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Recent works have proved that semi-classical theories of gravity needed not be fundamentally
inconsistent, at least in the Newtonian regime. Using the machinery of continuous measurement
theory and feedback, it was shown that one could construct well behaved models of hybrid quantum-
classical dynamics at the price of an imposed (non unique) decoherence structure. We introduce a
principle of least decoherence (PLD) which allows to naturally single out a unique model from all
the available options; up to some unspecified short distance regularization scale. Interestingly, the
resulting model is found to coincide with the old –erstwhile only heuristically motivated– proposal of
Penrose and one of us for gravity-related spontaneous decoherence and collapse. Finally, this letter
suggests that it is in the submillimeter behavior of gravity that new phenomena might be found.

Gluing gravity and quantum mechanics in a unified
theory has proved to be a discouragingly difficult task.
Most efforts have so far been focused on constructing a
quantum theory of gravity [1] but the very nature of the
gravitational force –classical or quantum– remains un-
known. Whereas distinguishing different approaches to
quantum gravity might for long remain out of experimen-
tal reach, pining down the classical or quantum character
of gravity may be doable at low energy. To distinguish
a quantum and classical gravitational force, one needs a
candidate classical theory. In the Newtonian limit, the
standard approach has been to consider the Schrödinger-
Newton (SN) equation [2, 3], the low energy limit of
the fundamentally semi-classical gravity of Møller and
Rosenfeld [4, 5], as a paradigmatic example. However,
the latter is plagued by conceptual complications requir-
ing one to drop, at the very least, the statistical interpre-
tation of quantum states of matter. Interestingly, these
foundational problems of SN are not related to relativity
but, rather, to the difficulties in constructing consistent
hybrid quantum-classical dynamics, a fact that has often
been seen as a conclusive proof of the need for quantum
gravity [6]. Yet, SN is only one (rather naive) approach:
we shall discuss below an alternative while other options
[7, 8] are available.

The conceptual difficulties of hybrid quantum-classical
coupling can be solved, without full quantization, pro-
vided fluctuations are added to the classical variables
[9, 10]. The loss of unitarity can then be seen as the
necessary price of semi-classical coexistence. For gravity
in the Newtonian limit, it means adding a noise term δΦ
to the Newtonian potential Φ. These fluctuations are not
to be derived from quantum theory (as is e.g. the case in
stochastic gravity [11, 12]) but are typically posited from
heuristic considerations and required to be minimum so
long as the hybrid classical-quantum coupling remains
consistent. Historically, such considerations [13–15] were
instrumental in the construction of models of gravity-
related decoherence and collapse [16–22]. The latter used

Gaussian fluctuations with correlations of the form:

E [δΦt(x)δΦτ (y)] = const × G~

|x − y|δ(t− τ), (1)

but with admittedly vague physical justifications.
A rigorous formulation of these early conjectures can

be obtained via theories that rely, at least at a formal
level, on the machinery of continuous measurement and
control theory [23, 24]. The idea is to use the “signal”
from an hypothetical measurement scheme to create a
classical attractive force between particles via feedback
control. By design, such a method yields consistent semi-
classical dynamics with the smallest amount of classical
randomness. It has been instantiated with two differ-
ent objectives in mind. Kafri et al. used it to constrain
the theories of gravity that could be created from lo-
cal operations and classical communications (LOCC), an
important constraint on interactions between quantum
particles used extensively in quantum information the-
ory. The concept was illustrated first perturbatively in
two-body interactions [25], then in a non-perturbative
many-body system, albeit in a discretized space [26]. In-
dependently in [27], a similar formalism was leveraged
to build a parallel with models of objective (or sponta-
neous) wave function collapse used in the foundations
of quantum theory (see [28] for a review), emphasizing
the important conceptual clarification such an approach
could yield; in particular with the suppression of macro-
scopic superpositions. In this latter instance [27], the full
Newtonian gravitational interaction could be introduced
directly in continuous space but the possible LOCC char-
acter of gravity was not discussed.

