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Abstract

We study pion production from proton synchrotron radiation in the presence of strong magnetic

fields. We derive the exact proton propagator from the Dirac equation in a strong magnetic field

by explicitly including the anomalous magnetic moment. In this exact quantum-field approach the

magnitude of pion synchrotron emission turns out to be much smaller than that obtained in the

semi-classical approach. However, we also find that the anomalous magnetic moment of the proton

greatly enhances the production rate about by two order magnitude.
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I. INTRODUCTION

Magnetic fields in neutron stars play an important role in the interpretation of many

observed phenomena. Indeed, strongly magnetized neutron stars (dubbed magnetars [1, 2])

hold the key to understanding the asymmetry in supernova (SN) remnants and the still

unresolved mechanism for non-spherical SN explosions. Such strong magnetic fields are also

closely related to the unknown origin of the kick velocity [3] that proto-neutron stars (PNSs)

receive at birth.

It is widely accepted that soft gamma repeaters (SGRs) and anomalous X-ray pulsars

(AXPs) correspond to magnetars [4], and that the associate strong magnetic fields have a

significant role in production high energy photons. Furthermore, short duration gamma-ray

bursts (GRBs) may arise from highly magnetized neutron stars [5] or mergers of binary neu-

tron stars [6–8], and the most popular theoretical models for the long-duration GRBs [9–12]

invoke magnetized accretion disks around neutron stars or rotating black holes (collapsars)

for their central engines. Such magnetars (or black holes with strong magnetic fields) have

also been proposed [13, 14] as an acceleration site for ultra high-energy (UHE) cosmic rays

(UHECRs) and a possible association between magnetar flares [15] and UHECRs has also

been observed.

When a particle is accelerated in an external field or in collision with another particle, it

can emit quanta corresponding to the field with which the particle interacts. Synchrotron

radiation can be produced by high-energy protons accelerated in an environment containing

a strong magnetic field. This process has been proposed as a source for high-energy photons

in the GeV − TeV range [16–21], possibly in association with GRBs. Synchrotron emission,

however, can occur through any quanta that may couple to an accelerated particle. Since

protons strongly couple to meson fields, a high-energy proton can also radiate pions and

other mesons, as well as photons.

In fact, the meson-nucleon couplings are about 100 times larger than the photon-nucleon

coupling, and the meson production process is expected to exceed photon synchrotron emis-

sion in the high energy regime. For example, Refs. [22–26] addressed the possibility of π0

emission from a proton in a strong magnetic field. However, these calculations were per-

formed approximately; i.e. in a semi-classical way and an approximate quantum-mechanical

treatment of the proton transitions among the Landau levels of the strong magnetic field.
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In the semi-classical approach for the production of synchrotron radiation, the magnetic

field strength is characterized by the curvature parameter, χ = E2
i /(m

3Rc), given in terms of

the incident particle massm, its energy Ei, and the curvature radius Rc. For χ << 1 (Rc >>

1), the radiation can be treated in a classical way. For example, in a gravitation field or

a relatively small electro-magnetic field, charged particles may have such large curvature

radii. However, for χ >> 1 (Rc << 1) i.e., very high energetic particles propagating in

the very small curvature radius of a strong magnetic field, quantum effects must be taken

into account. Since we consider a proton propagating in a strong magnetic field, which may

imply a small Lamor radius RL = E/(eB), the radiation should be also treated in a quantum

mechanical way along with the Landau quantization by the magnetic field.

For proton propagation in a strong magnetic field, the value of χ can be given as

χ =
E2

i

M3
pRL

=
eEiB

M3
p

=
Ei

Mp

(
B⊥

Bcr

) , (1)

where Bcr = M2
p/e and B⊥ is the magnetic field perpendicular to the proton momentum

direction. For illustration, we assume a 1 ∼ 5 GeV proton propagating in a strong magnetic

field with B ∼ 1018G, for which χ ∼ 0.01. Through analysis of the pion emission based on a

quantum field theory treatment, we show that the pion emission can be comparable to the

photon emission. In particular, we demonstrate that the anomalous magnetic moment of

the charged particle plays a vital roles in the pion synchrotron emission.

