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Abstract

The generalized second law is proven for semiclassical quantum fields falling across
a causal horizon, minimally coupled to general relativity. The proof is much more gen-
eral than previous proofs in that it permits the quantum fields to be rapidly changing
with time, and shows that entropy increases when comparing any slice of the horizon
to any earlier slice. The proof requires the existence of an algebra of observables re-
stricted to the horizon, satisfying certain axioms (Determinism, Ultralocality, Local
Lorentz Invariance, and Stability). These axioms are explicitly verified in the case of
free fields of various spins, as well as 1+1 conformal field theories. The validity of the
axioms for other interacting theories is discussed.
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1 Introduction

This article will describe a set of physical assumptions which are sufficient for a semiclassical
gravitational theory to obey the generalized second law (GSL) of thermodynamics [1]. From
these physical assumptions, a proof of the GSL will be given for rapidly evolving matter
fields and arbitrary horizon slices. This shows that the GSL holds in differential form, i.e.
the entropy is increasing at each spacetime point on the horizon. As far as I am aware, this
is the first time such a general proof of the GSL has been given.

The generalized second law of thermodynamics (GSL) appears to hold on any causal
horizon, i.e. the boundary of the past of any future infinite worldline [2]. Causal horizons
include black hole event horizons, as well as Rindler and de Sitter horizons. The GSL states
that on any horizon, the total entropy of fields outside the horizon, plus the total entropy of
the horizon itself, must increase as time passes. This total increasing quantity is known as
the generalized entropy.

More precisely, for any complete spatial slice Σ intersecting the horizonH , the generalized
entropy of Σ is given by

SH + Sout. (1)

In general relativity, the horizon entropy is proportional to the area1):

SH =
A

4h̄G
|Σ∩H . (2)

The second term is the von Neumann entropy of the matter fields restricted to the region
outside of the horizon:

Sout = −tr(ρ ln ρ)|Σ∩ I−(H). (3)

However, this outside entropy term has an ultraviolet divergence at the horizon due to the
entanglement entropy of fields at very short distances. So to define the generalized entropy,
some kind of renormalization scheme must be employed to subtract off these divergences (cf.
section 2.8).

Historically, the laws of thermodynamics for matter have provided substantial clues about
the microscopic statistical mechanics of atomic systems. It seems probable that the GSL will
provide similar insight into the statistical mechanics of spacetime itself [4]. Because quantum
gravity is currently outside of our experimental range of detection, any help which can be
obtained from the GSL would be very useful. The GSL is especially evocative because of
how surprising it is: it essentially says that an apparently open system (the exterior of the
horizon) behaves in roughly the way that we would expect a closed thermodynamic system
to behave.

1Because Sout is a c-number, for consistency it is necessary to interpret SH as a c-number as well. In this
article, this will be done by taking the semclassical approximation, in which the area A is a classical quantity,
sourced by the expectation value of a quantum operator. However, this semiclassical approximation can only
be an approximation to the true quantum gravity theory, in which the area A becomes an operator. In Ref.
[3] I argued that one should then interpret A as being the expectation value of the quantum area operator.
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There are several different claims that in order for the GSL to be true, certain restrictions
must hold even semiclassically on e.g. bounds on the entropy and/or number of particle
species proposed by Bekenstein [5], Bousso [6], or Dvali [7], bounds on the fine structure
constant [8], the unbrokenness of the Lorentz group [9], and/or energy conditions [10]. If true,
these claims hint at important restrictions on any good theory of quantum gravity. (However,
in the author’s opinion, only the last two of these claims have been clearly established.) One
way to test these proposed requirements is by proving the GSL, and thus seeing explicitly
what assumptions are necessary. Once we know what key assumptions are necessary for
the GSL to hold semiclassically, we will be in a better position to guess background-free
constructions of quantum gravity based on thermodynamic principles.

Until recently, there were satisfactory proofs of the semiclassical GSL only in the ‘quasi-
steady’ case in which the fields falling into the black hole are slowly changing with time [3].
One such ‘quasi-steady’ argument was the illuminating but incomplete proof by Sorkin [11]
(reviewed in Ref. [3]). Sorkin considered the case of a physical process P (which may involve
information loss), with the property that a thermal state

σ =
e−βH

Z
(4)

evolves to itself under the process:
P(σ) = σ. (5)

He then invoked a theorem saying that whenever this happens, the free energy of any other
state ρ cannot increase under the same time evolution:

(〈H〉 − TS)ρ ≥ (〈H〉 − TS)P(ρ) (6)

The free energy can then be related to the generalized entropy using the “first law” of horizon
thermodynamics

dE = TdSH (7)

(which applies only to slowly changing horizons). Unfortunately, the proof founders when
applied to black holes [3], because the state outside the black hole could only be shown to be
thermal outside of the bifurcation surface, but a nontrivial application of the GSL requires
time evolution from one slice of the horizon to another slice. Furthermore the Hartle-Hawking
thermal state exists only for nonrotating black holes, so there are even worse problems in
applying the proof to Kerr black holes.

