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Abstract

We study the dynamics of entanglement entropy for weakly excited states in conformal field

theories by using the AdS/CFT. This is aimed at a first step to find a counterpart of Einstein

equation in the CFT language. In particular, we point out that the entanglement entropy

satisfies differential equations which directly correspond to the Einstein equation in several

setups of AdS/CFT. We also define a quantity called entanglement density in higher dimensional

field theories and study its dynamical property for weakly excited states in conformal field

theories.
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1 Introduction

The AdS/CFT correspondence [1, 2] is a remarkable fundamental relation which connects gravita-

tional systems and quantum field theories as an equivalence. In spite of its recent successful de-

velopments, we are still far from the complete understanding of the basic mechanism of AdS/CFT

correspondence (or gauge/gravity duality). The aim of the present paper is to report a modest

progress in this direction. In particular we would like to study what the Einstein equation in the

gravity side corresponds to in the quantum field theory side.

Since the AdS/CFT correspondence relates gauge invariant quantities between both sides, the

Einstein equation itself, which is written in term of the spacetime metric, is not directly interpreted

in the dual quantum field theory. Therefore we need to find a counterpart of Einstein equation for

gauge invariant quantities. We argue that the holographic entanglement entropy (HEE) is one of

the best quantities for this purpose.

The entanglement entropy in quantum field theories and more generally quantum many-body

systems has been intensively studied recently (see e.g. the review articles [3, 4, 5, 6]). In AdS/CFT

we can holographically calculate the entanglement entropy in a gravity dual as an area of min-

imal surface as conjectured in [7, 8]. This holographic entanglement entropy (HEE) calculation

was proved in [9] quite recently by using the bulk to boundary relation [2]. See [10] for a proof

when the subsystem is a round ball. Also refer to [11, 12, 13] for strong supports towards a proof

within AdS3/CFT2. This holographic calculation of entanglement entropy was also developed in

time-dependent backgrounds [14], which has been applied to the quantum quenches [15, 16, 17],

the de-Sitter space [20] and energy flow [21]. In [16], a falling particle in AdS was considered as

the holographic dual of local quenches [19] and its HEE has been computed. In [17], an analyt-

ical framework for holographic counterpart of global quantum quenches and their entanglement

entropies in CFTs [18] has been discovered. In this paper we will study how a small perturbation

of HEE evolves dynamically by solving the Einstein equation in AdS spaces. A final goal will be to

rewrite the perturbative Einstein equation in terms of the HEE and we will do this explicitly in sev-

eral examples of AdS3/CFT2. At the same time, our results describe the behavior of entanglement

entropy for weakly excited states.

Note that the complete information of HEE for arbitrary subsystems is essentially the same as

that of the spacetime metric in the gravity dual (see e.g. [23]). For this correspondence we do not

need to know the details of the Lagrangian of matter fields coupled to the Einstein gravity. On the

other hand, if we want to reproduce the spacetime metric only from the information of holographic

energy stress tensor [22] we need to employ the precise form of Einstein equation and thus this

requires the details of matter fields.
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When the size of subsystem is small, we can find a simple relation between its entanglement

entropy and the total energy inside it for excited states. This is called the first law-like relation

and has been first obtained in [25] when excited states are static and translationally invariant. Our

analysis in this paper provides a proof of this first law relation for spherical subsystems in the

presence of time-dependent excitations.

We will also study the dynamics of entanglement density introduced in [16] for two dimensional

field theories. We will extend this quantity in higher dimensions. Then we consider evolutions of

entanglement density imposed by the Einstein equation.

This paper is organized as follows: In section two we will present a general strategy of conducting

our perturbative analysis of HEE and review the first law-like relation. In section three, four and

five, we present our analysis of HEE in AdS3/CFT2, AdS4/CFT3 and AdS5/CFT4, respectively. In

section six, we study the higher dimensional entanglement density and its perturbations. In section

seven, we summarize our conclusions.

2 Perturbative Calculation of Holographic Entanglement Entropy

2.1 General Strategy

We consider a perturbation of the pure AdSd+1 metric in the Fefferman-Graham (FG) gauge as

follows:

ds2 = R2dz
2 + gµν(z, x)dx

µdxν

z2
. (2.1)

The coordinate xµ (µ = 0, 1, 2, · · ·, d−1) describes the d dimensional Lorentzian space R1,d−1 where

the d dimensional conformal field theory (CFTd) lives in. The parameter R describes the radius of

the AdS space.

We consider the perturbative expansion of the form:

gµν = ηµν + hµν , (2.2)

assuming that hµν is very small. We are interested in only the linear order of hµν . The dynamics

of this perturbation is determined by the Einstein equation as usual

Rab −
1

2
Rgab −

d(d− 1)

2R2
gab = T

(G)
ab , (2.3)

where T
(G)
µν is the energy stress tensor for the matter coupled to the Einstein gravity (a, b = 0, · · ·, d

are indices of coordinates of the d+ 1 dimensional space).

The holographic entanglement entropy (HEE) in a d + 1 dimensional AdS gravity is given

in terms of the area of d − 1 dimensional extremal surface γA in a given spacetime so that the
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boundary of γA coincides with that of the subsystem A [7, 14]. In this paper we are interested in

the first order correction of HEE under a metric perturbation. This can be conveniently computed

as follows. First we start with the extremal surface γA whose shape is already known in the pure

AdS and calculate its area. Because the pure AdS spacetime is static, γA is a minimal area surface

on a canonical time slice. Next we evaluate the area of the same surface γA in the perturbed metric.

The differen between these two gives precisely the first order correction of HEE ∆SA. Thus we do

not need to know how the shape of the extremal surface is modified under the metric perturbation.

This simply stems from the fact that γA satisfies the extremal surface condition in the pure AdS

space.