In this work, we exploit the Green’s function method for the propagation of protons

in a strong magnetic field. This approach has not previously been applied to derive pion

synchrotron emission. For the pion-nucleon coupling, the p-wave interaction is dominant,

and the pion emission amplitude is mainly proportional to < ψNσ ·qψN >, with q being the

emitted pion momentum 1. Because the pion emission along the direction of the magnetic

field is not allowed by the conservation of energy-momentum, < ψNσ±ψN > has a dominant

contribution. Hence, the spin-flip contributions necessary for pseudo-scalar emission are

significant.

Section 2 is devoted to an introduction of our theoretical formalism based upon the

Green’s function method. Numerical results are presented in section 3 along with detailed

discussions. A summary and conclusions are presented in section 4.

1 Note: this fact is independent of the choice of whether one has PS- or PV-coupling.
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II. FORMALISM

A. Proton Green’s Function

We assume a uniform magnetic field along the z-direction as B = (0, 0, B) and take the

electro-magnetic vector potential Aµ to be A = (0, 0, xB, 0) at the position r ≡ (x, y, z) .

The relativistic proton wave function ψ̃ is obtained from the following Dirac equation:

[

γµ · (i∂µ − eAµ)−mN − eκp
2mN

σµν(∂
µAν − ∂νAµ)

]

ψ̃(x) = 0, (2)

where mN is the proton mass, κp is the proton anomalous magnetic moment (AMM), and e

is the elementary charge.

Here, we scale all variables with
√
eB as Xµ =

√
eBxµ and MN = mN/

√
eB, and we

write the wave function, e.g.

ψ(X) =















λ1fn+1(X − Py)

λ2 fn(X − Py)

λ3fn+1(X − Py)

λ4 fn(X − Py)















ei(PyX2+PzX3−iEX0). (3)

Eq. (2) then leads the following characteristic equation:

[

Eγ0 +
√

2(n+ 1)γ2 − Pzγ
3 − (κp/MN)Σz −MN

]

λ = 0 (4)

with λ = (λ1, λ2, λ3, λ4) and Σz = diag(1,−1, 1,−1).

Here, the Landau level n starts from n = −1 when s = 1 and from n = 0 when s = −1.

We then redefine the Landau number nL as nL = n+(1+ s)/2. By solving Eq. (4), we then

obtain the energy eigenvalues as

E(nL, Pz, s) = ±
√

P 2
z + (

√

2nL + 1− s+M2
N − sκp/MN)2. (5)

The proton Green’s Function G in a magnetic field is written as

G =
∑

nL=0

∑

s=±1

F̃ (X)

[

ρ
(+)
M (nL, s, Pz)

P0 −E(nL, s, Pz) + iδ
+

ρ
(−)
M (nL.x.Pz)

P0 + E(nL, s, Pz) + iδ

]

F̃ (X ′) (6)

with

F̃ = fnL+
1−s
2

(X − Py)
1 + Σz

2
+ fnL−

1+s
2

(X − Py)
1− Σz

2
, (7)
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ρ
(+)
M =

1

4E

[

Eγ0 +
√
2nL + 1− sγ2 − Pzγ

3 +MN + (κp/MN)Σz

]

×
(

1 +
sκp/MN

√

2nL + 1− s+M2
N

+ γ5/a

)

, (8)

ρ
(−)
M =

1

4E

[

Eγ0 −
√
2nL + 1− sγ2 + Pzγ

3 −MN − (κp/MN)Σz

]

×
(

1 +
sκp/MN

√

2nL + 1− s+M2
N

− γ5/a

)

, (9)

where EF is the Fermi energy, and the spin vector a is defined as

a(p, s) =

(

sPz
√

2nL + 1− s+M2
N

, 0, 0,
sE

√

2nL + 1− s+M2
N

)

. (10)

B. Pion Production

In this subsection we consider the pion production rate in the presence of a strong mag-

netic field. We start the calculation from the following pseudo-vector coupling interaction

Lagrangian density as

L =
ifπ
mπ

ψγ5γµτaψ∂
µφa, (11)

where fπ is the pseudo-vector pion-nucleon coupling constant, mπ is the pion mass, and

φ is the pion field. We then calculate the pion decay rate from an initial proton with

nL = ni, s = si and Pz = Piz to a final proton with nL = nf , s = sf and Pz = Pfz. The

pion momentum scaled by
√
eB is written as Q = (Eπ, 0, QT , Qz), where without loss of

generality the transverse pion momentum is assumed to be directed along the y-axis.