My previous proof in Ref. [12] side-stepped these problems for the special case of (per-
turbed) Rindler wedges evolving to other Rindler wedges. In this case it was possible to show
that the GSL holds semiclassically even for rapid changes to the horizon, at every instant of
time, using a reasonable assumption about the renormalization properties of Sout. However,
this proof was limited to Rindler horizons sliced by flat planes; it was unable to reach de
Sitter space, black holes, or even arbitrary slices of Rindler horizons. The basic problem is
that the proof requires not only a boost symmetry of each wedge (in order to show that the
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state restricted to the wedge is thermal), it also needs a null translation symmetry (so that
there will be multiple thermal wedges). But this is more symmetry than is possessed by
most spacetimes with stationary horizons.

In this article I will generalize the proof to (semiclassical perturbations of) arbitrary
slices Σ of the future horizon H . The new ingredient is the technique of restricting the
quantum fields to a null hypersurface. In particular (at least for free fields) there is an
infinite dimensional symmetry group due to the freedom to reparameterize each horizon
generator separately [13].2 This symmetry will play an important role in the proof of the
GSL in section 2.6.

Restriction to a null surface is helpful for solving a variety of quantum field theory
problems, e.g. deep inelastic scattering in QCD, because of the insight it gives into the
quantum vacuum [14]. The technique was used by Sewell to derive the Hawking effect
in a very illuminating way [15]. More recently, it has also been used as a simple way to
characterize quantum fields on Schwarzschild past horizons [16] and future horizons [17],
certain past cosmological horizons [18], 1+1 Rindler horizons [19], de Sitter horizons [20]
and the conformal boundary of asymptotically flat spacetimes [21].3

The algebra of observables A(H) on the horizon plays an important role in the proof:
it is required to exist and satisfy four axioms described in section 2.3. In the case of free
fields and 1+1 conformal field theories, it will be shown that there exists a horizon algebra
satisfying these axioms.

In the case of general interacting quantum field theories, the restriction of the fields to a
null hypersurface is a more delicate matter. Nevertheless, there are reasons to believe that
interacting field theories also satisfy the axioms. At least at the level of formal perturbation
theory, the horizon algebra is completely unaffected by the addition of certain kinds of in-
teractions, including both nonderivative couplings, and nonabelian Yang-Mills interactions.
However, renormalization effects can lead to the introduction of additional higher deriva-
tive couplings, as well as infinite field strength renormalization. Because of these issues, it
is not completely clear whether general interacting field theories have a null hypersurface
formulation. Some arguments for and against will be given in section 5.2.

The plan of this article is as follows: Section 2 will outline the physical assumptions used
to prove the GSL, and show why the GSL follows from them. Section 3 will describe in
detail the null hypersurface formulation for a free scalar field. Section 4 will generalize these
results to free spinors, photons, and gravitons. Section 5 will discuss what happens when
interactions are included.

Conventions: The metric signature will be plus for space and minus for time. On the

2This group is isomorphic to the subgroup of the Bondi-Metzner-Sachs group which preserves horizon
generators.

3Some of this work refers to this principle of restricting to a null surface by the name of “holography”,
because the null surface has one less dimension than the rest of the spacetime. But this use of the term is
somewhat misleading when compared with the normal usage in quantum gravity, in which it refers to the
ability to determine spacetime data from a codimension 2 surface. Holography in this latter sense should
normally only arise when gravitational effects are taken into account.
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horizon, y is a system of D − 2 transverse coordinates which is constant on each horizon
generator, λ is an affine parameter on each horizon generator, and ka points along each
horizon generator and satisfies ka∇aλ = 1. When moving off the horizon, u will be a null
coordinate such that the horizon is located at u = 0, and v will be a null coordinate which
satisfies v = λ on the horizon, such that the metric on the horizon is

ds2 = −du dv + hijdy
idyj. (8)

To reduce clutter, I will use the notation vaXa ≡ Xv.

2 Argument for the GSL

2.1 Outline of Assumptions

In order to prove the GSL, I need to make three basic physical assumptions:

1. Semiclassical Einstein Gravity. The proof will apply to the semiclassical regime,
in which all physical effects can be controlled by an expansion in h̄G/λ2, where λ is the
characteristic de Broglie wavelength of the matter fields. This expansion is valid when
λ ≫ Lplanck. By holding λ and G fixed, one can regard this as an expansion in h̄. The
leading order physics is given by quantum field theory on a fixed classical spacetime.
However, at higher orders in h̄ there are perturbations to the spacetime metric due to
gravitational back-reaction.

These perturbations affect the horizon area A at O(h̄1), and therefore affect SH at
O(h̄0). At this order, the gravitational backreaction will be treated as a c-number, and
will be calculated using the semiclassical Einstein equation Gab = 8πG〈Tab〉. It will
also be assumed that the matter is minimally coupled to the metric.

2. The Existence of a Null Hyperspace Formalism. Ignoring the backreaction,
matter is described by a quantum field theory on the background spacetime. This
QFT which describes matter must have a null hypersurface formulation, i.e. there
must be a nontrivial algebra of operators A(H) corresponding to fields restricted to
the horizon itself.

This algebra must satisfy four axioms: Determinism means that all information outside
of the horizon can be predicted from the horizon algebra A(H) together with the
algebra A(I+) at future null infinity. Ultralocality means that the fields on different
horizon generators are independent, so that the algebra A(H) tensor-factorizes for
spatially-disjoint open subsets in the transverse y-directions.4 (Because the fields are

4This is a stronger statement than Microcausality, the assertion that all commutators vanish at spacelike
separation. For example, Ultralocality implies that in the vacuum state, all n-point functions of the fields
vanish at spacelike separations. This property may be surprising at first to those familiar with canonical
quantization of fields on spacelike surfaces. However, for free fields on a null surface it obtains because there
are no derivatives in the formulae for the null stress-energy Tkk or the commutators of fields.
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distributions it is still necessary to smear them in the transverse directions to obtain
well-defined operators.) Local Lorentz Symmetry means that the degrees of freedom
on each horizon generator are symmetric under translations and boosts. And Stability

is the requirement that the fields on each horizon generator have positive energy with
respect to the null translation symmetry. (These four axioms will be explicitly shown
for free QFT’s in section 3-4.)

