in the standard BBN result (see Fig. 1 at
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FIG. 6. (Color online) Contours of deuterium abundance (the
top panel) and 4He mass fraction (the bottom panel) in the
parameter plane of θ and Eres [GeV] for the case of mνs =
1 keV and E = 0. Parameter ranges are 0.001 ≤ θ ≤ π/4 and
0.001 GeV ≤ Eres ≤ 10 GeV, respectively. Dark and light-
shaded regions are 2 σ and 4 σ allowed regions, respectively.

E/a4
i = 0). The existence of the sterile neutrino energy

density, however, increases the cosmic expansion rate,
and as a result, abundances of D and 4He are increased.
All parameter regions in Fig. 6 are allowed by the 4σ
limit.

The shapes of contours can be interpreted as follows.
The energy density scales as

ρνs = nνs〈Eνs〉 ∝ YνsTνs
∝ Yνsrs. (29)

The number abundance of sterile neutrino is proportional
to Yνs shown in Fig. 2.1 The abundance is then high in
the large θ region, and there is a narrow peak at Eres =
O(0.01) GeV. Since large values of rs are realized with
large Yνs values, the factor of rs amplifies the effect of
Yνs . This dependence is appearing again in Fig. 6. Since
the energy density of sterile neutrino becomes larger for
the larger θ values and the critical resonance energy of

1 We note that the values of Yνs as well as rs depends on δm2.
Therefore, contour shapes in Figs.2 and 6 are different. The
mass assumed for Fig. 6 is larger than that of Fig. 2. Therefore,
the value of Teq is larger. The neutrino oscillation then becomes
effective earlier (see Sec. II C and Appendix A).

8



Eres = O(0.01) GeV, the abundances of D and 4He are
also high in that region of Fig. 6. Also, the energy density
is proportional to the sterile neutrino temperature or rs

shown in Fig. 5. There is a rapid change of the rs value
related to whether the sterile neutrino is decoupled early
or not. The value is low at the left bottom and the left
top in the parameter space.

C. Constraint on E

First, we consider the case of the smallest number
abundance of the sterile neutrino realized in the parame-
ter region. Figure 7 shows the calculated abundances of
deuterium and 4He, and also constraints on E similar to
those in Fig. 1. The mass of the sterile neutrino mνs is
assumed to be 1 eV which was the mass scale discussed
in the reactor anomalies. Mixing angle θ and resonance
energy Eres are fixed to be 0.01 radian and 0.01 GeV,
respectively. From the rate equation result, these val-
ues give the lowest reaction rate of the sterile neutrino,
that is, the smallest relic number abundance of the sterile
neutrino. Since the sterile neutrino increases the cosmic
expansion rate, constrained values of E are shifted to the
left side compared to those of Fig. 1. Namely, 120 <
E/a4

i (s−2) < 149 (2σ) and −18 < E/a4
i (s−2) < 248 (4σ)

regions are shifted to −56 < E/a4
i (s−2) < −26 (2σ) and

−195 < E/a4
i (s−2) < 72 (4σ), respectively. Therefore,

the 2σ allowed region in Fig. 1 is totally replaced, and a
part of the parameter region of 72 < E/a4

i (s−2) < 248
(4σ) are excluded by the sterile neutrino existent in BBN
epoch.

Fig. 8 shows the contours for the case of E/a4
i = 248

s−2 which is the maximum value of E in the 4 σ allowed
region in Fig. 1 and mνs = 1 eV. This E value is excluded
by the over-abundance of deuterium when the 1 eV sterile
neutrino with θ = 0.01 and Eres = 0.01 GeV is added.

vi

D. Constraint on the mass

Figure 9 shows the primordial abundances as a func-
tion of δm2 ≡ m2

νs − m2
νa in the same condition of

Fig. 7, i.e., θ = 0.01 and Eres = 0.01 GeV. The value
of E is fixed by the lowest values in the 2 σ and 4σ
allowed regions for the case without the sterile neu-
trino. Assuming mνa � 1 eV, we neglected the mass
of the active neutrino. Thus, δm2 is approximately the
same as the squared mass of the sterile neutrino. For
δm2 . 10−9 GeV2, there is no contribution of the sterile
neutrino mass because the sterile neutrino is relativistic
during the BBN epoch. If the sterile neutrino is rela-
tivistic in the BBN epoch, then the cosmic expansion
rate does not depend on the mass of the sterile neutrino
but only its number density.

However, if mνs is larger, then the sterile neutrino
would be non-relativistic and its mass affects the cos-
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FIG. 7. Same as Fig. 1. But here we include the sterile neu-
trino which has mνs = 1 eV, θ = 0.01 and Eres = 0.01GeV.
The value of E is constrained as −56 < E/a4i (s−2) < −26 and
−195 < E/a4i (s−2) < 72 by the 2σ and 4σ limits, respectively.

mic expansion rate. As a result, for E/a4
i = −18 s−2,

δm2 is allowed up to 1.7 × 10−7 GeV2 by the 4 σ con-
straint. On the other hand, there is no allowed region
for the 2σ range. For E/a4

i = 120 s−2, δm2 is allowed up

to 3.3× 10−8 GeV2 for the 4σ range and also there is no
allowed region for the 2σ range.

In addition, if the relic sterile neutrino can be existed
on the brane in the present universe, it can be a candi-
date of dark matter. We can constrain it from the obser-
vational data of cosmic microwave background (CMB).
However, we do not know what happens during BBN
and the present time in the extra-dimensional universe.
Perhaps the sterile neutrino may diffuse in the extra-
dimensional bulk associated with bulk expansion which
is beyond the scope of this paper and not treated in
this study. We should then note that what we derive in
this paper is a constraint independently coming from the
BBN consideration alone on the physical environment in
the short BBN epoch.

The Planck observation gives the following data of cold
dark matter density parameter for ΛCDM model with
Planck temperature power spectrum data alone [42]:

Ωch
2 = 0.1196± 0.0031. (30)

This corresponds to the energy density of the cold dark
matter ρc

ρc = (0.1261± 0.0033)× 10−5 GeV cm−3. (31)
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The present energy density of the sterile neutrino ρνs0
cannot be larger than the observed energy density of dark
matter. Therefore, if the relic sterile neutrino totally
remains on our brane until now, we have a constraint of
ρνs0 ≤ ρc that leads to

rsYνs0 ≤ (8.257± 0.22)× 102 (for 〈Eνs0〉 > mνs) ,(32)

mνsYνs0 ≤ (4.362± 0.11)× 10−10 GeV

(for 〈Eνs0〉 < mνs), (33)

where 〈Eνs0〉 = 3.151(4/11)1/3Tγ0 is the average present
temperature of the sterile neutrino when it is massless,
with Tγ0 = 2.7255 K the present CMB temperature [43].
The first and second lines correspond to constraints on
the relativistic and nonrelativistic sterile neutrinos, re-
spectively. In our calculation, the maximum value of rs

and Yνs are ∼ 1 and ∼ 0.02, respectively. Thus, all pa-
rameter space for the relativistic case are allowed by the
CMB data. For the non-relativistic case, since the en-
ergy density of the sterile neutrino is proportional to the
mass, the allowed region from the CMB data becomes
narrow with increasing sterile neutrino mass. We choose
mνs = 100 keV, i.e., the mass scale with which the ster-
ile neutrino becomes non-relativistic at the typical BBN
temperature of T9 = 1. For this mass value, the region of
Eres . O(0.001) GeV is only allowed. As seen in Fig. 9,
the constraint from the CMB data sets the upper limit
on mνs at δm2 = O(10−15) GeV2.