Using the proton propagator, the proton self-energy from one-pion exchange can be writ-

ten as

Σπ(R1, R2) = i

(

fπ
Mπ

)2

γµγ5τaG(R1, R2)τaγνγ5∂
µ∂ν∆π(R1 − R2), (12)

and the decay width is calculated from the imaginary part of the expectation value of the

self-energy as

Γπ = −Im

∫

d3R1d
4R2ψi(R1)Σπ(R1, R2)ψi(R2), (13)

where ∆π is the pion propagator.

By performing a Fourier transformation, we can obtain the differential decay width of

the proton as

d3Γpπ/
√
eB

dQ3
=

1

8π2Eπ

(

fπ
Mπ

)2
∑

nf ,sf

δ(Ef + Eπ −Ei)

4EiEf

Wif , (14)
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with

Wif = 4EiEfTr
{

ρ
(+)
M (ni, si, Pz)Oπρ

(+)
M (nf , sf , Pz −Qz)O†

π

}

, (15)

where Mπ = mπ/
√
eB, and

Oπ =

∫

dXF̃ (ni, si, X +QT /2)γ5 /QF̃ (nf , sf , X −QT /2)

= γ5

{[

M
(

ni +
1− si
2

, nf +
1− sf

2

)

1 + Σz

2

+M
(

ni −
1 + si
2

, nf −
1 + sf

2

)

1− Σz

2

]

[

γ0Q0 − γ3Qz

]

−
[

M
(

ni +
1− s1

2
, nf −

1 + sf
2

)

1 + Σz

2

+M
(

ni −
1 + si
2

, nf +
1− sf

2

)

1− Σz

2

]

γ2Qy

}

. (16)

In the above equation, M(n1, n2) is defined as

M(n1, n2) =

∫

dxfn1

(

x+
Qy

2

)

fn2

(

x− Qy

2

)

= (2n1+n2πn1!n2!)
−1/2e−Q2

T
/4

∫

dxe−x2

Hn1

(

x+
QT

2

)

Hn2

(

x− QT

2

)

=

√

n1!

n2!

(

−QT√
2

)n2−n1

e−
Q2
T
4 Ln2−n1

n1

(

Q2
T

2

)

(n1 ≤ n2),

=

√

n2!

n1!

(

QT√
2

)n1−n2

e−
Q2
T
4 Ln1−n2

n2

(

Q2
T

2

)

(n1 ≥ n2), (17)

where Hn(x) is the n-th Hermite polynomial, and Lm
n (x) is the associated Laguerre polyno-

mial.
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III. RESULTS

In this section we show numerical results for pion emission from 1−2 GeV protons. In the

numerical calculation we take the maximum Landau level to be ∼ 3× 103, which somewhat

limits our calculations. However, in order to test our model, we choose a proton energy of 1

GeV and a strength of the magnetic field to be 5×1018G. In this case the maximum Landau

numbers are nmax = 45 for spin s = −1 and nmax = 50 for s = +1. Pion production has

been shown [22] to exceed photon emission in the region, χ = eBei/m
3
N = 0.01 ∼ 1, in the

semi-classical calculation. The value of χ, 0.069, adopted in this calculation belongs in this

region.

0 10 20 30 40 50

10−5

10−4

10−3

10−2

10−1

100

101

nmax − ni

Γ 
 (

M
eV

)
Decay Width of p to π0

si =  −1   w   AMM

si =  +1   w   AMM

si =  −1  wo  AMM

si =  +1  wo  AMM

ep = 1 GeV B = 5 x 1018 G

FIG. 1. (Color online) Decay width of a 1GeV proton

for the synchrotron emission of π’s. The solid and dot-

dashed lines represent the decay widths of protons with

spin si = −1 and si = 1, respectively. The dashed and

dotted lines indicate results with si = −1 and si = 1,

respectively, for case that the anomalous magnetic mo-

ment is omitted.