In the case of a free field φ, this algebra can contain operators that depend on the
pullback of φ to the horizon φ(u = 0), but not on e.g. the derivative moving away from
the horizon ∇uφ(u = 0). For this definition, all four axioms will be shown to hold for
fields with various spins (sections 3-4). But in the case of interacting fields, it is not
clear which operator(s) should be regarded as the fundamental field. In this case it
will simply be taken as an assumption that there exists some algebra A(H) satisfying
these properties. Some tentative arguments for and against this assumption will be
discussed in section 5.

3. A Renormalization Scheme for the Generalized Entropy. Because the entan-
glement entropy outside of the horizon diverges, any proof that generalized entropy
increases must be formal unless this divergence is regulated and renormalized. Rather
than specify a particular renormalization scheme, I will simply describe what proper-
ties the scheme must have. The proof of the GSL depends on proving that the free
boost energy K − TS cannot increase as time passes. Formally, this quantity can be
divided into two parts: the boost energy K and the entropy S. Although K − TS
can be rigorously defined and is finite, both K and S suffer divergences which must be
renormalized. It is necessary to assume that, when K is written in terms of the renor-
malized stress-energy tensor, and S is written in terms of the renormalized entropy,
the expected relationship between these three quantities continues to hold. Since this
property can be rigorously shown for infinite lattice spin systems [22], it is reasonable
to believe that it also holds for quantum field theories.

In the remainder of this section, the consequences of these three assumptions will be described
in more detail.

2.2 The Semiclassical Regime

In the semiclassical approximation, we add certain quantum fields φ to the classical space-
time, and use their expected stress-energy 〈Tab〉 as a source for an order h̄ perturbation to
the metric. In the semiclassical limit one takes h̄ to be small, so that the perturbation to
the metric is small compared to the classical metric.5

5The semiclassical h̄ regime invoked here should be distinguished from the large N semiclassical regime
in which one has a large number of particle species and takes h̄ → 0 while holding h̄N fixed. In that kind of
semiclassical regime the quantum corrections to the metric can be of the same order as the classical metric,
so that it is not possible to regard it as a small perturbation. Proving the GSL in the large N regime will
be left for another day.
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The perturbed metric can be expanded in h̄ as:

gab = g0ab + g
1/2
ab + g1ab +O(h̄3/2). (9)

The zeroth order term is the classical background metric, the half order term is due to
quantized graviton fluctuations, and the first order term is due to the gravitational field of
matter or gravitons. Since the GSL is an inequality, in the limit of h̄ → 0, the truth or
falsity of the GSL is determined solely based on the highest order in h̄ contribution to the
time derivative of the generalized entropy.

The back-reaction of the quantized fields is the O(h̄1) part of the metric, and will be
calculated using the semiclassical Einstein equation:

Gab = 8πG〈Tab〉, (10)

in which the Einstein tensor Gab is regarded as a c-number, while the stress-energy tensor
Tab is a quantum operator.

A few words are in order about the justification of Eq. (10). In reality, the metric tensor
ought to be quantized just as the matter fields are. When this is done, one should use not
the semiclassical Einstein equation, but the full Einstein equation, interpreted as an oper-
ator equation. However, in the linearized weak-field approximation limit, the semiclassical
Einstein equation should be recoverable from the operator Einstein equation by taking ex-
pectation values of the O(h̄1) part of the metric [3]. In addition, there should be higher
order in h̄ corrections to the Einstein equation, coming from renormalization theory. How-
ever, because this article only treats back-reaction at leading order in h̄, effects which are
higher order in h̄ may be neglected.

Hence, because this article uses the semiclassical expansion only when controlled by an h̄
expansion, the results are presumably in correspondence with the full quantum theory. This
regime is much more circumscribed than the “self-consistent” semiclassical solutions of e.g.
Flanagan and Wald [23]. In particular, pathological features such as run-away solutions are
outside of the scope of this regime, since they show up only when all orders in h̄ become
important.

Semiclassical Expansion of the Raychaudhuri Equation. In the strictly classical
h̄ → 0 limit, the horizon entropy SH = 1/4Gh̄ of the GSL dominates over the Sout term.
For any classical manifold with classical fields obeying the null energy condition Tkk = 0,
the area of any future horizon is required to be nondecreasing by Hawking’s area increase
theorem [24]. Let θ be the expansion of the horizon, and σab the shear. Then it follows from
the convergence property of the Raychaudhuri equation:

∇kθ = − θ2

D − 2
− σabσ

ab − Rkk. (11)

together with the null-null component of the Einstein equation

Rkk = 8πGTkk, (12)
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and the absence of any singularities on the horizon itself, that

θ ≥ 0. (13)

Furthermore, if any generator of the horizon has nonvanishing null energy or shear anywhere,
the entropy is strictly increasing along that horizon generator prior to that time. This is the
classical area increase theorem.