Figure 10 shows the contours for the present energy
density of the relic sterile neutrino deduced from calcu-
lated results of Yνs in the parameter plane of θ and Eres
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FIG. 9. (Color online) Primordial abundances of D and 4He
as a function of δm2. The parameters θ and Eres are fixed at
0.01 radian and 0.01 GeV, respectively. The solid blue and
dotted red lines denote the abundances for E/a4i = −18 and
120 s−2, respectively. The limits from observed abundances
are delineated by the horizontal lines: inner lines (2σ) and
outer lines (4σ). In the right region from the vertical black-
dashed line, the present energy density of the sterile neutrino
is larger than the constraint from CMB observation.

for mνs = 100 keV. The black dashed line corresponds
to the present energy density of cold dark matter [Eq.
(31)]. The right upper region from this line is excluded.

Figure 11 shows the same contours of light element
abundances as in Fig. 6 for the case of 1 MeV sterile
neutrino and E/a4

i = −20 s−2, for example. This value of
E/a4

i = −20 s−2 is near the lowest allowed value in Fig. 1
for the 4σ limit. In this case, there is no parameter region
that satisfies both of the 2σ limits on D/H and Yp. The
4σ allowed region is located in the left-bottom region.

In the present model of a sterile neutrino, the effective
mixing angle depends on the energy by Eq. (12). (See
also Figs. 15 and 16 in Appendix B.) Results of neutrino
experiments, therefore, do not always exclude the pa-
rameter region for large values of θ. For example, if we
assume the resonance energy Eres = 400 MeV (corre-
sponding to Figure 4 in Ref. [6]), for the energy region
of the IceCube measurement [5], i.e., 320 GeV ∼ 20 TeV,
the effective mixing angle becomes negligibly small. The
IceCube data is, therefore, consistent with this model, in-
dependently of the mixing angle θ. The experimental ver-
ification of the mixing of a sterile neutrino, which prop-
agates to the bulk space, then requires measurements of
the effective mixing angle for various neutrino energies.
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FIG. 11. (Color online) Same as Fig. 6, but for mνs = 1 MeV
and E/a4i = −20 s−2.

E. Dependence of primordial abundances on δm2

and θ

Figure 12 shows the primordial abundances as a func-
tion of δm2 and the mixing angle θ. The values of E and
Eres are fixed, respectively, at 0 and 0.03 GeV. If δm2 is
larger than 10−8 GeV2, the primordial abundances are

increased because the cosmic expansion rate depends on
the mass of the sterile neutrino by Eq. (7). In the high
mass region of the figure, deuterium and 4He abundances
are high. If the mixing angle is increased, the reaction
rate of the sterile neutrino is also increased. As a
result, higher number- and energy-densities of the sterile
neutrino are obtained. Therefore, final abundances of
light elements become higher by increasing the mixing
angle θ similarly to the trend in Fig. 9. If the δm2

value is higher than (2 − 3) × 10−8 GeV2, the region is
excluded by over-production of the deuterium. Similarly
to the case of Fig. 9, only the relativistic mass region is
allowed by the CMB observational data in this case.
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FIG. 12. (Color online) Contours of deuterium abundance
(the top panel) and 4He abundance (the bottom panel) in the
parameter plane of θ and δm2 [GeV2] for the case of E = 0 and
Eres = 0.03 GeV. Parameter ranges are 0.001 ≤ θ ≤ π/4 and
1.0 × 10−9 GeV2 ≤ δm2 ≤ 1 × 10−6 GeV2. Dark- and light-
shaded regions are the 2σ and 4σ allowed regions, respectively.
The white region is excluded by the BBN constraint.

F. Dependence of primordial abundances on δm2

and Eres

Figure 13 shows the primordial abundances as a func-
tion of δm2 and Eres. The value of E and θ are fixed,
respectively, at 0 and 0.03 GeV. In the figure, the de-
pendence on δm2 is similar to Fig. 12 by the same rea-
son. The curved shape at the specific Eres value appears
by the following reason: The number abundance of the
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sterile neutrino is the highest when the resonance energy
is equal to the energy of the sterile neutrino during its
decoupling epoch. Then the higher number abundance
of sterile neutrino around Eres ' Teq ∼ 0.04 GeV makes
the larger energy density. It affects the cosmic expansion
rate more and results in higher primordial abundances.
The curved shape is then similar to the pattern in Fig. 2.
The region of δm2 & 2×10−8 GeV2 and Eres & 0.01 GeV
is excluded by the over-production of deuterium, also in
this case. We find a parameter region for the 2σ allowed
region at Eres ∼ 0.01 GeV and δm2 . 10−8 GeV2.
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FIG. 13. (Color online) Contours of deuterium abundance
(the top panel) and 4He abundance (the bottom panel) in the
parameter plane of Eres and δm2 [GeV2] for the case of E = 0
and θ = 0.03. Parameter ranges are 0.001 GeV ≤ Eres ≤
10 GeV and 1.0×10−9 GeV2 ≤ δm2 ≤ 1.0×10−6 GeV2. Dark-
and light-shaded regions are the 2σ and 4σ allowed regions,
respectively. White region is excluded by the BBN constraint.
The black dashed line corresponds to the CMB constraint on
the present energy density of dark matter.

V. CONCLUSION

In this work, we study effects of a sterile neutrino which
can propagate in the bulk and brane in the five dimen-
sional universe on BBN. In the present model, the cos-
mic expansion rate is modified by the energy density of
the sterile neutrino and the existence of the fifth dimen-
sion itself. We then deduce parameter regions relevant
to the multi-dimensional sterile neutrino by using results
of the BBN calculation. The five-dimensional effect is

described by one parameter E , and the energy density
of the sterile neutrino depends on three parameters, i.e.,
Eres, θ and mνs . This model therefore has four physi-
cal parameters. Two of them are integration constants:
(1) E comes from the integration of five-dimensional Ein-
stein equation and (2) εs describes the shortcut, i.e., the
difference of geodesics in the bulk and on the brane in
five dimensional cosmology. The latter is reflected in the
sterile neutrino resonance energy Eres in Eq. (14). The
other two parameters are mixing angle and mass scale of
the sterile neutrino. These four parameters modify the
cosmic expansion rate and the energy density in the BBN
epoch. Taking into account the modified cosmic expan-
sion rate, we investigated how primordial abundances are
changed and constrained the parameters using the obser-
vational abundance data.

First, the parameter E manifests itself in the cos-
mic expansion rate and influences the primordial abun-
dances. When we do not consider the sterile neutrino,
the paremeter E is constrained: 120 < E/a4

i (s−2) < 149
and −18 < E/a4

i (s−2) < 248 from the observational 2 σ
and 4 σ limits, respectively, on abundances (Fig. 1).