In Fig. 1 we show the pionic decay

widths of the proton at the Landau

level ni and the spins state si with

a proton kinetic energy of 1 GeV. All

results are summed over the final pro-

ton spin and Landau levels. The solid

and dot-dashed lines represent the de-

cay widths of the proton with spin

si = −1 and si = +1, respectively.

For comparison we also plot results

when the AMM is set to be zero,

κp = 0, with the dashed (si = −1)

and dotted lines (si = +1).

When κp = 0, the decay width of

the proton with si = −1 is a little

larger than that with si = +1, but

these results are not significantly dif-

ferent. In addition, the two states of

s = ±1 are degenerate except for the

lowest Landau state, and the spin-

up and spin-down states cannot be

uniquely determined when the AMM
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does not exist, Thus, this difference is

not quantitatively meaningful.

On the other hand, when the AMM is included, the width with si = −1 is enhanced up

to about a factor of 100, while that with si = +1 is suppressed by a factor of about 1/100.

In Fig.2, we compare our decay widths to those in the semi-classical approach. This figure

shows the decay width averaged over the proton spin, Γ = [Γ(nmax,+1) + Γ(nmax,−1)]/2,

when B = 5× 1018G as a function of the incident proton energy.

1 2 3 4 5

100

101

102

103

104

105

ep  (GeV)

Γ 
 (

M
eV

)

B = 5 ×1018 G 

FIG. 2. (Color online) Pionic decay width of protons

versus the proton incident energy for B = 5×1018G.

The decay width is averaged over the proton spin,

and the Landau number is taken to be a maximum.

The solid and dot-dashed lines represent the decay

widths of the proton with and without the AMM,

respectively. The dashed and dotted lines indicate

the results in the semi-classical approaches of Refs.

[22] and in [23], respectively.

When the proton energy is ep =

1 GeV, the semi-classical approach gives

Γsc ≈ 180 MeV in Refs. [22] and 210

MeV in [23]. These values are close to

the maximum value of the pionic width of

the proton with the AMM when si = −1.

However, the AMM is not taken into ac-

count in the semi-classical calculations,

and the results in the semi-classical ap-

proach should be compared with our re-

sults without the AMM. In addition, the

expression of Ref. [23] is derived with the

condition, χ≫ 1, which is not consistent

to the present condition, χ ≈ 0.06 − 0.5.

So, the decay width in the microscopic

approach is much smaller than that in the

semi-classical approach for the case with-

out the AMM. Therefore, the AMM con-

tribution, which is unique in the quantum

mechanical approach, is vital for pion

synchrotron radiation, particularly, in the

limit of small curvature radii.

As the proton energy increases, the decay widths in the microscopic framework drastically

increase, while those in the semi-classical approach increase more gently. In the semi-classical

calculation one assumes that the Landau level number is very large. For example, in Ref. [23],
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they take the limit, ni → ∞. In Fig.2, on the other hand, the maximum Landau is taken

to be nmax ≈ 20 − 700, which is too small for the semi-classical approximation. Thus, the

semi-classical calculation is not justified based upon the present condition. However, the

AMM contribution turns out to significantly increase the pion emission in the limit of a

strong magnetic field.

0

10

20

10
3  d

 2
 Γ

/ d
 e

π 
d 

Ω
π

0  ≤ nmax − n ≤ 5

(a1)

5  ≤ nmax − n ≤ 9

(a2)

10  ≤ nmax − n ≤ 19

(a3)

20  ≤ nmax − n ≤ 29

100MeV

300MeV

500MeV

(a4) κp ≠ 0

0.0 0.5 1.0
0.0

0.2

0.4

cosθπ

10
6  d

 2
 Γ

/ d
 e

π 
d 

Ω
π

(b1)

0.0 0.5 1.0
cosθπ

(b2)

0.0 0.5 1.0
cosθπ

(b3)