This classical result can be used to divide the semiclassical GSL into three cases based
on the classical O(h̄0) part of the metric. Either: 1) the horizon is classically growing, 2)
it is classically stationary, or 3) it is classically growing up to a certain time t, after which
it becomes stationary. In case (1), the zeroth order area increase corresponds to an O(h̄−1)
increase in the generalized entropy, which dominates over all other effects. Therefore the
GSL holds. In case (2) quantum effects can cause the area to decrease, and therefore it is
an interesting question whether the GSL holds or not. In case (3), the GSL must be true
before time t, so the only question is whether it holds after t. But the GSL after t makes no
reference to anything that occurred before t. Consequently without loss of generality we need
consider only case (2), in which the horizon is always classically stationary. Any violation
of the GSL must come from quantum effects, corresponding to order h̄0 contributions to the
generalized entropy.6

Since there is no half-order contribution to Tab or σabσ
ab, the half order Raychaudhuri

equation says
∇kθ

1/2 = 0. (14)

We can now write the first order part of the Raychaudhuri equation as

∇kθ
1 = −〈σ1/2

ab σab 1/2〉 − 8π〈T 1
kk〉. (15)

The θ2 term is of order O(h̄2) and is therefore negligible. If one ignores gravitons, then the

shear term σ
1/2
ab σab 1/2 can be neglected. On the other hand, in processes involving gravitons,

the shear term must be included (cf. section 4.3). The easiest way to handle gravitons is to
lump the shear squared term in with Tkk as a gravitational analogue of the null energy flux.
Below, the stress-energy tensor should be read as including the shear-squared term, thus:

∇kθ = −8πG 〈Tkk〉. (16)

So when energy falls across the classically stationary horizon, it makes it no longer stationary
at order h̄1.

6This article will not consider contributions to the generalized entropy which are higher order in h̄. In
the semiclassical limit, the only way these higher order corrections could violate the GSL is if the GSL is
saturated at order h̄0. This would require the fields on the horizon to be in a special state for which the
time derivative of the generalized entropy is exactly zero at order h̄0. Probably the only such equilibrium
state is the Hartle-Hawking state. But in this state, the GSL holds to all orders in h̄, by virtue of time
translation symmetry. Thus, the GSL can be expected to hold to all orders in h̄, in the semiclassical regime.
A more interesting question is what happens outside the semiclassical regime, when all orders in h̄ can
become equally important.
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Let us now calculate the area A of a slice Σ cutting the horizon. A specific slice Σ may be
defined by specifying the affine parameter λ = Λ(y) as a function of the horizon generator.
In order to calculate the effects of Tkk on the area A(Λ) of the slice, we use the relation
between the expansion and the area:

θ =
1

A

dA

dλ
= A−1∇kA, (17)

where A is the area of an infinitesimal cross section of the horizon. This allows the left-hand
side of Eq. (16) to be rewritten as:

∇kA
−1∇kA = A−1∇2

kA−A−2(∇kA)
2, (18)

where the second term can be dropped in the semiclassical approximation because it is
nonlinear in ∇kA. Thus the linearized Raychaudhuri Eq. (16) can be rewritten as

∇2
kA = −8πG 〈Tkk〉A. (19)

After integrating this twice in the λ direction, one obtains for the left-hand side of Eq. (19)
∫ ∞

Λ
dλ′

∫ ∞

λ′

dλ∇2
kA(λ) = −

∫ ∞

Λ
dλ′∇kA(λ

′) = A(Λ)− A(∞), (20)

by using the fundamental theorem of calculus twice, as well as applying the “teleological”
boundary condition suitable for a future event horizon:

θ(+∞) = 0. (21)

Meanwhile, the identical transformation of Eq. (19)’s right-hand side is

−8πG
∫ ∞

Λ
dλ′

∫ ∞

λ′

dλ 〈Tkk〉A = −8πG
∫ ∞

Λ
〈Tkk〉A(λ− Λ) dλ. (22)

The final step is to integrate the infinitesimal areas A in the D − 2 transverse y-directions.
One obtains the key relationship

A(Λ) = A(+∞)− 8πG
∫ ∞

Λ
〈Tkk〉 (λ− Λ) dλ dD−2y ≡ 8πG 〈K(Λ)〉, (23)

where the area element has been absorbed into the definition of the transverse integration
measure dD−2y.

In the next section it will be seen that K(Λ) is the generator of a “boost” transformation
on the horizon about the slice Λ. Thus the physical interpretation of Eq. (23) is that, up to
an additive constant, the boost energy K is proportional to the area:

A(Λ) = C − 8πG 〈K(Λ)〉. (24)

The constant C can be dropped for purposes of the GSL, which is only concerned with area
differences.

In the special case where Σ is the bifurcation surface of the unperturbed horizon, Eq.
(23) is the ‘physical processes’ version of the first law of black hole thermodynamics [25],
while Eq. (24) indicates that the horizon area is canonically conjugate to the Killing time
[26]. But to show the GSL, it is important that these formulae hold even when Σ is not the
bifurcation surface.
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2.3 Properties of the Horizon Algebra

As stated above, we are assuming that our matter quantum field theory has a valid null-
hypersurface initial- value formalism. That means that there must be a field algebra A(H)
which can be defined on the horizon H without making reference to anything outside of H .
More precisely, all properties of the algebra must be defined using no more than 1) some
set of quantum field operators φ evaluated on H , 2) the pullback of the metric to H , and
3) an affine parameter λ on each horizon generator (which actually depends on a Christoffel
symbol Γv

vv = guv,v in null coordinates).
Assuming that an algebra can be so defined, one expects it to obey the four axioms:

Determinism, Ultralocality, Local Lorentz Symmetry, and Stability. These axioms will be
shown in sections 3-4 for free fields, but plausibly follow even for interacting fields, assuming
that a null hypersurface restriction makes sense at all for such fields.