Therefore we can calculate the shift of HEE ∆SA due to the metric perturbation (2.2) from the

formula

∆SA =
1

8GN

∫

(dζ)d−1
√

G(0)G
(1)
αβG

(0)αβ , (2.4)

where ζ is a coordinate of the d − 1 dimensional extremal surface γA as employed in [16]. G(0)

and G(1) represents the induced metric on γA with respect to the pure AdS and its first order

perturbation. In this paper we consider examples where the subsystem A is given by a round ball

for which we know the analytical expression of the surface γA in the pure AdS.

2.2 First Law-like Relation

A useful property which is enjoyed by the perturbed HEE is the first law-like relation [25]. It takes

the following form:

Teff ·∆SA = ∆EA. (2.5)

When we choose A to be a round ball with radius l, the entangling temperature Teff takes the

universal value

Teff =
d+ 1

2πl
. (2.6)

Also ∆EA denotes the total energy in the region A and is written as

∆EA =

∫

A
Ttt, (2.7)

where Ttt is the energy density in CFTd. If we perform the expansion of hµν defined in (2.2) as

hµν = zdHµν + · · ·, (2.8)

in the near AdS boundary limit z → 0, the holography energy stress tensor can be obtained as

follows [22]

Tµν =
dRd−1

16πGN
Hµν . (2.9)
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This relation (2.5) was originally confirmed in static, isotropic and translationally invariant

perturbations of the metric. Therefore it is intriguing to see if it holds without this assumptions.

This is another motivation of this paper.

3 Analysis of Perturbed HEE in AdS3/CFT2

To study the HEE in AdS3/CFT2, we set (x0, x1) = (t, x) in (2.1). We choose the subsystem A for

the entanglement entropy SA to be an interval −l/2 + ξ ≤ x ≤ l/2 + ξ. Then the corresponding

minimal surface γA is parameterized as

t = const., x = ξ +
l

2
sinϕ, z =

l

2
cosϕ. (3.1)

Then the shift of HEE (2.4) reads in terms of the perturbation of the metric hµν :

∆SA =
1

8GN

∫ π/2

−π/2
dϕ
Rl2 cosϕ

4z2
[

cos2 ϕhxx + sin2 ϕhzz − 2 sinϕ cosϕhxz
]

=
R

8GN

∫ π/2

−π/2
dϕ cosϕhxx, (3.2)

where we employed the FG gauge in the final expression.

3.1 HEE in AdS3 Pure Gravity

As the simplest example in AdS3/CFT2, we would like to calculate ∆SA in the pure Einstein

gravity for AdS3. The equations of motion for the metric perturbation hµν reads

∂z(∂xhtx − ∂thxx) = 0,

∂z(∂xhtt − ∂thtx) = 0,

(∂z − z∂2z )hxx = (∂z − z∂2z )htx = (∂z − z∂2z )htt = 0,

∂z(htt − hxx)− z∂2xhtt + 2z∂t∂xhtx − z∂2t hxx = 0. (3.3)

Note that this system is topological in that there are no propagating degrees of freedom as usual

in three dimensional pure gravity.

By requiring that hµν(z, x) is order O(z2) so that only normalizable modes are excited, these

equations can be solved as follows:

htt = hxx = z2H(t, x), ∂thtx = z2∂xH(t, x), ∂xhtx = z2∂tH(t, x), (3.4)

where the function H(t, x) satisfies

(∂2t − ∂2x)H(t, x) = 0. (3.5)
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Finally, by using this solution, (3.2) is rewritten as follows:

∆SA(ξ, l, t) =
Rl2

32GN

∫ π/2

−π/2
dϕ cos3 ϕ ·H

(

t, ξ +
l

2
sinϕ

)

=
πl2

4

∫ π/2

−π/2
dϕ cos3 ϕ · Ttt

(

t, ξ +
l

2
sinϕ

)

, (3.6)

where we employed the relation H(t, x) = 8πGN

R Ttt(t, x) by setting d = 2 in (2.9).

By taking the Fourier transformation

H(k, t) =

∫ ∞

−∞
dx e−ikxH(t, x), (3.7)

we obtain

∆SA(k, t, l) =
R

2GN
· 2 sin

kl
2 − lk cos kl

2

k3l
·H(k, t). (3.8)

In this way, we find that ∆SA is related to the metric via this non-local transformation. Moreover,

it is straightforward to see that it satisfies
[

∂2l +

(

k2

4
− 2

l2

)]

∆SA(k, l, t) = 0. (3.9)

In summary, we find from (3.5) and (3.9) that ∆SA satisfies the following “equations of motion

for entanglement entropy”:

(∂2t − ∂2ξ )∆SA(ξ, l, t) = 0, (3.10)
[

∂2l −
1

4
∂2t −

2

l2

]

∆SA(ξ, l, t) = 0. (3.11)

The first equation (3.10) shows that the quantum entanglement propagates at the speed of light

in the x direction. The second one (3.11) describes an evolution in the width (or radial) direction,

which is analogous to the wave equation in an AdS spacetime. We believe that the presence of two

constraint equations for ∆SA as in (3.10) and (3.11) is peculiar to the AdS3/CFT2 duality and this

is due to the fact that the gravity does not have propagating degrees in three dimension.

3.2 HEE from Einstein-Scalar Theory

Since the pure AdS3 does not have any propagating degrees of freedom, it is more interesting to

consider a Einstein-matter theory on AdS3. Though we will not write down all components of

Einstein equation, we would like to note that the tt component reads

∂zhxx − z∂2zhxx − 2zT
(G)
tt = 0, (3.12)

where T
(G)
ab is the energy momentum tensor in the d + 1 dimensional gravity. This should be dis-

tinguished from the holographic energy tensor Tµν for the d dimensional dual CFT. By integrating

this equation, the shift of holographic entanglement entropy ∆SA (3.2) is expressed as follows:
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∆SA(t, ξ, l) =
1

8GN

∫ π
2

−π
2

dϕR cosϕhxx

(

l

2
cosϕ, t, ξ +

l

2
sinϕ

)

=
1

8GN

∫ π
2

−π
2

dϕ cosϕ

[

− 2

∫ l
2
cos(ϕ)

0
dz′′

∫ z′′

0
dz′T (G)

tt

(

z′, t, ξ +
l

2
sinϕ

)

· z
′′

z′

+
l2

4
H

(

t, ξ +
l

2
sinϕ

)

cos2 ϕ

]

.