0.0 0.5 1.0
cosθπ

(b4) κp = 0

FIG. 3. (Color online) The differential proton pionic decay width versus the polar angle of pion

emission. The widths are averaged over the initial Landau levels, 0 ≤ nmax − ni ≤ 4 (a1,b1),

5 ≤ nmax − ni ≤ 9 (a2, b2), 10 ≤ nmax − ni ≤ 19 (a3, b3) and 20 ≤ nmax − ni ≤ 29 (a4, b4). The

AMM is included in the upper panels (a1−4), and not included in the lower panels (b1−4). The

emitted pion energies are taken to be 100 MeV (dotted lines), 300 MeV (solid lines) and 500 MeV

(dashed lines).

In order to understand the angular distribution of emitted pions, in Fig. 3, we present the

differential pionic decay widths of the proton, averaged over various initial Landau levels,

0 ≤ nmax − ni ≤ 4 (a1,b1), 5 ≤ nmax − ni ≤ 9 (a2, b2), 10 ≤ nmax − ni ≤ 19 (a3, b3)

and 20 ≤ nmax − ni ≤ 29 (a4, b4). The AMM contribution is included in the upper panels

(a1−a4), but not included in the lower panels (b1−b4). The emitted pion energies are taken
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to be 100 MeV (dotted lines), 300 MeV (solid lines), 500 MeV (dashed lines). Because the

differential decay width is discrete for each angle, we average the results over the polar angle

in every angular bin with ∆ cos θπ = 0.1.

10−6

10−5

10−4

10−3

10−2

10−1

100

101

10
2  d

 2
 Γ

p 
π 

/ d
 e

π 
d 

Ω
π

−1 → −1

+1 → −1

−1 → +1

+1 → +1

(a) κp ≠0

−1.0 −0.5 0.0 0.5 1.0
10−5

10−4

10−3

10−2

10−1

cosθπ

10
2  d

 2
 Γ

/ d
 e

π 
d 

Ω
π

(b) κp = 0

FIG. 4. (Color online) The differential pionic decay

widths of protons with (a) and without (b) the AMM

included. The widths are averaged over initial Landau

numbers, 0 < nmax − ni < 9. The solid, dot-dashed,

dashed, and dotted lines represents the results when

si = −sf = −1, si = −sf = 1, si = sf = 1, and

si = sf = −1, respectively, where si(f) indicates the

initial (final) spin of the proton.

We should note that the angu-

lar distribution is symmetric between

cos θπ < 0 and cos θπ > 0, so that

we do not plot results for all cos θπ.

A pion produced from a proton with

a higher Landau level ni is emitted

more transversely, and the AMM ef-

fect shifts the pion emission to a more

sideward direction when 0 ≤ nmax −
ni ≤ 4. If we consider that the emit-

ted pion decays into 2γs, it could af-

fect the relativistic beaming of the

energetic gamma rays from GRBs.

Next we examine the proton-spin

condition for the pionic decay width.

In Fig. 4 we give the initial and final

spin-dependence of the proton differ-

ential pionic decay widths with (a)

and without (b) the AMM. These

widths are averaged over the initial

Landau levels 0 ≤ nmax − ni ≤ 9.

The solid lines represent the results

when the initial spin si = −1 and the

final spin sf = 1. The dot-dashed,

dashed and dotted line indicate cases

for which si = −sf = 1, si = sf = 1, and si = sf = −1, respectively.

When κp = 0, the contributions from the spin-flip, si = −sf , are about 100 times larger

than those of the spin non-flip, si = sf . Semi-classically the amplitude of the pion emission

is proportional to < ψNσ · qψN >. The pion emission along the z-direction is not allowed

10



by energy-momentum conservation, and < ψNσ±ψN > is the dominant contribution. Here,

the spin-flip contributions become much larger than those from the spin non-flip reaction.

When the AMM is included, only the contribution from si = −sf = 1 is about 10,000

times larger than those of the other channels, and the non spin-flip contributions are not

much different between those with and without the AMM.