The axiom of Determinism says that A(H) gives a complete specification of all informa-
tion falling across the horizon, so that together with the information in A(I+) at null infinity,
one can determine all the information outside the event horizon (Fig. 1a). Consequently,
any symmetries of the horizon H will correspond to hidden symmetries of the theory on
the bulk. Thus by working out the symmetry group of A(H), hidden properties of the bulk
dynamics will become manifest.

Figure 1: a) An eternal black hole spacetime is shown. The GSL says that the generalized entropy must
increase from time slice 1 to time slice 2. However, all information outside of the horizon must either fall
across the horizon H or else reach future null infinity I+ (Determinism). Hence one can “push forward”
each of the two time slices to part of H and all of I+ without losing any information. In addition to the
Killing symmetry which acts on the horizon as a dilation, there is a translation symmetry of H (shown as an
arrow) which is not a symmetry of the whole spacetime. b) A transverse view of H in the same spacetime.
Vertical lines represent horizon generators. Each horizon generator can be independently translated and
dilated (Local Lorentz Symmetry); this permits any two slices on H to be translated into each other, and
ensures that region above each slice on H is thermal with respect to dilations about that slice. In order to
prove the GSL this thermal property is needed for both slice 1 and slice 2.
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The axiom of Ultralocality says that the degrees of freedom on different horizon generators
are independent systems. Thus the algebra A(H) tensor-factorizes across disjoint regions in
the space of horizon generators.

Ultralocality is stronger than Microcausality, which merely asserts that the commutators
of fields vanish at spacelike separation. In particular, in the vacuum state (whose existence
is guaranteed by the other axioms of Local Lorentz Invariance and Stability), Ultralocality
implies that all n-point functions of field operators in A(H) vanish when evaluated on n
distinct horizon generators.

This property may be shocking to those who are used to canonical quantization on a
spacelike initial data surface, because on a spacelike surface it is impossible for any Hadamard
state to have vanishing entanglement across short spatial distances. By contrast, on a sta-
tionary null surface the vacuum entanglement is arranged solely along each horizon generator
and not between different horizon generators [13]. In the case of a free field ϕ, this vanishing
of n-point functions is possible because 1) the null stress-energy Tkk does not depend on
transverse y-derivatives of the field, but only the null derivative ∇kϕ, and 2) the horizon
algebra A(H) does not include the field ϕ itself (which has nonvanishing n-point functions
at spacelike separation on the null surface), but only ∇kϕ (which does not).7

Because Ultralocality requires that the different horizon generators can be treated as
independent systems (although the field operators still need to be integrated in the transverse
y-directions to give well-defined operators), the remaining two axioms, Lorentz Symmetry
and Stability, can without loss of generality be applied to each horizon generator separately.

Local Lorentz Symmetry means that the algebra A(H) is invariant under an infinite
dimensional group of symmetries corresponding to affine transformations of each horizon
generator:

δλ = a(y) + b(y)λ, (25)

a and b being functions of y. This is quite a bit more symmetry than can be possessed by
the spacetime in which H is embedded (Fig 1b). These secret symmetries of H , together
with the other assumptions, will turn out to imply the GSL. (In the case of free fields, it will
be shown in section 3.7 that the horizon algebra is also invariant under special conformal
transformations δλ = c(y)λ2, but this additional symmetry is not required to prove the
GSL.)

In order to implement these symmetries, we need not only the field f but also certain
integrals of the Tkk component of the stress-energy tensor. This component of the stress-
energy tensor represents the flux of null energy across the horizon. Since the null energy is
the generator of null diffeomorphisms, Tkk can be integrated to obtain the generator of affine
reparameterizations.

7A nice exercise is to demostrate explicitly, for a free massive scalar φ in Minkowski space, in a null
coordinate system (u, v, yi) that the n-point functions of ∇vφ vanish when evaluated on the null surface
u = 0 for distinct values of y.
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The generator of a null translation δλ = a(y) is given by

pk(a) ≡
∫

Tkk dλ a(y) d
D−2y. (26)

(Here and below, the area element of the horizon will be considered to be implicit in the
integration measure dD−2y.)

Stability says that so long as a(y) > 0, pk ≥ 0. In other words, the generator of null
translations must be nonnegative. By taking the limit in which the amount of translation is
a delta function (a(y) → δD−2(y)), one finds that Stability is equivalent to the average null
energy condition (ANEC) [27], as evaluated on horizon generators;

pk(y) ≡
∫ +∞

−∞
Tkk dλ. (27)

The ANEC is a manifestation of the positivity of energies in a quantum field theory.8 It
is possible to show that the ANEC holds on the null generators of a stationary horizon by
invoking the GSL [10]. Here we go in the converse direction, using the ANEC to help prove
the GSL.