(3.13)

In particular, we consider the Einstein-scalar theory which is defined by a free scalar field φ

(mass m), which is minimally coupled to the Einstein gravity. The Einstein equation is given by

(2.3) with the energy stress tensor is given by

T (G)
µν =

1

2
∂µφ∂νφ− 1

4
gµν

[

(∂φ)2 +m2φ2
]

, (3.14)

where we normalize the scalar field appropriately.

We consider a perturbation of the scalar and AdS3 metric in the FG gauge as follows:

φ(z, t, x) =
√
ǫψ(z, t, x),

gµν(z, t, x) = ηµν + ǫhµν(z, t, x),
(3.15)

where ǫ is an infinitesimally small parameter of the perturbation.

The equation of motion of this perturbation is given by

z
(

z
(

ψ(0,0,2)(z, t, x) − ψ(0,2,0)(z, t, x) + ψ(2,0,0)(z, t, x)
)

− ψ(1,0,0)(z, t, x)
)

−m2R2ψ(z, t, x) = 0.

(3.16)

After the Fourier transformation, the normalizable solution for this equation is given by

ψ(z, t, x) = z

∫ ∞

−∞
dω

∫ ∞

−∞
dk

e−itω+ixk

(ω2 − k2)
1

2
(m2R2+1)

〈O(ω, k)〉 J√m2R2+1

(

z
√

ω2 − k2
)

, (3.17)

where 〈O(ω, k)〉 denotes the expectation value of an operator dual to the scalar field φ (up to a

normalization factor) [2, 24].

The entanglement entropy is decomposed into two parts:

∆SA(ξ, l, t) = ∆SP
A (ξ, l, t) + ∆SM

A (ξ, l, t). (3.18)

The ∆SP
A is the same as that in the pure AdS3 case and is given by (3.6). The other term ∆SE

A

comes from the contribution from the matter field and is expressed as

∆SM
A (ξ, l, t) = − R

4GN

∫ π
2

−π
2

dϕ

∫ l
2
cosϕ

0
dz′′

∫ z′′

0
dz′T (G)

tt

(

z′, ξ +
l

2
sinϕ, t

)

· z
′′

z′

=
R

16GN

∫ π
2

−π
2

dϕ cosϕ

∫ l
2
cosϕ

0
dz′′

∫ z′′

0
dz′
∫

dω1dω2dk1dk2

× z′′z′ 〈O(ω1, k1)〉 〈O(ω2, k2)〉F (z′, ω1, ω2, k1, k2)e
i(−(ω1+ω2)t+(k1+k2)(ξ+ l

2
sinϕ))

(3.19)
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F (z, ω1, ω2, k1, k2) is given by

F (z, ω1, ω2, k1, k2) = −1

z

(

ω2
1 − k21

)
−ν2

2

(

ω2
2 − k22

)
−ν2

2

[

z
√

ω2
1 − k21Jν−1

(

z
√

ω2
1 − k21

)(

(1− ν) Jν

(

z
√

ω2
2 − k22

)

+ z
√

ω2
2 − k22Jν−1

(

z
√

ω2
2 − k22

))

+Jν

(

z
√

ω2
1 − k21

)(

Jν

(

z
√

ω2
2 − k22

)

· (−k1k2z2 + 2ν2 − 2ν − ω1ω2z
2)

−z
√

ω2
2 − k22 (ν − 1) · Jν−1

(

z
√

ω2
2 − k22

))]

, (3.20)

(3.21)

where we defined ν ≡
√
m2R2 + 1.

We can also act a differential operator to get rid of the ∆SP
A contribution and obtain the

following constraint equations which are satisfied by ∆SA:

(∂2t − ∂2ξ )∆SA(l, t, ξ)

=

∫

dω1dω2dk1dk2F
(1)(k1, k2, ω1, ω2, l) 〈O(ω1, k1)〉 〈O(ω2, k2)〉 e−i(ω1+ω2)t+i(k1+k2)ξ.

(3.22)

(

∂2l −
1

4
∂2t −

2

l2

)

∆SA(l, t, ξ)

∫

dω1dω2dk1dk2F
(2)(k1, k2, ω1, ω2, l) 〈O(ω1, k1)〉 〈O(ω2, k2)〉 e−i(ω1+ω2)t+i(k1+k2)ξ,

(3.23)

where we did not write explicitly F (1) and F (2) as they can be easily obtained from (3.19).

In summary, we have obtained a counterpart of the perturbative Einstein equation in terms

of entanglement entropy. Therefore we can regard (3.22) and (3.23) as the perturbative equations

of motion for the entanglement entropy. Once we specify the expectation value of energy density

Ttt(t, x) and the scalar operator O(t, x) as functions of t and x, then the differential equations (3.22)

and (3.23) determine the time evolution of ∆SA(ξ, l, t).

They share a similar structure with that of the Einstein equation because the left hand side

comes from the gravitational physics (↔ entanglement) and the right hand side corresponds to the

matter fields (↔ operator expectation values). Note also that they are manifestly gauge invariant

(as far as we fix the AdS boundary coordinate), as opposed to the Einstein equation where the

metric changes under the coordinate transformation.

One may notice that we only used the Einstein equation involving the space-like component

hxx. In order to take into account the one for the time-like component we need to consider the

entanglement entropy for boosted subsystems. We will leave the details of these for a future

problem.
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3.3 Proof of First Law-like Relation

When l is very small, we can neglect the contributions from the matter fields ∆SM
A . Therefore in

this limit, we find

∆SA(ξ, l, t) ≃
Rl2

24GN
H(t, ξ). (3.24)

We can show this relation (3.24) confirms the time-dependent version of the first law-like relation

(2.5) of the entanglement entropy for AdS3/CFT2. Indeed, since by definition we find ttt = H(t, x)

we can easily reproduce (2.5) from (3.24)1.