Second, we took into account the effect of the energy
density of the sterile neutrino which can propagate in
the bulk space. The relic abundance and the tempera-
ture of the sterile neutrino are calculated by solving the
rate equation. The energy density of the sterile neutrino
depends on not only the mass but also the number den-
sity and the temperature. Since the mixing angle and
the resonance energy are related to the reaction rate of
the sterile neutrino, the two parameters determine the
relic abundance of the sterile neutrino. The parameters
are then constrained through the comparison of the BBN
calculation results and observed elemental abundances.
The final abundance of the sterile neutrino is increased
when the sterile neutrino has a large reaction rate.

We found that the relic abundance is large for large val-
ues of θ and a characteristic resonance energy Eres ∼ 0.04
GeV (Fig. 2). This value of resonance energy corre-
sponds to the temperature at which the average scatter-
ing time scale equals to the overlap time scale of wave
packets for active neutrinos. The ratio of the temper-
atures of the sterile and active neutrinos, rS, after the
decoupling of the active neutrino depends on the decou-
pling temperature of the sterile neutrino. The decoupling
temperature is determined by the parameters θ and Eres.
It is found that the ratio is significantly changed depend-
ing on whether the decoupling occurs before or after the
quark hadron transition (Fig. 5).

When the sterile neutrino is taken into account, the
cosmic expansion rate is increased and high E values are
excluded. For example, we observed that the constraints
on E in Fig. 1 are shifted to −56 < E/a4

i (s−2) < −26
(2σ) and −195 < E/a4

i (s−2) < 72 (4σ) in the case of
mνs = 1 eV, θ = 0.01 and Eres = 0.01 GeV (Fig. 7).

When the sterile neutrino is relativistic during BBN,
the energy density of the sterile neutrino is determined
by the relic abundance Yνs and the temperature ratio rS.
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The energy density is larger for a sterile neutrino which
decouples later since its abundance and the temperature
ratio are larger. We then derived a constraint on the pa-
rameters for the case of E = 0 (Fig. 6). If the mass of the
sterile neutrino is larger than ∼1 MeV, then it becomes
non-relativistic in the BBN epoch. So the energy density
of the sterile neutrino is proportional to its mass. It gives
a large energy density and it is constrained strongly. For
the case of mνs ≥ 1 MeV, there are no allowed parameter
region consistent with the 2 σ limit from observational
data (Fig. 11).

We showed a result of a parameter search in the plane
of (θ, mνs) for a fixed Eres value. We found that the re-
gion of mνs & O(10−4) GeV is excluded within all mix-
ing angle parameter space searched in this study when
Eres = 0.03 GeV. On the other hand, all mixing angle
parameter space are allowed when mνs . O(10−4) GeV
within 4σ range. This is because the heavier mass leads
to a larger energy density, and the larger mixing angle
leads to a later decoupling and a larger number density.
In both cases, the energy density is larger, and that pa-
rameter region is constrained (Fig. 12). We also showed
a result of a parameter search in the plane of (Eres, mνs)
for a fixed θ value. We then checked trends of large effects
for larger mass and the characteristic resonance energy
(Fig. 13).
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Appendix A: Flavor-change probability Pas

When the matter effect [24, 31, 32] is taken into ac-
count in the current five-dimensional model [6], the ef-
fective mixing angle becomes

sin2 2θ̃ =
sin2 2θ

sin2 2θ + cos2 2θ

[
1 +

CαG2
FT

4E2

cos 2θαδm2 −
(

E
Eres

)2
]2

=
sin2 2θ

Q2
α(θ, δm2, Eres;T,E)

, (A1)

where α is the fine structure constant, and Ce = 1.22
(for νe) and Cµ,τ = 0.34 (for νµ and ντ ) are flavor (α)
dependent constants. In the second equality, we defined
a modification factor for the mixing angle by the matter
and the extra-dimension effects, i.e.,

Qα(θ, δm2, Eres;T,E) =

√√√√ sin2 2θ + cos2 2θ

[
1 +

CαG2
FT

4E2

cos 2θαδm2
−
(

E

Eres

)2
]2

. (A2)

The probability of the flavor change of νa ↔ νs after propagation of time t [6] taking into account the evolution
of the wave packet [33, 34] is given by

Pas =
1

2
sin2 2θ̃

{
1− cos

(
δm2

matt

2E

)
exp

[
−
(

t

Lcoh
mat

)2

− (1 + κ)

(
δm2

mat

)2
32σ2

pp
2

]}
, (A3)

where δm2
mat is given by

δm2
mat = δm2Qα(θ, δm2, Eres;T,E). (A4)

The coherent length Lcoh
mat is defined [35] as

Lcoh
mat = Lcoh

vac

∣∣∣∣∣∣∣∣
δm2

mat

δm2 + cos 2θ

[
CαG2

FT
4E2

α − cos 2θδm2
(

E
Eres

)2
]
∣∣∣∣∣∣∣∣ , (A5)

where the coherent length in vacuum is given by

Lcoh
vac = 2

√
2σx

2p2

δm2
. (A6)

The quantity κ is given by

κ ≈ p2
1 − p2

2

δm2
mat

, (A7)
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with p1 and p2 average momenta of mass eigenstates 1
and 2, respectively, and σx and σp are widths of posi-
tion and momentum, respectively. There is a relation of
σxσp = 1/2.

The first term in Eq. (A3) corresponds to the contribu-
tion of squared terms of mass eigenstates 1 and 2, while
the second oscillation term with damping corresponds to
the interference term of states 1 and 2.

Taking p ∼ σp = 1/(2σx) ∼ T [24], because of
κ ≤ T 2/δm2

mat, the amplitude of second term in the ex-

ponential in Eq. (A3) is

(1 + κ)

(
δm2

mat

)2
32σ2

pp
2
≤ δm2

mat

T 2
. (A8)

We assume that this factor is always much less than unity,
and can be neglected in Eq. (A3).

We note that the coherence length Lcoh
mat for θ � 1

is roughly given by that of the vacuum oscillation ex-
cepting a region where the sum of the second and third
terms in the square brackets in Eq. (A1) is compa-
rable to unity. When the correction by the matter
potential plus the extra-dimensional term is dominant,
Lcoh

mat = Lcoh
vac/ cos 2θ. On the other hand, when the cor-

rection is negligible, Lcoh
mat = Lcoh

vac is realized. We then ap-
proximate the coherent length by that of the vacuum os-
cillation. Using approximations above, the flavor change
probability is given by

Pas =
1

2
sin2 2θ̃

{
1− cos

(
δm2

matt

2E

)
exp

[
−
(

t

Lcoh
vac

)2
]}

. (A9)

The production rate of the sterile neutrino is given by

Γνs = ΓwPas. (A10)

This production rate is evaluated with the mean life
of active neutrino against destruction via the weak inter-
action [24]. The mean life is given [24] by the average
scattering time scale,

tsc '
1

G2
FT

5
. (A11)

This time scale is shorter than the cosmic expansion time
scale before the active neutrino decoupling.

The coherent length is

Lcoh
vac = 2

√
2σx

2p2

δm2
∼ T

δm2
. (A12)

This is equivalent to the overlap time scale of neutrino
wave packets tcoh = Lcoh

vac .