Given any a(y) > 0, it is possible to define the vacuum state |0〉 on the horizon as being
the ground state with respect to the null energy pk(a) [15]. However, in an ultralocal theory,
there can be no interaction between the different horizon generators. Therefore the state
factorizes: it is a ground state with respect to each pk(y) separately. This means that each
possible choice of a(y) > 0 defines the same vacuum state.

We can also perform a dilation δλ = b(y)λ. This symmetry is generated by

K(y) ≡
∫

Tkk λ dλ b(y) d
D−2y. (28)

For any particular spatial slice of the horizon located at λ = Λ(y), one can define a canonical
‘boost energy’ K of the horizon in the region λ > Λ(y):

K(Λ) ≡
∫ ∞

Λ
Tkk (λ− Λ) dλ dD−2y. (29)

The definition of K depends on the slice Λ(y) in two different ways: not only does the lower
limit of integration change, but the horizon Killing vector λ−Λ which preserves the slice Λ
also changes. The next section will show that the vacuum state |0〉 is thermal in the region
λ > Λ(y) with respect to K(λ), no matter what slice Λ is chosen (Fig. 1b).

8The ANEC can be derived from the stability of the quantum field theory by the following argument:
any stationary horizon H can be embedded in a spacetime M1,1 ⊗ (Σ ∩ H), where the first factor is 1+1
dimensional Minkowski space, and the second is some D−2 dimensional Riemannian manifold. Now suppose
that the quantum fields have their energy bounded below, relative to time translation on M1,1. By Lorentz
symmetry and continuity, the null energy on M1,1 must also be bounded below. All null energy must
eventually cross the horizon H , hence the null energy on H is bounded below. But by Ultralocality this is
only possible if each horizon generator is separately stable.
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2.4 Thermality of the Horizon

The purpose of this section is to show that |0〉 is thermal with respect to boosts when
evaluated above any arbitrary slice Λ on the horizon. The boost acts geometrically on each
horizon generator y:

(λ− Λ(y)) → et(λ− Λ(y)). (30)

The axiom of Local Lorentz Invariance requires that this geometrical action of the boost
correspond to an automorphism of the algebra of observables A(λ > Λ) localized above
the slice Λ. This induces a 1-parameter group of automorphisms αt acting on operatos in
A(λ > Λ).

KMS States. The thermality of the vacuum state |0〉 means that it obeys the KMS
condition: For any two observables A and B, 〈Bαt(A)〉0 must be an analytic function of z
when 0 < Im(t) < ih̄β, and also

〈AB〉0 = 〈B αih̄β(A)〉0, (31)

where β = 2π/h̄ is the inverse Unruh temperature. In order to establish this, we appeal to
an analogue of the Bisognano-Wichmann theorem.

The Bisongano-Wichmann theorem [28] implies that for any set of quantum fields in
Minkowski space (interacting or not) satisfying the Wightman axioms, in the vacuum state
|0〉, the fields restricted to a Rindler wedge W are thermal with respect to the boost energy.
This is the Unruh effect. The basic inputs of the theorem are 1) the Lorentz symmetry of
the wedge, and 2) the spectral condition (i.e. positivity of energies) with respect to time
translation.

The basic idea of their (highly technical) theorem is to analytically continue the boost
symmetry of the group to complex values. One can then boost a Rindler wedge by an
amount iπ in order to “rotate” it into the complementary Rindler wedge region W ′ on the
other side of the bifurcation surface. This rotation corresponds to acting with the operator
eπK/h̄, where K is the generator of the boost symmetry in W .

Using the spectral condition to ensure convergence, Bisognano and Wichmann showed
that the wedge algebra A(W ) satisfies

Je−πK/h̄A(W )|0〉 = A∗(W )|0〉, (32)

where J is the (antiunitary) CPT symmetry transformation corresponding to reflecting one
time and one space dimension through the bifurcation surface of W , and ∗ is hermitian
conjugation.

Sewell [29] observed that Eq. (32) implies that |0〉 is a KMS state with temperature
h̄/2π, with respect to boosts, when restricted to W . This is because

〈0|AB|0〉 = 〈0|A∗e−πK/h̄J · Je−πK/h̄B∗|0〉 = (33)

〈0|Be−2πK/h̄A|0〉 = 〈0|B α2iπ(A)|0〉, (34)
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where in going from the first line to the second we have used the fact that J , being antiunitary,
converts bras to kets and vice versa. Sewell also observed that, given certain axioms, the
Bisognano-Wichmann theorem could be applied to black hole spacetimes to derive thermality
outside of the bifurcation surface of a black hole.

In a later article [15], Sewell generalized the Bisongano-Wichmann theorem further to
the case of a quantum field algebra restricted to a stationary horizon (under the assumption
that this algebra exists). In this generalization, 1) the dilation symmetry b is analogous to
the boost symmetry, and 2) Stability with respect to translation symmetry a is analogous to
the spectral condition. This generalization can be used here to show that when the vacuum
state |0〉 is restricted to the region λ > Λ, it is a KMS state with respect to the dilation
generated by K(Λ), with a temperature T = h̄/2π. This is just the Unruh/Hawking effect
as viewed on the horizon itself.

In Sewell’s construction, |0〉 is simply the Hartle-Hawking state associated with the fields
on the horizon H itself. This means that if the bulk spacetime possesses a Hartle-Hawking
state, it will restrict to |0〉 on H . However, even in spacetimes which do not possess a Hartle-
Hawking state (such as the Kerr black hole), the state |0〉 is still well-defined. This fills a
lacuna in certain previous proofs of the GSL, which did not apply to such horizons [3].