4 Analysis of Perturbed HEE in AdS4/CFT3

Now we move on to higher dimensional cases and here we especially consider a AdS4/CFT3 example.

Since the pure Einstein gravity is already dynamical in four or higher dimension, we will concentrate

on the pure gravity just for simplicity.

4.1 Einstein Equation

We consider a metric perturbation of the AdS4 space. The metric is again given by (2.1) and (2.2)

with (x0, x1, x2) = (t, x, y). We require that hµν is order O(z3) in the limit z → 0 so that we can

keep only normalizable deformations.

By performing the Fourier transformation

hµν(t, x, y, z) =
1

(2π)3

∫

dωdkxdkye
−iωt+ikxx+ikyy · hµν(z, ω, kx, ky), (4.1)

the perturbative Einstein equation leads to

z∂2zhµν − 2∂zhµν + (ω2 − k2x − k2y)zhµν = 0, (4.2)

for all components of perturbations htt, htx, hty , hxx, hxy, hyy . This is easily solved as

hµν(z, ω, kx, ky) = 3

√

π

2
·Hµν(ω, kx, ky) · (ω2 − k2)−

3

4 · z 3

2 · J3/2(
√

ω2 − k2z). (4.3)

Note that the explicit form of the Bessel function reads

J3/2(x) =

√

2

πx

(

− cos x+
sinx

x

)

. (4.4)

We can show the following behaviour near the AdS boundary z → 0:

hµν(z, ω, kx, ky) ≃ z3 ·Hµν(ω, kx, ky). (4.5)

1note that due to our conventions for the AdS3/CFT2 case we should replace in (2.6) l → l/2.
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Since we are interested in non-singular and normalizable solutions, we restrict to the range ω2 > k2.

We can show that the Einstein equation is equivalent to (4.2) and (4.6)

htt =
1

k2x − ω2

[

−2kxkyhxy + (k2x − k2y)hyy
]

,

htx =
1

ω(ω2 − k2x)

[

−ky(ω2 + k2x)hxy + kx(ω
2 − k2y)hyy

]

,

hty =
1

ω
(−kxhxy − kyhyy),

hxx =
1

k2x − ω2

[

−2kxkyhxy + (ω2 − k2y)hyy
]

. (4.6)

In particular, we can find the relation from (4.6)

htt = hxx + hyy, (4.7)

which is interpreted as the traceless condition of energy stress tensor in the dual CFT.

4.2 Calculations of HEE

We consider the shift of HEE ∆SA by choosing the subsystem A to be a disk with a radius l. In

the pure AdS4, the HEE is computed as the area of the minimal surface γA given by the half of

sphere parameterized by

x = l sin θ cosφ+X, y = l sin θ sinφ+ Y, z = l cos θ, (4.8)

with the range 0 < θ < π/2 and 0 < φ < 2π.

The shifted amount of the HEE, denoted as ∆SA due to the linear perturbation of the metric

is found by using (2.4):

∆SA(t,X, Y, l)

=
R2

8GN

∫ 2π

0
dφ

∫ π/2

0
dθ

sin θ

cos2 θ

[

(1− sin2 θ cos2 φ)hxx − 2hxy sin
2 θ cosφ sinφ+ (1− sin2 θ sin2 φ)hyy

]

.

(4.9)

We take the Fourier transformation of ∆SA(t,X, Y, l) with respect to t,X, Y , which is denoted by

∆SA(ω, kx, ky , l):

∆SA(t,X, Y, l) =
1

(2π)3

∫

dωdkxdkye
−iωt+ikxX+ikyY ,∆SA(ω, kx, ky, l)

∆SA(ω, kx, ky, l) =

∫

dtdXdY eiωt−ikxX−ikyY ∆SA(t,X, Y, l). (4.10)
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Then we find

∆SA(ω, kx, ky, l)

=
3R2

8GN

√

π

2

∫ π/2

0
dθ

sin θ

cos2 θ

∫ 2π

0
dφI(φ, θ) · eil sin θ(kx cosφ+ky sinφ)

×
(

l cos θ√
ω2 − k2

)3/2

· J3/2(l cos θ
√

ω2 − k2), (4.11)

where we defined

I(φ, θ) = (1− sin2 θ cos2 φ)Hxx(ω, k)− 2 sin2 θ cosφ sinφHxy(ω, k) + (1− sin2 θ sin2 φ)Hyy(ω, k).

(4.12)

We can perform φ integral by using the formula of Bessel functions

Jn(z) =
1

2π

∫ 2π

0
dφeinφ−iz sinφ, (4.13)

as follows:

1

2π

∫ 2π

0
dφI(φ, θ) · eil sin θ(kx cosφ+ky sinφ)

= (Hxx +Hyy)

(

1− sin2 θ

2

)

J0(kl sin θ)−
iHxy

2
sin2 θ

(

e2iαJ−2(kl sin θ)− e−2iαJ2(kl sin θ)
)

+
sin2 θ

4
(Hyy −Hxx)

(

e2iαJ−2(kl sin θ) + e−2iαJ2(kl sin θ)
)

,

=

[(

1− sin2 θ

2

)

J0(kl sin θ) +
sin2 θ

k2

(

ω2 − k2

2

)

J2(kl sin θ)

]

Htt. (4.14)

Here the angle α was introduced such that kx cosφ + ky sinφ = −k sin(φ + α) i.e. sinα = −kx/k
and cosα = −ky/k; we employed (4.6) to get the final equation.