As shown in Fig. 1 the AMM increases the decay width by 100 times for the case of

si = 1 = −sf = 1, and decreases it for the case of si = −sf = −1. When si = −sf = 1, the

effects of the AMM and spin-flip are synchronized, and they enlarge the width by up to a

factor of 103. When si = −sf = 1, the two effects cancel and the width stays on the same

order as that of the non spin-flip transition.

10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2

Γ(
 n

i →
n f

 ) 
/ √

eB −1  →  +1

+1  →  −1

−1  →  −1

+1  →  +1

(a1)κp ≠0 (b1)κp = 0

20 25 30 35 40

1

2

ni − nf − (si − sf) / 2

q T
 / 

√
eB

(a2)

20 25 30 35 40
ni − nf − (si − sf) / 2

(b2)

FIG. 5. (Color online) Pionic decay widths of protons (a1, a2) and the pion transverse momentum

(b1, b2) as functions of ni−nf−(si−sf )/2. The AMM is included in the left panels (a1, b1), and not

included in the right panels (a2, b2). The initial Landau number is fixed to be ni+(1−si)/2 = 45.

Next, we examine contributions from the final Landau level. In Fig. 5 we show the width

(a1 and a2) and the pion transverse momentum (b1, b2) as functions of ni−nf −(si−sf )/2,
where the initial Landau number is fixed to be ni+(1−si)/2 = 45. The results are calculated
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with and without the AMM in the left (a1, b1) and right panels (a2 and b2), respectively.

Here, we note that the peak positions of the decay widths and the pion transverse mo-

mentum are the same. When κp = 0, the peak position is almost independent of the initial

and final spin. When the AMM is included, however, the peak position of the non spin-flip

transition is the same as that without the AMM, but it is shifted to smaller values when

si = −sf = −1 and to larger values when si = −sf = +1.

0 10 20 30 40

−0.2

0.0

0.2

n1 − n2

M
 (n

1,
 n

2)

n1 = 45,   QT = 2.4 aaaaaa
bbbbbb
cccccc
ddddd

a

20 22 24 26 28 30

10−5

10−4

10−3

10−2

10−1

−1 → +1

+1 → −1
spin-flip wo AMM

FIG. 6. (Color online) The transition strength function M(ni, nf ), Eq. (17), when ni = 45 + (1 +

si)/2. The solid circle and triangle show the peak positions in the cases si = −sf = −1 and

si = −sf = 1, and the opened diamond indicates the case of the spin-flip si = −sf when κp = 0.

In order to study the AMM effect more clearly, we next examine the transition strength

M(ni, nf) defined in Eq. (17). In Fig. 6 we show the nf -dependence of M(ni, nf) when

ni = 45 + (1 + si)/2. The solid circle and triangle in the inset represent the peak positions

in the cases with si = −sf = −1 and si = −sf = 1 with the AMM included. The open

diamond indicates the case of a spin-flip si = −sf without including AMM.

M(ni, nf) shows an oscillating behavior, but only the strength after the last peak con-

tributes to the results. In this region the strength rapidly decreases with increases of ni−nf .

A pion cannot be produced in the free kinematics, B = 0, because of energy momentum con-

servation. Under the influence of a magnetic field, momentum conservation is not satisfied,

so that a pion can be produced in the kinematical condition far from the free kinematics,
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where M(n1, n2) rapidly decreases.

The AMM gives a repulsive potential for si = −1 and attractive for si = 1. The transition

with si = sf = −1 introduces an additional energy to be consumed in the pion production.

Thus, the difference between the initial and final Landau-levels is shifted toward a smaller

number. In addition, the transition with si = sf = 1 reduces the production energy. In this

kinematical region a small difference between the initial and final Landau-levels significantly

changes the transition strength. Therefore, the AMM plays the important roles of increasing

greatly the pionic decay width when si = sf = −1 and to decrease it si = sf = 1.
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 e

π

1 GeV

1.5 GeV
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FIG. 7. (Color online) The dependence of the proton decay width on the pion energy for a magnetic

field of B = 5 × 1018 G. The solid and dashed lines represent the results with and without the

AMM. The proton incident energies are taken to be 1, 1.5 and 2 GeV, respectively.