1. Matter effect

First, we consider the neutrino oscillation in the case
without the extra-dimensional correction. The ratio of
the two different time scales are given by

tcoh

tsc
' T/δm2

1/(G2
FT

5)

=
G2

FT
6

δm2
. (A13)

Then, the time scales are comparable at the temperature
of

Teq =

(
δm2

G2
F

)1/6

= 44 MeV

(
δm2

1 eV2

)1/6

. (A14)

Then we obtain tcoh ≥ tsc for T ≥ Teq and tsc ≥ tcoh for
T ≤ Teq. Therefore, the coherence survives for T ≥ Teq,
while it is lost for T ≤ Teq. We note that at Teq, the
matter term in δm2

mat becomes

CαG
2
FT

4
eqE

2
eq

cos 2θαδm2
∼ 1

α
. (A15)

This temperature thus roughly corresponds to the epoch
when the matter effect becomes unimportant.

The flavor change probability then scales as

Pas ≈


1
2 sin2 2θ̃

{
1− cos

(
δm2

mattsc
2E

)}
= sin2 2θ̃ sin2

(
δm2

mattsc
4E

)
(for T ≥ Teq)

1
2 sin2 2θ̃ (for T ≤ Teq).

(A16)
We thus find that after the typical temperature Teq the
flavor change probability does not oscillate since the co-
herence is lost during the propagation.

In the early epoch of T ≥ Teq, the oscillation phase
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reduces to

δm2
mattsc
4E

' δm2

4E

(
CαG

2
FT

4E2

αδm2

)(
1

G2
FT

5

)
' 1

α
. (A17)

The oscillation is, therefore, maximally operative. We
can then take the time average of the probability. As a
result, the flavor change probability for any temperature
is given by

Pas ≈
1

2
sin2 2θ̃. (A18)

2. Extra-dimensional effect

Second, we consider the effect of the extra-dimension.
If the term (E/Eres)

2 in Eq. (A1) effectively increases
the effective mixing angle, the flavor change probability
can increase. The sterile neutrino production rate Γνs
is then increased. However, when the factor Qα is sig-
nificantly decreased by the extra-dimensional term, the
term δm2

mat becomes small. Therefore, the approxima-
tion of the maximal oscillation can be broken. In an
extreme case when the factor Qα is very small, the os-
cillation phase is δm2

mattsc/(4E) � 1. In this case, the

flavor change probability for T ≥ Teq is modified to

Pas ≈ sin2 2θ̃ sin2

(
δm2

mattsc
4E

)2

' sin2 2θ

(
δm2

G2
FT

6

)2

= sin2 2θ

(
T

Teq

)−12

(for T ≥ Teq). (A19)

We find that the flavor change probability is smaller at
high temperatures since there is no enough time for os-
cillation. We note that this probability scales similarly
to that of the 3D space case with εs = 0 (see Eqs. (A1)
and (A18)). We thus confirm that the resonant extra-
dimensional effect possibly increases the effective mix-
ing angle while it simultaneously increases the oscillation
time scale, i.e., tosc = 4E/δm2

mat. As a result, the flavor
change probability is not changed drastically from that
of the standard three dimensional case.

Appendix B: Solution of the Boltzmann equation

In this paper, we utilized the rate equation instead of
the Boltzmann equation in the estimation of the relic
energy density of sterile neutrino. We check how well the
result of the rate equation approximates the exact result.

1. ν-oscillation in the universe

Before the decoupling of active neutrinos, the neutrino oscillation phase is given by

αosc =
δm2

mattsc
4E

(B1)

= 3.8× 108

(
δm2

mat

eV2

)(
tsc
s

)(
E

MeV

)−1

. (B2)

At the beginning of BBN of t =1 s and T = 1 MeV, the neutrino oscillation of νa and νs is very frequent on the
cosmic expansion time scale for δm2 >

∼1 eV2. In the early universe of T > 1 MeV, this phase is usually larger than
unity [Eq. (A17)]. For simplicity, we assume a case in which the flavor change probability is given by Eq. (A18).

The production rate of νs is given by

Γνs(E) =
1

2
sin2(2θ̃(E))ΓW(E), (B3)

where the factor sin2(2θ̃)/2 is the probability of flavor change from νa to νs after the production of νa, and ΓW is the
rate of weak reaction which produces νa.

When the value of θ̃ is large, i.e., θ̃ <
∼1, the flavor change becomes maximally effective.

1. If this effective epoch is before the freeze-out of νa, Γνs > H−1 is realized. Then, the νs abundance approaches
to the equilibrium value.

2. If this effective epoch is after the freeze-out of νa, the oscillation leads to an equalization of energy densities
for νs and νa. Because of the energy conservation, however, the total neutrino energy density is unchanged.
Therefore, the additional neutrino energy, i.e., ∆ρν , is not affected.

We assume that the mass squared difference is larger than δm2 ∼ eV2 as considered in Pas et al. (2005). There

are constraints on the mixing angle, f.e., sin2 2θ̃24 . 10−1 for δm2
41 ∼1 eV2 (IceCube) [5] and |Uµ4|2 < 0.041 and
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|Uτ4|2 < 0.18 for δm2 > 0.1 eV2 (90 % C.L.) (Super-Kamiokande) [44]. We then assume that the bare mixing angle
θ is significantly smaller than unity in this case.

2. Upper limit on the mass

We focus on the relatively heavy sterile neutrino case, and consider an upper limit on the mass. If the sterile
neutrino can decay before the active neutrino decoupling, there is no sterile neutrino in BBN epoch. The νs mass can
then be constrained from the requirement of τ > 1 s in order to have any effect on BBN. The decay rate is given [Eq.
(7.12) in Ref. [29]] by

Γdec ∼ 1.87× 10−5 s−1

(
θ̃

10−3

)2 ( mνs

14 MeV

)5

. (B4)

The condition of Γdec = τ−1 < 1 s−1 is then satisfied when

mνs < 20 MeV

(
θ̃

0.1

)−2/5

. (B5)

3. Full width at 1/e maximum of the resonance

A maximum in the effective mixing angle as a function of E is derived as follows: We define the function

f(E;T ) = sin2 2θ̃

=
sin2 2θ

sin2 2θ + cos2 2θ [1 + F (Eres, T )E2]
2 , (B6)

where we defined

F (Eres, T ) = D(T )− 1/E2
res, (B7)

D(T ) =
CαG

2
FT

4

cos 2θαδm2
. (B8)

In these equations, θ is the bare mixing angle between the sterile and active neutrinos, Eres is a parameter related
to the extra-dimension [Eq. (14)], Cα is the flavor (α) dependent constant, GF is the Fermi constant, α is the fine
structure constant, and δm2 is the mass squared difference of the sterile and active neutrinos.

The derivative of this function with respect to E is given by

df(E;T )

dE
=
−4 sin2 2θ cos2 2θ

[
1 + F (Eres, T )E2

]
F (Eres, T )E{

sin2 2θ + cos2 2θ [1 + F (Eres, T )E2]
2
}2 . (B9)

Maxima exist for df/dE = 0, i.e., [
1 + F (Eres, T )E2

]
F (Eres, T ) = 0. (B10)

1. F (Eres, T ) = 0 case

When F (Eres, T ) = 0 is satisfied, D(T ) = 1/E2
res is hold. In this case, the effective mixing angle is the same as

the mixing angle θ independent of E. Therefore, f(E;T ) is constant, and the condition df/dE = 0 is realized
for any E. Thus, at the temperature satisfying D(T ) = 1/E2

res, there is no maximum. This temperature occurs
only once.