Thus we can express ∆SA(ω, kx, ky, l) in term of the (holographic) energy stress tensor Ttt(ω, kx, ky)

as follows

∆SA(ω, kx, ky, l)

=
2
√
2π5/2l3/2

(ω2 − k2)3/4
· Ttt(ω, kx, ky) ·

∫ π/2

0
dθ

sin θ√
cos θ

Q(θ), (4.15)

where Q(l) is defined by

Q(θ) = J3/2(l cos θ
√

ω2 − k2) ·
[(

1− sin2 θ

2

)

J0(kl sin θ) +
sin2 θ

k2

(

ω2 − k2

2

)

J2(kl sin θ)

]

. (4.16)

4.3 First law-like Relation and Translationally Invariant Limit

By taking the limit l → 0 in (4.9), we obtain

∆SA =
πR2l3

4GN

∫ π/2

0
dθ sin θ cos θ(1− sin2 θ/2)(Hxx +Hyy),

=
3πR2l3

32GN
Htt, (4.17)
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where we employed the relation (4.7). On the other hand the total energy in A reads

∆EA = πl2Ttt =
3R2l2

16GN
Htt, (4.18)

by using (2.9). Therefore we can confirm the first law-like relation (2.5) with Teff = 2
πl . In other

words the energy density and ∆SA are related to each other via

∆SA =
π2l3

2
Ttt. (4.19)

Moreover, it is also intriguing to note that we can obtain the same result (4.19) when we take

the translationally invariant limit kx, ky → 0 even if we keep l and ω finite. This fact can be shown

by explicitly evaluating ∆SA as follows:

∆SA(ω, x, y, l)

=
3πR2l3/2

8GNω3/2

√

π

2

∫ π/2

0
dθ

sin θ√
cos θ

(

2− sin2 θ +
l2ω2 sin4 θ

4

)

J3/2(lω cos θ)(Hxx +Hyy),

=
3πR2l3

32GN
Htt. (4.20)

4.4 Metric Shift in CFTs

In the main part of this paper we have considered only normalizable perturbations which correspond

to the dynamical change of state in a given CFT. However, we would like to study non-normalizable

modes only in this subsection. Indeed, when we consider the time-dependent background corre-

sponding to quantum quenches induced by a sudden change of the metric, we need to take into

account the non-normalizable modes2.

For this, as a solution to the Einstein equation, we assume

hµν(t, x, y, z) = i

√

π

2
·
∫ ∞

−∞

dω

2π
e−iωtH̃µν(ω)ω

3/2z3/2H
(1)
3/2(ωz), (4.21)

where the Hankel function is defined by

H
(1)
3/2(z) =

√

2

πz

(−i
z

− 1

)

eiz. (4.22)

Near the AdS boundary z = 0, it approaches

hµν(t, x, y, z = 0) =

∫ ∞

−∞

dω

2π
e−iωtH̃µν(ω). (4.23)

2If we consider quantum quenches induced by excitations of matter fields such as scalar fields, we will have milder

metric backreactions such as the Vaidya metric. Refer to e.g.[26] for recent developments of holographic quantum

quenches.
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Then the HEE behaves like

∆SA(ω) =
iπ3/2R2l3/2ω3/2

8
√
2GN

∫ π/2−δ

0
dθ

sin θ√
cos θ

(

2− sin2 θ +
l2ω2 sin4 θ

4

)

H
(1)
3/2(lω cos θ)(H̃xx + H̃yy),

=
πR2

32GN

(

4 + l2ω2

δ
+ il3ω3

)

(H̃xx(ω) + H̃yy(ω)), (4.24)

where δ is the UV cut off and is related to the lattice spacing a via δ = a/l.

The divergent part of the HEE is simply obtained as

∆Sdiv
A (t) =

πR2

32GN
(4− l2∂2t )(H̃xx(t) + H̃yy(t)) ·

l

a
, (4.25)

where a is the UV cut off (lattice spacing). This agrees with the expectation from the area law.

The more non-trivial contribution is the finite term, evaluated as follows:

∆Sfinite
A (t) =

πR2l3

32GN
· ∂3t

(

H̃xx(t, x, y) + H̃yy(t, x, y)
)

. (4.26)

5 Analysis of Perturbed HEE in AdS5/CFT4

Here we analyze the perturbed HEE in the AdS5/CFT4 setup. Since the calculations are parallel

with the previous section, our presentation will be brief.

5.1 Solutions to Perturbative Einstein Equation

The Einstein equations for the Fourier transformed metric perturbations

hµν(t, x1, x2, x3, z) =
1

(2π)4

∫

dω d3k e−iωt+ik1x1+ik2x2+ik3x3hµν(z, ω, k)

are equivalent to

z∂2zhµν − 3∂zhµν + (ω2 − k21 − k22 − k23)zhµν = 0. (5.1)

together with

htt =
1

(−k21 + ω2)
(2k1k2h12 + 2k1k3h13 + (−k21 + k22)h22 + 2k2k3h23 + (k23 − k21)h33),

ht1 =
−(k21k2 + k2ω

2)h12 − (k21k3 + k3ω
2)h13 + (k1ω

2 − k1k
2
2)h22 − 2k1k2k3h23 + (k1ω

2 − k1k
2
3)h33

ω(−k21 + ω2)
,

ht2 = − 1

ω
(k1h12 + k2h22 + k3h23),

ht3 = − 1

ω
(k1h13 + k2h23 + k3h33),

h11 =
1

(−k21 + ω2)
(2k1k2h12 + 2k1k3h13 + (k22 − ω2)h22 + 2k2k3h23 + (k23 − ω2)h33). (5.2)

12



The normalizable solution of the first equation (5.1) is

hµν(z, ω, k) = 8(ω2 − k2)−1z2J2(z
√

ω2 − k2)Hµν(ω, k) = z4Hµν(ω, k) +O(z6) (5.3)

5.2 Calculation of perturbed HEE

Consider the HEE SA for the subsystem A whose boundary is defined by a two dimensional round

sphere S2 with radius l. The corresponding minimal surface in the pure AdS5 is parameterized by

z(θ, φ, ρ) = l cos θ, x1(θ, φ, ρ) = l sin θ cosφ+X1,

x2(θ, φ, ρ) = l sin θ sinφ cos ρ+X2, x3(θ, φ, ρ) = l sin θ sinφ sin ρ+X3. (5.4)