Our objective is to revisit this second construction and
show that it naturally suggests the introduction of a prin-
ciple of least decoherence (PLD), less restrictive than the
concept of LOCC, that is still arguably compatible with
a “classical” character of gravity. Further, we want to
show that this principle singles out classical fluctuations
of the form (1) and thus a model (DP) of gravity-related
decoherence and collapse introduced by Penrose and one
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of us almost 30 years ago [16, 17, 20]. Finally, we dis-
cuss the PLD in a weaker form to revisit the concept of
LOCC and suggest a natural relation between the two
parameters of the Continuous Spontaneous Localization
model (CSL) [29].

General framework – In contrast with [25, 26], we
construct the classical Newton field Φ(x) to mediate the
gravitational interaction. Although gravity looks like a
pair-wise force in Newtonian limit of General Relativity,
it seems important to have a concept of field available
already in the non-relativistic setting. The central ques-
tion thus becomes to define a classical mass density field
̺ to source the gravitational field from quantum matter,

∇2Φ(x) = 4πG̺(x). (2)

Indeed, for a given gravitational field

Φ(x) =

∫ −G
|x − y|̺(y)dy ≡

∫
V (x,y)̺(y)dy, (3)

with the standard Laplace Green function

V (x,y) =

[
4πG

∇2

]
(x,y) = − G

|x − y| , (4)

the external potential showing up in the Schrödinger
equation is then uncontroversial:

V̂ =

∫
dx Φ(x)ˆ̺(x), (5)

where ˆ̺ is the mass density operator [30]. This potential
does not, by itself, create entanglement between distant
particles. As we will see, it is the generation of the field
Φ which may break LOCC.

The mass density sourcing the gravitational field
should be a “tangible” variable [31], i.e. a field that
can back-react on matter without destroying the statis-
tical interpretation of the state vector. The usual choice,
yielding the SN equation, is to take ̺ = 〈ψt| ˆ̺|ψt〉, but it
manifestly makes the resulting quantum state evolution
containing V̂ non-linear; quantum expectation values are
not tangible in that sense. As we have argued, some ad-
ditional noise is necessary. We shall obtain the suitable
noise structure by considering the noisy signal (or con-
tinuous readout) one would obtain from the continuous
measurement of the mass density operator, instead of its
expectation value.

We recall the general framework introduced in [27].
For clarity, we postpone the discussion of the crucial is-
sue of regularization and the following equations are thus
momentarily divergent. The signal from the continuous
measurement of the mass density reads:

̺t(x) = 〈 ˆ̺(x)〉t + δ̺t(x), (6)

where 〈·〉t = 〈ψt|·|ψt〉 with |ψt〉 the many-particle system
quantum state and where δ̺t(x) is white noise in time,
characterized by the correlation function:

E [δ̺t(x)δ̺τ (y)] = γ−1(x,y) δ(t − τ), (7)

where γ−1 is the (positive semi-definite) precision kernel
of the monitoring (the operator inverse of γ, the monitor-
ing strength). The deviation of the kernel from a Dirac
delta encodes the entanglement of the fictitious detectors
at different space-time points (which generically breaks
the LOCC assumption of [25]). For a given monitored
mass density field variable ̺, continuous measurement
theory [23, 24] fixes the evolution of the corresponding
matter pure state |ψ〉 [27]:

d

dt
|ψt〉 = − iĤ |ψt〉 − 1

8

∫
dxdy γ(x,y) ( ˆ̺(x) − 〈 ˆ̺(x)〉t)

× [( ˆ̺(y) − 〈 ˆ̺(y)〉t) − 4δ̺t(y)] |ψt〉, (8)

where the multiplicative noise term is understood in the
Itô convention and henceforth we set ~ = 1. One can
then obtain the monitoring master equation (ME) for
ρ̂t = E

[
|ψt〉〈ψt|

]
from (8) using Itô’s lemma:

dρ̂

dt
= −i

[
Ĥ, ρ̂

]
− 1

8

∫
dxdy γ(x,y)