2. E2 = −1/F (Eres, T ) case

For this case, the peak energy is given by

Epeak(Eres, T ) =
Eres√

1−D(T )E2
res

. (B11)
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The maximum is given by

f(Epeak;T ) =
sin2 2θ

sin2 2θ + cos2 2θ
[
1 + F (Eres, T )E2

peak

]2 = 1. (B12)

This maxima exist only for F (Eres, T ) < 0, i.e., D(T ) < 1/E2
res. Therefore, the resonance appears after the

temperature of the universe decreases to some critical temperature.

After the condition D(T )E2
res = 1 is satisfied, the peak energy quickly moves from infinity to Eres as the

temperature decreases. The asymptotic value of Epeak at low T values is Eres. We note that sterile neutrinos
with energies below a critical value do not experience any resonance since this peak energy never overlaps the
sterile neutrino energy. On the other hand, sterile neutrino with energies above the critical value have two
resonance epochs in general. The sterile neutrino energy that is red-shifting once becomes larger than Epeak

during the peak energy is decreasing. After that, the red-shifting energy becomes smaller than Epeak ≈ Eres.
These behaviors of the first and second resonances are shown in Appendix B 6 below.

The full width at 1/e maximum of sin2 2θ̃(E) (for F < 0) is derived as follows:

sin2 2θ̃ =
sin2 2θ

sin2 2θ + cos2 2θ [1 + F (Eres, T )E2]
2 ≥

1

e
(B13)

=⇒
√

1− tan 2θ
√
e− 1 ≤ E

Epeak
≤
√

1 + tan 2θ
√
e− 1 (B14)

=⇒ 1− θ
√
e− 1 ≤ E

Epeak
≤ 1 + θ

√
e− 1 (for θ � 1). (B15)

We note that the energy at which the maximum of the function f appears, i.e., Epeak, depends on T . Especially,
at the second resonance, the matter term D(T )E2

res in Eq. (B11) is subdominant, and the energy Epeak does
not significantly dependent on T . When we approximate Epeak with Eres, the full width at 1/e maximum is
given by

∆E

Eres
≈ 2θ

√
e− 1 (for θ � 1) (B16)

=⇒ ∆ ln a = 2θ
√
e− 1 (for θ � 1), (B17)

where ∆ ln a is the scale factor interval in logarithmic scale corresponding to the duration of the second resonance
of the mixing angle.

4. Boltzmann equation

As the neutrino energy redshifts, it pass through the resonant region in the effective mixing angle θ̃(E). Although
the width of resonance can be narrow, when T ∼ Eres is satisfied, all energy region of E ∼ T experiences the resonance
peak. Therefore, the approximation of Boltzmann equation by the rate equation would not introduce a very large
error in the final sterile neutrino abundance although there is certainly some error.

The Boltzmann equation of the sterile neutrino in the Friedmann-Lemâıtre-Robertson-Walker Universe is given
[23, 45] by

(∂t −Hp∂p) fk(p, t) = Ha∂afk(y, a) = Icoll, (B18)

where

Icoll =
1

2Ek

∑
process

∫ ∏
i 6=k

[
d3pi

2Ei (2π)
3

] ∏
f 6=k

[
d3pf

2Ef (2π)
3

]
(2π)

4
δ(4)

∑
i

pi −
∑
f

pf

 1

2
S |Aif |2 F (fi, ff ) (B19)

is the collision integral with

F (fi, ff ) = −
∏
i

fi
∏
f

(1− ff ) +
∏
f

ff
∏
i

(1− fi) (B20)
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the factor for the phase space. In these equations, t is the cosmic time, p is the momentum, H = ȧ/a is the cosmic
expansion rate with a(t) the scale factor of the universe, fl is the phase space distribution function of a fermion l, El
is the total energy of l, indexes i and j are used for particles in the initial and final states, respectively, the factor of
1/2 is for taking a spin average for particles in the initial state, S = 1/m! with m the number of identical particles in
the final state, and Aij is the matrix element. In Eq. (B19), the sum is taken over process. At the first equality in
Eq. (B18), the variable y = pa(t) is defined and the distribution function f(a, y) is considered.

Matrix elements of a sterile neutrino are listed in Tables 1 and 2 in Ref. [45]. We consider the relatively light sterile
neutrino, i.e., mνs < 2me, where me = 0.510999 MeV is the electron mass. Then, the sterile neutrino decay into an
e+e− pair and an active neutrino does not occur energetically. In addition, since we consider cosmic temperatures
which are well above the electron mass, terms proportional to m2

e in matrix elements can be neglected. Furthermore,
it is assumed that all fermions excepting the sterile neutrino have the exact Fermi-Dirac distribution and that masses
of those fermions are neglected. In the decay and scattering processes, we adopt indexes as 1 → 2 + 3 + 4 and
1 + 2→ 3 + 4 and identify the index 1 to be the sterile neutrino.

The collision terms for the decay and scattering are then given respectively by

Icoll,d =
4

(2π)5
G2

Fθ̃
2 1

E1

∫
d3p2

E2

d3p3

E3

d3p4

E4
δ(4) [p1 − (p2 + p3 + p4)] (p1 · p4)(p2 · p3)F (fi, ff ), (B21)

and

Icoll,s =
4
(
1 + g̃2

L + g2
R

)
(2π)5

G2
Fθ̃

2 1

E1

∫
d3p2

E2

d3p3

E3

d3p4

E4
δ(4) [p1 + p2 − (p3 + p4)]

× [2(p1 · p4)(p2 · p3) + (p1 · p2)(p3 · p4)]F (fi, ff ), (B22)

where we defined

g̃L = −1

2
+ sin2 θW, (B23)

gR = sin2 θW, (B24)

with the weak angle sin2 θW = 0.23 [41].