Then the variation of the entanglement entropy is computed as

∆SA

=
R3

8GN

∫ π

0
dφ

∫ π/2

0
dθ

∫ 2π

0
dρ

sin4 θ sinφ

cos3 θ

[

h11

(

1

sin2 θ
− cos2 φ

)

− 2 sin φ cos(φ)(h12 cos ρ+ h13 sin(ρ))

−2h23 cos ρ sin ρ sin
2 φ+ h22

(

1

sin2 θ
− cos2 ρ sin2 φ

)

+ h33

(

1

sin2 θ
− sin2 φ sin2 ρ

)

]

. (5.5)

After the Fourier transformation

∆S(ω, k, l) =

∫

dtd3X ∆S(t,X, l)eiwt−ikiXi

we obtain

∆S(ω, k, l) =
R3l2

GN (w2 − k2)

∫ π

0
dφ

∫ π/2

0
dθ

∫ 2π

0
dρ

sin4 θ sinφ

cos θ
J2(l cos θ

√

ω2 − k2)× (5.6)

×eil sin θ(k1 cosφ+k2 sinφ cos ρ+k3 sinφ sinρ)P (ω, k, φ, θ, ρ)

with

P (ω, k, φ, θ, ρ) = H11(ω, k)(
1

sin2 θ
− cos2 φ)− 2 sin φ cosφ(H12(ω, k) cos ρ+H13(ω, k) sin(ρ))−

−2H23(ω, k) cos ρ sin ρ sin
2 φ+H22(ω, k)(

1

sin2 θ
− cos2 ρ sin2 φ) +H33(ω, k)(

1

sin2 θ
− sin2 φ sin2 ρ)

5.3 First Law-like Relation

Using (5.5) in the limit of small l (2.8), we can perform the integrals as:

∆SA = − l
4R3π

8GN

∫ π

0
dφ

∫ π/2

0
dθ sin2 θ sinφ cos θ[−2(H11 +H22 +H33) + 2H11 sin

2 θ cos2 φ

+(H22 +H33) sin
2 φ sin2 θ]

=
2l4R3π

15GN
(H11 +H22 +H33). (5.7)
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Since from equation (5.2) it is immediate to obtain Htt = H11+H22+H33, we can finally show

the relation :

∆SA =
2l4R3π

15GN
Htt. (5.8)

This proves the first law-like equation (2.5) by using (2.9).

More generally, we can show the relation (5.8) if we take k1,2,3 → 0 limit with keeping ω and l

finite as in the AdS4 case.

6 Entanglement Density and Its Perturbation

Since the entanglement entropy measures the entanglement between a certain region and its out-

side, it is a highly non-local quantity. When we are interested in local physics, the entanglement

entropy sometimes smears its essential effect. To improve this, the quantity called entanglement

density was introduced in [16] for two dimensional field theories. This quantity measures the en-

tanglement between infinitesimally small two regions and is guaranteed to be positive due to the

strong subadditivity relation. We will generalize this quantity in higher dimensional field theories

and study the behavior of entanglement density in excited states by using the perturbative Einstein

equation in the holographic description.

6.1 Entanglement Density in Two Dimension

Let us start with the entanglement density in two dimensions introduced in [16]. This is defined by

n(l, ξ, t) =
1

2

(

1

4
∂2ξ − ∂2l

)

SA(l, ξ, t), (6.1)

where we chose the subsystem A to be an interval such that its width is l and its center is at x = ξ

as in the holographic description (3.1). We also write the shift of entanglement density compared

to that of the ground state as ∆n.

In our holographic setup of the pure gravity on AdS3, this is evaluated as follows

∆n(k, t, l) =
R

2GN
· −2 sin kl

2 + lk cos kl
2

k3l3
·H(k, t)

= 4π · −2 sin kl
2 + lk cos kl

2

k3l3
· Ttt(k, t). (6.2)

Thus in this case we find the following simple relation is satisfied for the small excitations around

the ground state:

∆SA(ξ, t, l) + l2 ·∆n(ξ, t, l) = 0. (6.3)
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In the gravity dual of the Einstein scalar theory, we can show from (3.23) that this relation is

modified:

∆SA(ξ, t, l) + l2 ·∆n(ξ, t, l)

= − l
2

2

∫

dω1dω2dk1dk2

(

F (2) +
F (1)

4

)

〈O(ω1, k1)〉 〈O(ω2, k2)〉 e−i(ω1+ω2)t+i(k1+k2)ξ.

The first law-like relation (3.24) can be expressed in terms of the entanglement density as

lim
l→0

∆n(ξ, t, l) = −π
3
Ttt(ξ, t), (6.4)

which can also be seen easily by taking l → 0 limit in (6.2). In this way, the entanglement density

is equivalent to the energy density when its width l is vanishing. Though this was already noted in

[16] when Ttt(ξ, t) does not depend on ξ and t, here we gave a proof of this for more general cases.

6.2 Entanglement Density in Higher Dimensions

Now we would like to define the entanglement density for field theories in higher dimensions.

Consider a d(≥ 3) dimensional Minkowski spacetime and define its coordinate (t, ~x) (~x is a d − 1

dimensional vector). We specify an arbitrarily given subsystem A by ~x = ~x(ζ), where ζα (α =

1, 2, · · ·, d − 2) is the coordinate of the boundary ∂A of the subsystem A. Remember that A is

defined on a certain time slice t =const. The unit normal vector at a point on ∂A (toward the

outside direction) is denoted by ~N(ζ).

We deform the subsystem A as

~x = ~x(ζ) + δxn(ζ) · ~N(ζ). (6.5)

In this setup we define the entanglement density by

nA(ζ, ζ
′) = − δ2SA

δxn(ζ)δxn(ζ ′)
, (6.6)

assuming ζ 6= ζ ′. Notice that this quantity depends not only on ζ and ζ ′ but also on the choice

of subsystem A itself. In this sense, the entanglement density in higher dimensions (d > 2) is not

completely a local quantity.