[
ˆ̺(x), [ ˆ̺(y), ρ̂]

]
, (9)

where we omit time indices for compactness. This equa-
tion so far does not contain gravity. Introducing carefully
[27] the potential V̂ of (5) in (8) yields a joint stochastic
evolution for the quantum-classical couple {|ψt〉,Φt(x)},
where the two elements back-react on each other. The
derivation of the corresponding stochastic master equa-
tion is provided in [27] and yields, after averaging over
the noise, a ME that can be rewritten this way:

dρ̂

dt
= − i

[
Ĥ +

1

2

∫
dxdy V (x,y)ˆ̺(x)ˆ̺(y) , ρ̂

]

− 1

2

∫
dxdy D(x,y)

[
ˆ̺(x), [ ˆ̺(y), ρ̂]

]
,

(10)

with the new decoherence kernel:

D(x,y) =
[γ

4
+ V ◦ γ−1 ◦ V

⊤
]

(x,y) (11)

where “◦” denotes the product of two kernels:

(h1 ◦ h2)(x,y) =

∫
drh1(x, r)h2(r,y). (12)

Hence, in this framework, the fact that gravity is me-
diated by a classical field adds decoherence to the stan-
dard Newtonian pair potential. We should emphasize
that in this context, continuous measurement theory is
but a tool to derive consistent hybrid quantum-classical
dynamics and ME (10), stripped, as stated in [27], of
its usual instrumentalist interpretation. The reader may
thus consider that the final ME (10) we obtain is that of
a spontaneous collapse (or dynamical reduction) model
[28] which is taken as fundamental.

Principle of least decoherence – This approach to
Newtonian semi-classical gravity still possesses a lot of
arbitrariness in the monitoring strength γ. Imposing an
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LOCC constraint as Kafri et al., this time in our classical-
field-mediated gravity, would single out a Dirac delta. We
shall consider this option later. Our main objective is to
introduce a principle that allows to single out another
natural kernel, relaxing the requirement of LOCC.

The decoherence kernel D (11) consists of two terms.
The first term γ/4 is the “price” we pay for obtaining the
monitored signal ̺ (6) at precision/noise δ̺. The sec-
ond term comes from the noisiness in the gravitational
back-reaction mediated by the signal (5). The latter is
inversely proportional to the former: reducing the noise
in the signal requires a stronger monitoring which in turn
leads to a larger decoherence, and vice versa. This sug-
gests that the total decoherence D may have a minimum,
enforcing a principle of least decoherence (PLD), for a
special choice of kernel γ. Since all kernels appearing in
(11) are translation invariant, they become diagonal in
Fourier representation. Our PLD consists in minimizing
the diagonal of D for all wave numbers independently.
This yields the solution:

γ = 2
√

V ◦ V = −2V (13)

because V is negative definite. Hence, the PLD has led
us to

D(x,y) =
γ(x,y)

2
= −V (x,y) =

G

|x − y| . (14)

This derivation naturally connects the functional form of
the Newtonian interaction potential and of the decoher-
ence kernel, lifting the recent concerns of Gasbarri et al.

[32] that the noise correlation γ should have no connec-
tion with the form of the interaction. Here, the unique
correlation function γ, obtained from the PLD, coincides
with the heuristic proposal (1) corresponding to the DP
model up to a numeric factor. Most importantly, we
have thus obtained a new well grounded derivation of
the Diósi-Penrose model of gravity-related decoherence
and collapse (up to the addition of a gravitational pair
potential).

Regularization – At that stage, our developments are
unfortunately formal because the short distance diver-
gence of the Newtonian potential yields infinite decoher-
ence in the ME (10), even with our minimal decoherence
prescription. A short distance regularization is required
in the DP model. The first option, which was followed
in [27], is to mollify ˆ̺, i.e. ultimately to conjugate both
γ and V by the same function g (which can be e.g. a
Gaussian of width σ):

D → Dσ :=g ◦
(γ

4
+ V ◦ g ◦ [g ◦ γ ◦ g]−1 ◦ g ◦ V

)
◦ g.