The two terms in Eq. (B22) are separately defined as

I
(1)
coll,s =

4
(
1 + g̃2

L + g2
R

)
(2π)5

G2
Fθ̃

2 1

E1

∫
d3p2

E2

d3p3

E3

d3p4

E4
δ(4) [p1 + p2 − (p3 + p4)]

×2(p1 · p4)(p2 · p3)F (fi, ff ) (B25)

I
(2)
coll,s =

4
(
1 + g̃2

L + g2
R

)
(2π)5

G2
Fθ̃

2 1

E1

∫
d3p2

E2

d3p3

E3

d3p4

E4
δ(4) [p1 + p2 − (p3 + p4)]

×(p1 · p2)(p3 · p4)F (fi, ff ). (B26)
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Performing the integrals, we obtain the exact formulae for p1 6= 0 as follows: For the decay term,

Icoll,d =
1

2π3
G2

Fθ̃
2

{
−f1(E1)

p1

[∫ E1−p1
2

0

dE4

∫ p1+p4

|p1−p4|
dR+

∫ E1+p1
2

E1−p1
2

dE4

∫ E1−E4

|p1−p4|
dR

]

× [1− f4(E4)]
[
(E1 − E4)

2 −R2
] [
p4 −

p2
1 + p2

4 −R2

2E1

]
G1(E1, E4, R)

+
1− f1(E1)

p1

[∫ E1−p1
2

0

dE4

∫ p1+p4

|p1−p4|
dR+

∫ E1+p1
2

E1−p1
2

dE4

∫ E1−E4

|p1−p4|
dR

]

f4(E4)
[
(E1 − E4)

2 −R2
] [
p4 −

p2
1 + p2

4 −R2

2E1

]
G2(E1, E4, R)

}
(B27)

G1(E1, E4, R) ≡
∫ E2max,d

E2min,d

[1− f2(E2)] [1− f3(E1 − E4 − E2)] dE2 (B28)

=


T

1−e−a2

[
ln

exp(x2max,d)+1
exp(x2max,d)+exp(a2) − ln

exp(x2min,d)+1
exp(x2min,d)+exp(a2)

]
(a2 6= 0)

T
(

1
exp(x2min,d)+1 −

1
exp(x2max,d)+1

)
(a2 = 0)

(B29)

G2(E1, E4, R) ≡
∫ E2max,d

E2min,d

f2(E2)f3(E1 − E4 − E2)dE2 (B30)

=


T

ea2−1

[
ln

exp(x2max,d)+1
exp(x2max,d)+exp(a2) − ln

exp(x2min,d)+1
exp(x2min,d)+exp(a2)

]
(a2 6= 0)

T
(

1
exp(x2min,d)+1 −

1
exp(x2max,d)+1

)
(a2 = 0)

(B31)

x2min,d =
E2min,d

T
=
E1 − E4 −R

2T
(B32)

x2max,d =
E2max,d

T
=
E1 − E4 +R

2T
(B33)

a2 =
E1 − E4

T
. (B34)
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For scattering terms, we obtain

I
(1)
coll,s =

(
1 + g̃2

L + g2
R

)
2π3

G2
Fθ̃

2

{
−f1(E1)

p1

[∫ E1+p1
2

E1−p1
2

dE4

∫ p1+E4

E1−E4

dR+

∫ ∞
E1+p1

2

dE4

∫ E4+p1

E4−p1
dR

]

× [1− f4(E4)]
[
R2 − (E1 − E4)

2
] [
p4 −

p2
1 + p2

4 −R2

2E1

]
G3(E1, E4, R)

+
1− f1(E1)

p1

[∫ E1+p1
2

E1−p1
2

dE4

∫ p1+E4

E1−E4

dR+

∫ ∞
E1+p1

2

dE4

∫ E4+p1

E4−p1
dR

]

f4(E4)
[
R2 − (E1 − E4)

2
] [
p4 −

p2
1 + p2

4 −R2

2E1

]
G4(E1, E4, R)

}
(B35)

G3(E1, E4, R) ≡
∫ ∞
E2min,s

f2(E2) [1− f3(E1 − E4 + E2)] dE2 (B36)

=

{
T

1−e−a2

[
a2 − ln

exp(x2min,s+a2)+1
exp(x2min,s)+1

]
(a2 6= 0)

T 1
exp(x2min,s)+1 (a2 = 0)

(B37)

G4(E1, E4, R) ≡
∫ ∞
E2min,s

[1− f2(E2)] f3(E1 − E4 + E2)dE2 (B38)

=

{
T

ea2−1

[
a2 − ln

exp(x2min,s+a2)+1
exp(x2min,s)+1

]
(a2 6= 0)

T 1
exp(x2min,s)+1 (a2 = 0)

(B39)

x2min,s =
E2min,s

T
=
R− E1 + E4

2T
(B40)

a2 =
E1 − E4

T
, (B41)

and

I
(2)
coll,s =

(
1 + g̃2

L + g2
R

)
4π3

G2
Fθ̃

2

{
−f1(E1)

p1

∫ ∞
0

f2(E2)dE2

∫ p1+p2

|p1−p2|
dR

×
[
(E1 + E2)

2 −R2
] [
p2 −

R2 − p2
1 − p2

2

2E1

]
G5(E1, E2, R)

+
1− f1(E1)

p1

∫ ∞
0

[1− f2(E2)] dE2

∫ p1+p2

|p1−p2|
dR

×
[
(E1 + E2)

2 −R2
] [
p2 −

R2 − p2
1 − p2

2

2E1

]
G6(E1, E2, R)

}
(B42)

G5(E1, E2, R) ≡
∫ E4max,s

E4min,s

[1− f4(E4)] [1− f3(E1 + E2 − E4)] dE4 (B43)

=


T

1−e−a4

[
ln

exp(x4max,s)+1
exp(x4max,s)+exp(a4) − ln

exp(x4min,s)+1
exp(x4min,s)+exp(a4)

]
(a4 6= 0)

T
(

1
exp(x4min,s)+1 −

1
exp(x4max,s)+1

)
(a4 = 0)

(B44)

G6(E1, E2, R) ≡
∫ E4max,s

E4min,s

f4(E4)f3(E1 + E2 − E4)dE4 (B45)

=


T

ea4−1

[
ln

exp(x4max,s)+1
exp(x4max,s)+exp(a4) − ln

exp(x4min,s)+1
exp(x4min,s)+exp(a4)

]
(a4 6= 0)

T
(

1
exp(x4min,s)+1 −

1
exp(x4max,s)+1

)
(a4 = 0)

(B46)

x4min,s =
E4min,s

T
=
E1 + E2 −R

2T
(B47)

x4max,s =
E4max,s

T
=
E1 + E2 +R

2T
(B48)

a4 =
E1 + E2

T
. (B49)
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We note that in this formulation, we adopted variables R = p1 − p4 (for terms Icoll,d and I
(1)
coll,s) and R = p1 + p2

(for a term I
(2)
coll,s).

Especially, when the mass of the sterile neutrino is much larger than the temperature, the Pauli blocking effect is
negligible in the phase factor [Eq. (B20)]. Then, the first term in Eq. (B27) becomes

1st term of Icoll,d = − 1

192π3
G2

Fθ̃
2m5

νsf1(E1). (B50)

This gives the life time of sterile neutrino at low temperatures, i.e.,

τνs(T = 0) =

[
1

192π3
G2

Fθ̃
2m5

νs

]−1

. (B51)

By using replacement for terms of distribution function as (1− fl)↔ 1 and fl = [exp(El/T ) + 1]−1 ↔ exp(−El/T ),
inaccurate and analytic expressions for the collision terms are derived and used frequently. For example, Eq. (23) in
Ref. [45] for pνs = 0 (Eνs = mνs) is reproduced using the replacement in Eqs. (B21) and (B22). However, an error of
a factor of up to two is introduced by each replacement of (1− fl)↔ 1 or fl = [exp(El/T ) + 1]−1 ↔ exp(−El/T ), in
general. Therefore, we should use the exact collision terms as given above.