Next, we study the energy spectrum of the produced pions. We assume spherical symme-

try in the momentum distribution of the initial protons and perform the angular integration

of the differential decay width. In Fig. 7 we show the dependence of the proton decay width

on the pion energy assuming a magnetic field B = 5 × 1018G and the proton energies of

eP = 1, 1.5, 2GeV, respectively. The solid and dashed lines represent the results with and

without the AMM, respectively.

As the proton energy increases, the decay width becomes larger, and the peak pion energy

also increases. When the AMM is included, the peak height is about 59 times larger than
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that when it is neglected for ep = 1GeV, and its ratios are 36 for ep = 1.5GeV and 30 for

ep = 2GeV; This difference between the peak height with the AMM and that without the

AMM becomes smaller with increasing proton energy.
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FIG. 8. (Color online) The pion energy dependence of the proton decay width when the proton

energy is ep = 1GeV. The solid and dashed lines represent results with and without the AMM.

The magnetic fields are taken to be 1× 1018G, 2× 1018G, and 5× 1018G. Results increase with an

increase of the magnetic field strengths.

In Fig. 8 we show the dependence of the proton decay width on the pion energy for a

proton energy ep = 1GeV with magnetic fields, B = 2 × 1018G, 5 × 1018G and 8 × 1018G.

The solid and dashed lines represent the results with and without the AMM, respectively.

As the magnetic field increases, the decay width becomes larger, and the peak pion energy

also increases. The peak height with the AMM included is about 93 times larger than that

without the AMM for B = 1 × 1018G, and its ratios are 84 when B = 2 × 1018G, 56 when

B = 5 × 1018G; the difference between the peak height with the AMM included and that

without the AMM becomes larger as the magnetic field decreases.

As noted above, a pion can be produced in conditions far from that of free kinematics.

As the magnetic field decreases, the breaking of momentum conservation becomes larger, so

that the effect of the AMM becomes more significant.
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IV. SUMMARY

In this work we have calculated the pion synchrotron radiation from high energy protons

propagating in strong magnetic fields in a microscopic quantum field theoretical framework.

We solved the Dirac equation in a strong magnetic field and obtained the proton propagator

from its solution. Then, we derived the pionic decay width of the propagating proton in a

fully relativistic and quantum mechanical way.

Our results turn out to be compatible to those obtained by classical approaches. In

particular, we find out that the anomalous magnetic moment has a very large effect which

enlarges the emission rate by about 50 times, when the proton energy is 1GeV and the

magnetic field is 5 × 1018G. In actual magnetars the surface magnetic field is known to be

of order B ∼ 1015G . In the present method we did not perform a calculation for such

a magnetic field strength because of the large number of Landau levels involved: a few

thousand to a few million.

As the magnetic field decreases, the AMM effect becomes larger. In a small magnetic

field the decay width is very small, so that the proton energy must be larger to produce

pions; if the semi-classical estimate is carried, the proton energy is expected to be at least

about 100 GeV, and the maximum landau number should be a few hundred thousand. As

the proton energy increases, on the other hand, the AMM effects diminish. Though it is not

easy to estimate results for B ∼ 1015G, one expects the AMM effect to remain.

As for future studies, since the emitted pion can decay into two gammas with some

angular dependence with respect to the magnetic field, the secondary produced gamma ray

may affect the photons from GRBs. More detailed studies are necessary for further discussion

of that additional effect. Since the pions as well as the photons (including vector mesons)

may be emitted in strong magnetic fields, the weak Z0 boson can also be produced from the

propagating proton. This boson can decay into a pair of neutrinos. Detailed calculations

regarding the neutrino pair production is also in progress.
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Appendix A: Proton Pionic Decay Width

In this section we show the detailed expressions of the proton pionic decay width, Eq. (14).

d3Γpπ/
√
eB

dQ3
=

1

8π2Q0

(

fπ
Mπ

)2
∑

nf ,sf

δ(Ef +Q0 − Ei)

4EiEf

RE . (A1)

In the above equation RE is written as

RE =
1

4
Tr
{

O†
π

[

Efγ0 + PfTγ
2 − Pfzγ

3 +MN + (κp/MN)Σz

]