There is also an applicable proof that the vacuum is KMS relative to boosts using in the
algebraic approach to QFT [30], at least in situations where the horizon generators also a
possess special conformal symmetry δλ = c(y)λ2.

Gibbs States. Another definition of thermal states which is sometimes used is the Gibbs
definition, in which a thermal state with respect to some Hamiltonian (in this case the boost
energy K) is defined as the exponentially decaying density matrix

e−βK

tr(e−βK)
, (35)

where the denominator is the partition function. The relationship between the KMS and
Gibbs definitions is as follows: in situations with a finite number of degrees of freedom, in
which the algebra of observables A is just type I (i.e. the complete collection of operators
on a Hilbert Space), the Gibbs and the KMS definitions are equivalent.9 However, in QFT
there are an infinite number of degrees of freedom, and typically the resulting algberas are
type III (meaning that there is no trace operation). In this case, the KMS definition still
works, while the Gibbs definition becomes ill-defined. Nevertheless, it is a common practice
in QFT to formally manipulate expressions like Eq. (35) in order to extract finite answers.
Such procedures can in principle be justified by a renormalization procedure in which one
regulates the divergences in Eq. (35) and then renormalizes.

Using this less rigorous Gibbs definition, the thermality of the Rindler wedge can also be
proven by a simple path integral argument developed by Unruh and Weiss [31]. Assuming

9The standard way to show this is to plug Eq. (35) into Eq. (31), and use the cyclic property of the
trace.
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that the vacuum state |0〉 is the lowest energy state, it can be generated by the boundary of
a Euclidean path integral extending from time t = −∞ to t = 0. Expressed in terms of the
Hamiltonian H and the partition function Z,

|0〉 = lim
t→∞

e−tH/h̄

tr(e−tH/h̄)
. (36)

However, this same Euclidean path integral can be viewed in radial coordinates as a path
integral extending from an angle θ = 0 to an angle θ = π. This indicates that when one
traces out over the degrees of freedom in the complementary wedge W ′, the state of W is

σ =
e−2πK/h̄

tr(e−2πH/h̄)
, (37)

which is thermal.
In order to show an analogous Unruh-Wiess thermality for the horizon algbera, one

would have to find a way to write the vacuum state |0〉 in terms of a path integral over a
complexified λ coordinate. The periodicity of the path integral in radial coordinates would
then imply the thermality of the restricted vacuum with respect to the boosts. However, it
is not entirely clear what the conditions are for such a path integral to exist. In sections 3
and 4, it will be shown how to reduce free fields restricted to the horizon to free left-moving
conformal fields in 1+1 dimension, which would allow the vacuum state to be written in
terms of free two-dimensional path integrals.

In conclusion, there exist proofs of the thermality of the vacuum in the Wightman,
algberaic, and path integral approaches to QFT. The first two approaches prove that the
vacuum is thermal in the KMS sense, while the third is a formal demonstration using the
less rigorous Gibbs definition. All three approaches are potentially capable of being adapted
to the observables living on the horizon itself. However, the algberaic approach currently
assumes special conformal symmetry, and the path integral approach must of course assume
the existence of a path integral.

2.5 The Relative Entropy

In order to prove that the generalized entropy increases, I need to use a monotonicity property
of an information-theoretical quantity known as the “relative entropy”. The relationship
between the relative and generalized entropies was made explicit in Casini [32], and was
used in my earlier proof of the GSL for Rindler wedges [12].

For a finite dimensional system, the relative entropy of two states ρ and σ is defined as

S(ρ | σ) = tr(ρ ln ρ)− tr(ρ ln σ). (38)

For a QFT system with infinitely many degrees of freedom, it may be defined as the limit

15



of this expression as the number of degrees of freedom go to infinity [33].10 The relative
entropy lies in the range [0, +∞]. In some sense it measures how far apart the two states ρ
and σ are, but it is asymmetric: S(ρ | σ) is not in general the same as S(σ | ρ).

Examples When the two states are the same the relative entropy vanishes:

S(ρ | ρ) = 0. (39)

When σ = Ψ is a pure state and ρ 6= Ψ, the relative entropy is infinite:

S(ρ |Ψ) = +∞. (40)

Normally, one wants to use a faithful state for σ (i.e. one without probability zeros) so that
S(ρ | σ) is finite on a dense subspace of the possible choices for ρ.

When σ is the maximally mixed state in an N state system, the relative entropy is just
the entropy difference:

S(ρ | 1/N) = lnN − Sρ. (41)

When σ is a Gibbs state with respect to a some Hamiltonian ‘energy’ H , the relative
entropy S(ρ | σ) is the difference of free energy, divided by the temperature:

S(ρ | σ) = [(〈H〉ρ − TσSρ)− (〈H〉σ − TσSσ)]/Tσ, (42)

where Tσ is the temperature of σ. This can be verified by inserting Eq. (35) into Eq. (38).
One would also like to be able to apply Eq. (42) to KMS states of systems with infinitely

many degrees of freedom, even when the Gibbs definition of thermality is ill-defined.11 Al-
though the relative entropy itself is typically finite for sufficiently reasonable states, the
individual components H and S can diverge. The GSL proof presented in the next section
assumes that Eq. (42) can be applied even in this context so long as one uses the renor-

malized entropy and energy values. Some evidence for this unproven assumption will be
discussed in section 2.8.