5. Abundance increase at the resonance

We assume that the sterile neutrino is ultrarelativistic before the decoupling. The equilibrium distribution function
of fermion, i.e., the Fermi-Dirac function, is given by

fEQ(E, t) =
1

exp(E/T (t)) + 1
, (B52)

fEQ(y, a) =
1

exp {y/[aT (a)]}+ 1
, (B53)

where we define y ≡ E0 and a0 = 1 as the sterile neutrino energy and the scale factor at the initial temperature
T0 = 100 GeV. The product aT has the scaling derived hereinbelow.

Suppose that the abundance of the sterile neutrino is very small initially and it increases significantly during the
resonance epoch. If the final abundance does not reach the equilibrium abundance, the abundance change roughly
scales as

∆f(y, a)res ∼ Γνs(Epeak, Tpeak(y))∆tpeakfEQ(y, apeak)

∝ Γνs(Epeak, Tpeak(y))θ
1

H(Tpeak(y))
fEQ(y, apeak)

∝ θ Tpeak(y)3fEQ(y, apeak), (B54)

where Tpeak(y) is the temperature at which the resonant mixing occurs for a given y, apeak(y) is the scale factor
corresponding to the temperature, and Γνs(Epeak, Tpeak(y)) is the sterile neutrino production rate at the energy Epeak

and the temperature Tpeak(y).
On the other hand, if the reaction rate is very large, the final abundance becomes the equilibrium abundance. Since

the difference in the final abundance between the exact and approximated treatment using the Boltzmann and the
rate equations, respectively, is small in the latter case, we focus on the former case in what follows.

The resonant mixing for a fixed y value occurs when the energy redshifts to the peak energy, i.e.,

Epeak =
y

apeak(y)
. (B55)

The entropy per comoving volume is given by

S = sa3 =
2π2

45
g∗ST

3a3, (B56)

where s is the entropy density of the universe, and g∗S is the statistical degrees of freedom for entropy. The entropy
conservation during the resonance leads to the equation

Tpeak(y) =
T0

apeak(y)

(
g∗S0

g∗S,peak(y)

)1/3

= T0
Epeak

y

(
g∗S0

g∗S,peak(y)

)1/3

, (B57)
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where g∗S0 and g∗S,peak(y) are the values of g∗S at T0 and Tpeak(y), respectively.
We then obtain

fEQ(Epeak, t(apeak(y))) =
1

exp(Epeak/Tpeak(y)) + 1
=

1

exp

[
y
T0

(
g∗S,peak(y)

g∗S0

)1/3
]

+ 1

. (B58)

The change in distribution function is approximately given by

∆f(y, a)res ∝
θTpeak(y)3

exp(Epeak/Tpeak) + 1
. (B59)

At the first resonance, the peak temperature is rather constant [see Eq. (B65) below] since the value of Epeak quickly
evolves. The change is then given by

∆f(y, a)1
res ∝

1

exp

[
y
T0

(
g∗S,peak(y)

g∗S0

)1/3
]

+ 1

. (B60)

At the second resonance, on the other hand, the peak energy is close to Eres and the value of Tpeak(y) significantly
depends on y. The change is then given by

∆f(y, a)2
res ∝

1

y3g∗S,peak(y)

1

exp

[
y
T0

(
g∗S,peak(y)

g∗S0

)1/3
]

+ 1

. (B61)

6. Test calculation

We check a difference in the distribution function of the sterile neutrino derived from the exact calculation and
the simplified estimation. In order to check the expectable maximum difference, we choose a case where the initial
abundance of the sterile neutrino is negligible. For example, we take mνs = 1 eV, θ = 10−8, and Eres = 10 MeV.
Then, even at the cosmic temperature of the electro-weak phase transition of T ∼ 200 GeV, the sterile neutrino is
not in the equilibrium.

This is shown by the fact that the sterile neutrino production rate is smaller than the cosmic expansion rate using
the following equation: The production rate of the sterile neutrino and the cosmic expansion rate are respectively
given [Eqs. (A10) and (A18)] by

Γνs ∼ G2
Fθ̃

2T 5, (B62)

H ∼ g
1/2
∗ T 2

MPl
, (B63)

where g∗ is the statistical degrees of freedom for energy, and MPl is the Planck mass. Then, we have a relation [Eq.
(7.11) in Ref. [29]]:

Γνs
H
∼

(
θ̃

10−3

)2 ( g∗
63.75

)−1/2
(

T

0.2 GeV

)3

. (B64)

For the adopted parameter set, the sterile neutrino abundance is very small before the resonant mixing occurs.
Therefore, we can assume that the abundance is zero at the initial time of the calculation. We can then estimate the
maximum difference in the distribution function calculated by the Boltzmann equation and the rate equation from
this result. We note that the flavor change probability is the average value for the case of complete oscillation [Eq.
(A18)] in the whole temperature region until the sterile neutrino decoupling for this parameter set (see Appendix A).

Figure 14 shows the ratio of the calculated distribution function and the equilibrium function, i.e., f/fEQ(y), (solid
lines) as a function of temperature for y/T0 = 0.25, 1, 2, 3.15, 4, and 5. At high temperature, the effective mixing
angle is hindered by the matter effect [Eq. (A1)]. As the temperature decreases, the effective mixing angle increases
and the distribution function increases also. Since the effective mixing angle is smaller for larger energy E, the
distribution function is larger for smaller E or smaller y = E0 values. At T = 35.4 MeV, the 1 + matter term in Eq.
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FIG. 14. (Color online) Temperature evolution of distribution function f/fEQ(y) (solid lines) for y/T0 = 0.25, 1, 2, 3.15, 4,
and 5. The temperature evolution of the abundance Y/YEQ is also shown (dashed line). The mass and the bare mixing angle
of the sterile neutrino are set to mνs = 1 eV and θ = 10−8, respectively. The resonant energy is Eres = 10 MeV.

(A1) cancels with the extra-dimensional term in the square brackets. Therefore, the effective mixing angle becomes
large for a short time resonantly. This first resonance occurs at the temperature [cf. Eq. (A1)]

Tres,1 ≈
[

cos 2θαδm2

CαG2
FE

2
res

]1/4

. (B65)

The values of distribution function then suddenly increase excepting those at low energies (see the curve for y/T0 =
0.25). This resonance does not exist for low energies for the following reason: When the matter term becomes smaller
than the extra-dimensional term, the absolute value |(E/Eres)|2 is already relatively small. Therefore, the square

brackets does not become very close to zero and the strong resonance of sin2 2θ̃ ≈ 1 is never realized.
After the first resonance temperature, the second resonance occurs at a temperature which is significantly dependent

on the energy y. One can see a slight increase in the distribution function f(y) at the second resonance. In general,
at this point, the matter term becomes negligible and the extra-dimensional term cancels with unity in the square
brackets of Eq. (A1). This resonance approximately occurs at the time when the sterile neutrino energy is identical
to the resonant energy Eres. The second resonance is then given by the condition [cf. Eqs. (B55) and (B57)]

Tres,2(y) ≈ T0
Eres

y

(
g∗S0

g∗S,res(y)

)1/3

. (B66)

The second resonant temperature becomes the smaller for the larger energies y. The dashed line shows the abundance
ratio Y/YEQ calculated by solving the rate equation [Eq. (8)]. It is close to the ratio of the distribution function
f/fEQ(3.15T0), i.e., the value for the average energy of the equilibrium distribution, although a difference by a factor
exists between the two lines.