=g ◦ D ◦ g (15)

The pair potential appearing in the ME (10) is also reg-
ularized by this choice:

V → Vσ := g ◦ V ◦ g. (16)

The minimization according to the PLD is clearly inde-
pendent of the smearing provided we fix the latter before
the minimization step, yielding γ = γσ = −2Vσ instead
of (13). We get the standard regularized DP model with
the Newtonian pair potential smeared at short distances.

Insisting on the space-time locality of measurement
operators, one may UV regularize the field equations
instead of adding a mollifier g on local operators, say
by adding a (quasi-local) biharmonic term −σ2∇4Φ on
the l.h.s. of the Poisson equation (2). This is equiv-
alent to taking V → Vσ := g ◦ V ◦ g, this time with
g̃(k) ∝ (1 + σ2 |k|2)−1/2 in Fourier space (instead of the
usual Gaussian). In the end however, this gives the same
structural results as before. Indeed, the principle of least
decoherence then yields γ = −2Vσ and thus the same
decoherence functional as in (15).

Regularization is crucial for such approaches to semi-
classical gravity but at the same time the PLD is ro-
bust with respect to different choices of regularization
procedures. There is a trade-off between the short dis-
tance precision of Newton’s gravity and decoherence: the
smaller the decoherence the larger the distance where
Newton’s 1/r law breaks down, and vice versa. This
trade-off makes the model in principle falsifiable for all
smearing functions g, either confirming the pair potential
for short distances or confirming the superposition rule
against intrinsic decoherence. This is to be contrasted
with standard collapse models [28] without our proposed
semi-classical gravity, where the parameters yielding slow
collapse can only ever be philosophically eliminated [33].

Revisiting LOCC gravity – We may now revisit the
concept of LOCC gravity of Kafri et al. in light of our
PLD. As we have argued, the PLD breaks locality as
the minimal decoherence kernel D (14) corresponds to
a continuous measurement scheme using spatially entan-
gled detectors. Imposing LOCC would require fixing

γ(x,y) = 4
γCSL

m2
0

δ(x − y) (17)

which would correspond to the (sharp) CSL model in the
absence of gravity. For the constant pre-factor we use
the CSL notations: γCSL is a new parameter and m0 is
the atomic mass unit. As before, such a choice yields a
diverging decoherence without a proper smearing at some
scale σ so that the concept of LOCC is, strictly speaking,
inapplicable for Newtonian semi-classical gravity in the
continuum (as was also noted in [26]). However, slightly
relaxing locality up to this distance scale with a function
g (which is what the standard CSL model does) yields a
decoherence kernel in Fourier space:

D̃(k) =

[
γCSL

m2
0

+
4m2

0

γCSL

· (4πG)2

|k|4
]
g̃(k)2. (18)

The first term corresponds to the standard CSL deco-
herence (here formally coming from the “σ-local” mon-
itoring of the mass density ˆ̺), the second term comes
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from the noisy gravitational back-reaction (5). Once the
smearing factor g̃(k)2 is fixed, the only freedom is in the
single parameter γCSL. There is no unique way to im-
pose a global “least decoherence” prescription. However,
we may implement some heuristic PLD by requiring that
decoherence be minimal for lengths of the order of the
smearing length scale σ. This yields γCSL ∼ 8πGm2

0σ
2.

The CSL model defines two new fundamental con-
stants: the smearing parameter σ (often written rC

and called the localization scale) and the collapse rate
λCSL = γCSL/(4πσ

2)3/2. The heuristic PLD has thus
provided the following new relation:

λCSL ∼ Gm2
0√

π~rC
, (19)

where we have inserted the Planck constant back. This
gives a hyperbola in the parameter diagram of CSL that
can, again in principle, be experimentally falsified for all
values of the smearing scale σ. Taking the standard lo-
calization scale of CSL rC ∼ 10−5cm, eq. (19) gives
λCSL ∼ 10−23Hz, which is 7 orders of magnitude smaller
than the standard GRW collapse rate, but still in the
“philosophically satisfactory” region [33].