We can show that this quantity is non-negative due to the strong subadditivity of the entan-

glement entropy [27, 28]. To see this, let us assume δxn = δx
(1)
n + δx

(2)
n , such that only one of δx

(1)
n

and δx
(2)
n can be non-zero (or equally δx

(1)
n · δx(2)n = 0) for any points on ∂A. Then the strong

subadditivity leads to

S(~x+ δx(1)n ) + S(~x+ δx(2)n ) ≥ S(~x) + S(~x+ δx(1)n + δx(2)n ), (6.7)

where S(~x + δx
(1)
n ) denotes SA for the subsystem A defined by ~x = ~x(ζ) + δx

(1)
n (ζ) · ~N(ζ). By

performing the Taylor expansion of (6.7), we find that nA(ζ, ζ
′) is positive.
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6.3 Holographic Calculation in Pure AdS

Now we present a holographic calculation of entanglement density in any dimension. We take the

subsystem A to be a half space defined by y(≡ xd−1) < 0. We perform an infinitesimal deformation

of A (6.5) by choosing ζα = xα (α = 1, 2, · · ·, d− 2). In this case, the normal vector ~N(ζ) is in the

y direction and thus the boundary ∂A of the subsystem A is simply expressed as

y = δxn(x
α). (6.8)

We would like to calculate SA for this deformed subsystem by using the AdS/CFT. Consider

the pure AdSd+1 in the Poincare coordinate (z, t, x1, , xd−2, y), whose metric is written as

ds2 = R2dz
2 − dt2 +

∑d−2
α=1 dx

2
α + dy2

z2
. (6.9)

Before we do the deformation (6.8), the minimal surface responsible for SA is simply given by

the plane y = 0 in (6.9). Therefore, we can describe the minimal surface after the deformation

(6.8) as

y = f(z, ~x), (6.10)

where ~x = (x1, x2, · · ·, xd−2).

To calculate the HEE , we take a variation of the area functional in order to find the minimal

surface:

S =
Rd−1

4GN

∫

dxd−2dz

zd−1

√

√

√

√1 +

(

∂f

∂z

)2

+
d−2
∑

i=1

(

∂f

∂xi

)2

. (6.11)

Up to the second order expansion of f , SA is approximated as

S =
Rd−1

4GN

∫

dxd−2dz

zd−1

(

1 +
1

2

(

∂f

∂z

)2

+
1

2

d−2
∑

i=1

(

∂f

∂xi

)2
)

. (6.12)

By taking a variation with respect to f , we find the following equation

zd−1 ∂f

∂z

(

1

zd−1

∂f

∂z

)

+

d−2
∑

i=1

∂2f

∂x2i
= 0. (6.13)

By performing the Fourier transformation of f(z, ~x), we obtain

d2f

dz2
− d− 1

z

df

dz
− k2f = 0, (k = |~k|). (6.14)

We can find solutions to this equation that do not diverge as we take z to infinity:

f(z) = z
d
2K d

2

(kz). (6.15)
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Also we can find the solution that satisfies f(0, ~x) = ξ(x) at the AdS boundary is given by

f(z, ~x) =
Γ(d− 1)

π
d−2

2 Γ(d2 )

∫

dx̃d−2 ξ(~̃x)zd

((~x− ~̃x)2 + z2)d−1
. (6.16)

Now let us substitute this to the area functional (6.12). We ignore the divergent part because

its dependence of ξ(x) is local and we are not interested in it. Therefore we concentrate on the

finite part given by

Sfinite
A =

Rd−1

4GN

∫

d~xdz

zd−1

(

1

2

(

∂f

∂z

)2

+
1

2

d−2
∑

i=1

(

∂f

∂xi

)2
)

. (6.17)

This is evaluated as follows:

Sfinite
A = −R

d−1dΓ(d− 1)

8π
d−2

2 Γ(d2 )GN

∫

dxd−2
1 dxd−2

2

ξ( ~x1)ξ( ~x2)

( ~x1 − ~x2)2(d−1)
. (6.18)

In this way, we obtain the entanglement density from the AdS/CFT:

n( ~x1, ~x2)A = − δ2SA
δξ( ~x1)δξ( ~x2)

=
Rd−1d · Γ(d− 1)

4π
d−2

2 Γ(d2 )GN

1

( ~x1 − ~x2)2(d−1)
. (6.19)

When d = 3 the above computation has already been done in [29] in the context of holographic

Wilson loops. Moreover, notice that our calculation is essentially the same as that of a two point

function of a marginal scalar operator (dual to a massless scalar field) in the AdSd/CFTd−1 setup

[2]. This suggests that the result (6.19) may be interpreted as a two point function of certain

operators with the conformal dimension d− 1 in the dual CFTd. We naturally expect that such an

operator is related to the energy stress tensor. It will be an intriguing future problem to work out

this precisely.

It is also possible to calculate the entanglement density when we choose the subsystem A to be

a small perturbation of a round ball Bd−1. The corresponding minimal surfaces can be obtained

by performing the conformal transformation in the AdS space (see [30]):

x′µ =
xµ + cµ(x2 + z2)

1 + 2c · x+ c2(x2 + z2)
,

z′ =
z

1 + 2c · x+ c2(x2 + z2)
. (6.20)

The result is simply given by

n( ~Ω1, ~Ω2) = − δ2SA

δr(~Ω1)δr(~Ω2)
=
Rd−1d · Γ(d− 1)

4l2π
d−2

2 Γ(d2 )GN

· 1
∣

∣

∣

~Ω1 − ~Ω2

∣

∣

∣

2(d−1)
, (6.21)

where the unit vectors Ω1,2 parameterize the two positions on Sd−2 and r is the radial coordinate

orthogonal to Sd−2.
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6.4 Entanglement Density and Metric Perturbation in Higher Dimensions

The main motivation to study the entanglement density in this paper is to understand its dynamical

properties by using the holographic calculations. Here we would like to study this in the setup of

AdS4/CFT3. In particular, we will holographically compute the change of entanglement density

in the presence of small perturbation of the metric compared with the pure AdS result (6.19) by

looking at the pure gravity in four dimensions. We again choose A to be a small perturbation

around the half space.