Figure 15 shows the effective mixing angle as a function of temperature for y/T0 = 0.25, 1, 2, 3.15, 4, and 5. No
resonance exists for the low energy of y/T0 = 0.25 as explained above, and there are two resonances for other energies.

Figure 16 shows the distribution function of the sterile neutrino as a function of the initial energy y = E0 at
T = 100, 40, 35, 30, 10, and 3 MeV (solid lines). At T = 100 MeV, no resonance has come for the effective mixing
angle, and the distribution function is low totally and higher for low energies (cf. Fig. 14). At T = 40 MeV before
the first resonance, the distribution function is larger but still very small. At T = 35 MeV during the first resonance,
the distribution function is suddenly increasing. This increase occurs from larger y to lower y. The 1st resonance
occurs at FE2 = −1, which is realized earlier, i.e., at higher T , for larger y [see Eq. (B7)]. At T = 30 MeV, the
distribution function is large for energies larger than y ∼ 50 GeV. At T = 10 MeV, the large value of distribution
function is extended to somewhat lower energy y, and a slight increase of the function for y . 100 GeV is observed.
This slight increase is caused by the second resonance which occurs earlier for lower y values. At T = 3 MeV, the
distribution function in the range of y ∼ [100, 350] GeV is larger than that of T = 10 MeV because of the effect of
the second resonance.

The dotted line is the equilibrium function at the initial temperature T0 that is normalized arbitrarily. As seen from
the equilibrium function and the last distribution function at T = 3 MeV, the real distribution function is different
from the equilibrium spectrum. Main differences are (1) the cutoff energy below which the distribution function is
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FIG. 15. (Color online) The effective mixing angle as a function of temperature for y/T0 = 0.25, 1, 2, 3.15, 4, and 5. Adopted
parameters are the same as in Fig 14.

FIG. 16. (Color online) The distribution function of the sterile neutrino as a function of y = E0 at T = 100, 40, 35, 30, 10, and
3 MeV (solid lines). Adopted parameters are the same as in Fig 14. The dotted line is the equilibrium function at the initial
temperature T0 that is normalized arbitrarily.

very small because of no resonance, and (2) a different dependence of the function on energy. The production rate of
sterile neutrino is larger for smaller energy of the sterile neutrino. Therefore, the increase of distribution function at
the resonance is larger for smaller energies (see Fig. 14). As a result, the final distribution function for low energies
is enhanced with respect to the equilibrium spectrum.

We derive the final energy density of sterile neutrino ρνs = 1.3 × 10−19 GeV4 from the integration of Boltzmann
equation. The approximate energy density from the integration of rate equation is ρνs = 6.4 × 10−19 GeV4. It is
then found that the use of the rate equation gives a rough estimation of the sterile neutrino energy density although
there are significant differences in spectra and the total number densities from values of the calculation of an exact
Boltzmann equation.

[1] A. Aguilar-Arevalo et al. [LSND Collaboration], Phys.
Rev. D 64, 112007 (2001).

[2] A. A. Aguilar-Arevalo et al. [MiniBooNE Collaboration],
Phys. Rev. Lett. 105, 181801 (2010).

[3] B. Bhattacharya, R. J. Hill and G. Paz, Phys. Rev. D
84, 073006 (2011).

[4] C. Giunti and M. Laveder, Phys. Rev. C 83, 065504

(2011).
[5] M. G. Aartsen et al. [IceCube Collaboration], Phys. Rev.

Lett. 117, no. 7, 071801 (2016).
[6] H. Päs, S. Pakvasa and T. J. Weiler, Phys. Rev. D 72,

095017 (2005).
[7] N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys.

Lett. B 429, 263 (1998); N. Arkani-Hamed, S. Dimopou-

24



los and G. R. Dvali, Phys. Rev. D 59, 086004 (1999);
I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and
G. R. Dvali, Phys. Lett. B 436, 257 (1998).

[8] G. Shiu and S. H. H. Tye, Phys. Rev. D 58, 106007
(1998).

[9] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370
(1999).

[10] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690
(1999).

[11] E. Aeikens, H. Päs, S. Pakvasa and T. J. Weiler, Phys.
Rev. D 94, no. 11, 113010 (2016)

[12] M. Kusakabe, S. Koh, K. S. Kim and M. K. Cheoun,
Phys. Rev. D 93, no. 4, 043511 (2016)

[13] M. Kusakabe, K. S. Kim, M-K. Cheoun, T. Kajino, Y.
Kino and J. Mathews, Astrophys. J. Suppl. 214, 1 (2014).

[14] K. Ichiki, M. Yahiro, T. Kajino, M. Orito and G. J. Math-
ews, Phys. Rev. D 66, 043521 (2002).

[15] N. Sasankan, M. R. Gangopadhyay, G. J. Mathews and
M. Kusakabe, arXiv:1607.06858 [astro-ph.CO].

[16] B. W. Lee and S. Weinberg, Phys. Rev. Lett. 39, 165
(1977). doi:10.1103/PhysRevLett.39.165

[17] K. Sato and M. Kobayashi, Prog. Theor. Phys. 58, 1775
(1977). doi:10.1143/PTP.58.1775

[18] P. Binetruy, C. Deffayet, U. Ellwanger and D. Langlois,
Phys. Lett. B 477, 285 (2000).

[19] C. Csaki, M. Graesser, C. F. Kolda and J. Terning, Phys.
Lett. B 462, 34 (1999).

[20] J. M. Cline, C. Grojean and G. Servant, Phys. Rev. Lett.
83, 4245 (1999).

[21] R. Cooke, M. Pettini, R. A. Jorgenson, M. T. Murphy
and C. C. Steidel, Astrophys. J. 781, 31 (2014).

[22] Y. I. Izotov, T.X. Thuan and N. G. Guserva, Mon. Not.
ROy. Astron. Soc. 445, 778

[23] E. W. Kolb and M. S. Turner, The early universe, West-
view press, 1994.

[24] R. Barbieri and A. Dolgov, Phys. Lett. B 237, 440 (1990).
[25] R. Barbieri and A. Dolgov, Nucl. Phys. B 349, 743

(1991).
[26] K. Enqvist, K. Kainulainen and M. J. Thomson, Nucl.

Phys. B 373, 498 (1992).
[27] L. Wolfenstein, Phys. Rev. D 17, 2369 (1978).
[28] S. P. Mikheev and A. Y. Smirnov, Nuovo Cim. C 9, 17

(1986).
[29] H. Ishida, M. Kusakabe and H. Okada, Phys. Rev. D 90,

no. 8, 083519 (2014).
[30] L. Wolfenstein, Phys. Rev. D 17, 2369 (1978); S.P.

Mikheev and A. Y. Smirnov, Nuovo Cimento Soc. Ital.
Fis. C 9, 17 (1986); S. P. Mikheev and A. Y. Smirnov,
Yad. Fiz. 42, 1441 (1985)[Sov. J. Nucl. Phys. 42, 913
(1985)]; V.D. Barger, K. Whisnant, S. Pakvasa, and
R.J.N. Phillips, Phys. Rev. D 22, 2718 (1980).
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