(Af + γ5/af )

×Oπ

[

Eiγ0 + PiTγ
2 − Pizγ

3 +MN + (κp/MN)Σz

]

(Ai + γ5/ai)
}

(A2)

with Pi(f)T =
√

2ni(f) + 1− si(F ), and

Ai(f) = 1 +
siκp/MN

√

2ni(f) + 1− si(F ) +M2
N

(A3)

Oπ = γ5

{[

M1
1 + Σz

2
+M2

1− Σz

2

]

[

γ0Q0 − γ3Qz

]

−
[

M3
1 + Σz

2
+M4

1− Σz

2

]

γ2Qy

}

, (A4)

where

M1 = M
(

ni +
1− si
2

, nf +
1− sf

2

)

,M2 = M
(

ni −
1 + si
2

, nf −
1 + sf

2

)

,

M3 = M
(

ni +
1− s1

2
, nf −

1 + sf
2

)

,M4 = M
(

ni −
1 + si
2

, nf +
1− sf

2

)

.

RE can be written explicitly as

RE =
∑

i<j

MiMjR(i, j). (A5)

with

R(1, 1) =
1

2

{

[AiAf + sisf(ai · af)]
[

(PiL · PfL)(P
2
iL + P 2

fL)− P 2
iLP

2
fL − (MN + κp/MN)

2Q2
L

]

+ sisf (QL · ai)(QL · af )
[

P 2
iL − P 2

fL + 2(MN + κp/MN)
2
]

+(MN + κp/MN)Afsi
[

(P 2
iL − P 2

fL)(Q0a
z
i −Qza

0
i )− 2Q2

L(Eia
z
i − Piza

0
i )
]

+(MN + κp/MN)Aisf
[

(P 2
iL − P 2

fL)(Q0a
z
f −Qza

0
f )− 2Q2

L(Efa
z
f − Pfza

0
f

]}

,

R(2, 2) =
1

2

{

[AiAf + sisf(ai · af)]
[

(PiL · PfL)(P
2
iL + P 2

fL)− P 2
iLP

2
fL − (MN − κp/MN)

2Q2
L

]
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+ sisf (QL · ai)(QL · af )
[

P 2
iL − P 2

fL + 2(MN − κp/MN)
2
]

−(MN − κp/MN)Afsi
[

(P 2
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0
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[
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,

R(3, 3) =
Q2

T
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{[

PiL · PfL +M2
N − (κp/MN)

2
]

(AiAf + sisfai · af)− sisf(QL · ai)(QL · af )
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z
f )− (Piz + Pfz)(Afsia

0
i −Aisfa

0
f)
}

,

R(4, 4) =
Q2

T

2
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PiL · PfL +M2
N − (κp/MN)

2
]

(AiAf + sisfai · af)− sisf(QL · ai)(QL · af )

−(κp/MN)
[

Q0(Afsia
z
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z
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0
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0
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T

2
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z
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z
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0
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0
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}

,

R(1, 2) = PiTPfT

{

Q2
L [AiAf + sisfai · af ]− 2sisf (QL · ai)(QL · af)

}

,

R(1, 3) =
QT

2
{− [PiT (PfL ·QL) + PfT (PiL ·QL)] [AiAf + sisf(af · ai)]

+(PiT + PfT )sisf(QL · af)(QL · ai)
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0
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,

R(1, 4) =
QT

2
{− [PiT (PfL ·QL) + PfT (QL · PiL)] [AiAf + sisfaf · ai]
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,

R(2, 3) = R(2, 4)

=
QT

2
{− [(PiL ·QL)PfT + (QL · PfL)PiT ] [AiAf + sisf(af · ai)]

+(PiT + PfT )sisf(Q · af )(Q · ai)
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0
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(

Q0a
z
f −Qza

0
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)

]
}

,

R(3, 4) = −Q2
TPiTPfT (AiAf + sisfai · af) ,

where Pi(f)L ≡ (Ei(f), 0, 0, Pi(f)z) and QL ≡ PiL − PfL = (Q0, 0, 0, Qz).
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