In the metric background (2.1) with the perturbation (2.2) at d = 3, the shift of HEE ∆SA

for the surface (6.10) is given by the following expression up to the linear order of hµν and the

quadratic order of f :

∆SA =
R2

4GN

∫

dxdz

z2

[

hxx
2

+ hxy
∂f

∂x
+

−hxx + 2hyy
4

(

∂f

∂x

)2

+
hxx + 2hyy

4

(

∂f

∂z

)2
]

. (6.22)

The minimal surface f can be found as (6.16) by setting d = 3.

We can obviously divide (6.22) into three parts ∆SA = ∆S
(0)
A +∆S

(1)
A +∆S

(2)
A , where ∆S

(i)
A is

defined to be the term which involves i-th power of f . We can find from ∆S
(1)
A

δ∆SA
δξ(x1)

=
R2

2GNπ

∫

dxdz

z2
hxy ·

(

4z3(x1 − x)

((x1 − x)2 + z2)3

)

. (6.23)

In the above expression, the metric perturbations hµν are evaluated at any constant values of y

and t, corresponding to the definition of the subsystem A.

Moreover, we can evaluate the shift of the entanglement density from ∆S
(2)
A as follows:

∆nA(t, y, x1, x2)

= − δ2∆SA
δξ(x1)δξ(x2)

= − R2

2π2GN

∫ ∞

0
dz

∫ ∞

−∞
dx [A(x, z)hyy(t, y, z) +B(x, z)(hxx(t, y, z) + hyy(t, y, z))] ,(6.24)

where A and B are given by

A(x, z) = z2
(

3(x− x1)
2 − z2

) (

3(x− x2)
2 − z2

)

+ 48z2(x− x1)(x− x2)

((x− x1)2 + z2)3 ((x− x2)2 + z2)3
,

B(x, z) = z2
(

3(x− x1)
2 − z2

) (

3(x− x2)
2 − z2

)

− 16z2(x− x1)(x− x2)

((x− x1)2 + z2)3 ((x− x2)2 + z2)3
. (6.25)

By using the expression (6.24) we would like to study the relation between the entanglement

density ∆nA and energy momentum tensor Tµν . The latter is related to the asymptotic behavior

of the metric via (2.8) and (2.9). The full metric perturbation is found as (4.3) by solving the

Einstein equation.

18



In order to proceed analytically we assume a time-dependent but translationally invariant per-

turbation of the pure AdS4, which is explicitly expressed as (??). By taking the Fourier transfor-

mation of ∆nA with respect to the time t, we finally obtain the following result:

∆nA(ω, y, x1, x2)

= −4

√
2√
π
· |ω|−3/2 ·

∫ ∞

0
dz

∫ ∞

−∞
dx [A(x, z)Tyy(ω) +B(x, z)(Txx(ω) + Tyy(ω))] z

3/2J3/2(|ω|z),

=
π

16
e−l|ω|/2|ω| · ((l|ω| − 12)Tyy(ω) + 2Ttt(ω)) , (6.26)

where we set l = |x1 − x2|.
We can Fourier transform ∆nA(ω, y, x1, x2) and express the result as a perturbation at time t̃

carried by a Green function to time t, obtaining

∆nA(t, y, x1, x2) =

∫

dt̃ (Gtt(t− t̃) · Ttt(t̃) +Gyy(t− t̃) · Tyy(t̃)) (6.27)

with

Gyy(T ) = −2 · l
4 + 6l2T 2 − 24T 4

(l2 + 4T 2)3
, Gtt(T ) =

(l2 − 4T 2)

2(l2 + 4T 2)2
(6.28)

7 Conclusions

In this paper, we studied the dynamics of holographic entanglement entropy (HEE) induced by a

metric perturbation around the pure AdS spacetime. Its dynamics is constrained by the perturba-

tive Einstein equation. First we solved this to express the HEE in terms of the energy stress tensor

in the dual CFT. Next we obtained constraint differential equations (3.22) and (3.23), which are

satisfied by the perturbation of HEE for the Einstein-Scalar theory in AdS3. We can regard this

as a counterpart of Einstein equation from the viewpoint of the CFT.

Moreover, we evaluated the evolution of entanglement entropy in the pure gravity theory on

AdS4 and AdS5. In particular we found that the increased amount of HEE ∆SA is given in terms

of the energy density Ttt via a non-local transformation as in the equation (4.15).

It will be an important and interesting future problem to find a universal constraint equation

for general setups in higher dimensions and to work out how to take into account higher order

perturbations systemically in these arguments.

From the CFT viewpoint, our analysis predicts the behavior of entanglement entropy for excited

states. As we explicitly show for AdS3 and AdS4 setups, the entanglement propagates at the speed

of light and this is dual to the propagation of gravitational waves in the bulk AdS.
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At the same time our analysis gives a further support of the first law-like relation [25] when we

choose the subsystem to be a round ball. Our result shows that we get the first law-like relation

if the spatially inhomogeneous modulation is small enough compared with the subsystem size i.e.

kl << 1. In this way we expect a certain fundamental mechanism suggested by this robust first

law-like relation. It will be intriguing to find a field theoretic explanation of this property, especially

in higher dimensions.

We also present a higher dimensional extension of entanglement density, which was first intro-

duced in [16] for two dimensional field theories. We showed that this quantity is non-negative owing

to the strong subadditivity. We presented its holographic calculation and extract its perturbation

for weakly excited states.

Note Added: After the present paper was listed on the arXiv, independent papers [31, 32, 33]

appeared. In these papers, first law-like relations when the subsystem is a strip have also been

analyzed. They showed that the variation of entanglement entropy includes other components of

energy stress tensors other than Ttt.
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