Discussion – After applying our PLD, all the elbow
room is in the short distance regularization. The model
we obtain is the least restrictive in terms of decoherence
and thus the one that would most convincingly push for
some form of quantization of the gravitational field if
falsified for all smearing functions. The decoherence pre-
dicted by the DP model falsifies it already for regulariza-
tion distances σ < 10−13cm [34], requiring a cut-off larger
than the nucleon size, and thus far larger than the Planck
length lP. However, the 1/r-law of gravity below 100µm
has not yet been confirmed (see [35] for a recent review),
hence a blurring σ ≪ 10−2cm is compatible with current
data on the Newtonian pair potential. Probing gravity
at finer scales may be an alternative to noise tests (like
[34] and refs. therein) to falsify its classicality; provided
that the PLD is respected by Nature.

Of course, the elephant in the room is still the absence
of a relativistic extension of our proposed principle. Con-
tinuous measurement and collapse models are notoriously
hard to define properly in a relativistic context. Albeit
an intense early activity on the subject [36] in addition
to promising recent developments [37–39], the formalism
that would allow the generalisation of our PLD to fully
relativistic contexts does not yet exist. As a result, we
just have an uncontrolled low energy approximation and
this should be taken into account when considering the
fundamental character of the short distance smearing.

Nonetheless, there are some indications of robustness
of the Newtonian approach from historical relativistic
discussions. In a relativistic thought experiment [40], Un-
ruh suggested a possible uncertainty relation between the

00-components of the metric g and Einstein tensor G:

E
[
δḡ00Ḡ00

]
≥ ~G

c4V T
. (20)

where the bar denotes an average on a space-time vol-
ume V T . In the Newtonian limit, δg00 = 2δΦ/c2 and
G00 = 2∇2Φ/c2, hence c cancels from Unruh’s relativis-
tic bound, which reduces to

E
[
(−∇Φ)2

]
= const × ~G

V T
. (21)

This latter guess was obtained independently and with-
out reference to relativity by Lukács and one of us
through a heuristic PLD [13–15], and is equivalent to (1).
Similarly in [20], Penrose proposed a discussion of space-
time uncertainty which, although a priori relativistic, ul-
timately yielded fluctuations equivalent to (21) and (1).
All these lessons suggest that Newtonian semi-classical
gravity can be studied autonomously, raising hope that
the PLD we discuss is not dramatically modified by rel-
ativistic considerations.

This should not be understood to mean that the gen-
eral relativistic context is of no interest. On the con-
trary, collapse models on fixed general gravitational back-
grounds have recently proved to be of important theo-
retical interest [41]. In that case, a mechanism allowing
quantum matter to consistently back react on space-time
is again the crucial missing piece. Importantly, sourcing
gravity with a model analog to ours would give rise to
interesting cosmological consequences due to the lack of
energy conservation [42].

Conclusion – We have introduced a principle of least
decoherence which has allowed us to single out a simple
model from a class of consistent theories of Newtonian
semi-classical gravity. Less demanding than the require-
ment of LOCC, our principle provides a new well moti-
vated derivation of the DP model. Capitalizing on the
standard theory of quantum monitoring and control, we
have put on rigorous grounds the heuristic and implicit
principle the DP model was based upon from its birth.
Our principle fixes the value of all the parameters but
the regularization scale. The latter is the great unknown
so far: it determines at what distance gravity becomes
blurred and decoherence regularized. Without such a
limited precision at short distances (yet ≫ lP), current
semi-classical approaches to gravity are already falsified,
unless relativistic effects dramatically modify the present
analysis. This calls for an exploration of the short dis-
tance behavior of gravity as well as for the development
of a theory of hybrid quantum classical dynamics in the
relativistic regime.
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[31] L. Diósi, J. Phys.: Conf. Ser. 361, 012028 (2012).
[32] G. Gasbarri, M. Toroš, S. Donadi, and A. Bassi,
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