Monotonicity However, the most important property of the relative entropy is that it
monotonically decreases under restriction. Given any two mixed states ρ and σ defined for
a system with algebra M , if we restrict to a smaller system described by a subalgebra of
observables M ′, the relative entropy cannot increase [36]:

S(ρ | σ)M ≥ S(ρ | σ)M ′. (43)

Intuitively, since the relative entropy measures how different ρ is from σ, if there are less
observables which can be used to distinguish the two states, the relative entropy should be
smaller.

10The von Neumann algebra of a bounded region in a QFT is a hyperfinite type III algebra [34]. Hyperfinite
means that one can approximate it by a series of finite dimensional algebras; hence the limit. Because of the
monotonicity property, it does not matter how the limit is taken.

11In fact, all faithful states can be regarded as KMS states with respect to some notion of ‘time’ defined
relative to that state [35]. This notion of time evolution is known as the “modular flow”.
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2.6 Proving the GSL on the Horizon

The monotonicity property looks very similar to the GSL. And in fact, with the right choice
of ρ and σ it is the GSL.

It was observed in section 2.4 that the vacuum state |0〉 defined on H is a KMS state
with respect to K(Λ), no matter what Λ slice is chosen. Therefore, under horizon evolution
a thermal state restricts to another thermal state. Of course, the GSL holds trivially for
this vacuum state |0〉 because of null translation symmetry—the goal is to prove it for some
other arbitrary mixed state of the horizon. Let ρ(H) be the state of the horizon algebra
A(H) which we wish to prove the GSL for, and let σ = |0〉〈0| be the vacuum state with
respect to null translations.

Since σ is a KMS state when restricted to the region above any slice, the relative entropy
S(ρ | σ) is a free energy difference of the form Eq. (42), where E is the boost energy K(Λ)
of the region λ > Λ, S is the entropy of λ > Λ, and T = h̄/2π is the Unruh temperature.

Furthermore by virtue of null translation symmetry, (〈K〉 − TS)σ is just a constant. So
the monotonicity of relative entropy therefore tells us that as we evolve from a slice Λ to a
later slice Λ′,

2π

h̄
〈K(Λ)〉 − S(Λ) ≥ 2π

h̄
〈K(Λ′)〉 − S(Λ′), (44)

Using Eq. (24), this implies that the GSL holds on the horizon for the state ρ(H):

A

4h̄G
(Λ′) + S(Λ′) ≥ A

4h̄G
(Λ) + S(Λ). (45)

2.7 The Region Outside the Horizon

This does not yet amount to a complete proof of the GSL, because the GSL refers to the
entropy Sout on a spacelike surface Σ outside of H , not just to the entropy which falls across
H . Depending on how H is embedded in the spacetime, it cannot necessarily be assumed
that all of the information on Σ will fall across the horizon. Some of it may escape.

Suppose we have an arbitrary quantum state ρ defined on the region of spacetime R
exterior to some stationary horizon H . All of the information in R should either fall across
the horizon H or else escape to future infinity I+. (This assumes that any singularities
are hidden behind H—otherwise the information falling into these will need to be included
as well.) H and I+ should factorize into independent Hilbert spaces, but ρ may be some
entangled state on H ∪ I+.

We can now generalize the proof above by choosing a reference state σ that factors into
the vacuum state on H times some other state:

σ(H ∪ I+) = |0〉〈0|(H)⊗ σ(I+). (46)

The second factor σ(I+) can be chosen to be any faithful state (so long as the relative
entropy S(ρ | σ) is finite). After slicing the horizon at Λ(y), the relative entropy is then once
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again a free energy with respect to some modular energy E:

S(ρ | σ) = (〈E〉 − S)ρ − (〈E〉 − S)σ, (47)

where because σ is a product state, the modular energy E is a sum of terms for the horizon
system Hλ>Λ and I+:

E(Hλ>Λ ∪ I+) =
2π

h̄
K(Λ) + E(I+), (48)

with E(I+) being the modular energy conjugate to the modular flow of σ(I+). The addition
of the new modular energy term E(I+ makes no difference to ∆E, the change in the relative
entropy with time, because E(I+)ρ is not a function of the horizon slice Λ. Consequently
one can still use Eq. (24) to show that

〈∆E〉 = 2π

h̄
〈∆K〉 = −∆A

4h̄G
. (49)

On the other hand, S is now interpreted as the total entropy of ρ on on the combined system
Hλ>Λ ∪ I+. Because of unitarity, the entropy S(Σ) of any slice Σ that intersects the horizon
at Λ must be the same as the entropy S(Hλ>Λ ∪ I+). In other words, S = Sout, for any
state ρ. (Note that ρ, unlike σ, may have entanglement between H and I+.) Thus, the
monotonicity property of S(ρ | σ) is equivalent to the GSL.

2.8 Renormalization

It should be noted that in every QFT, K and S are both subject to divergences. The
relative entropy packages all of these divergent quantities together in a way that can be
rigorously defined for arbitrary algebras of observables [33]. However, in order to apply
the Raychaudhuri equation (as needed to obtain Eq. (24)) it is necessary to unpackage
the relative entropy into separate K and S terms, each of which needs to be renormalized
separately. Because of the connection between the relative entropy and the free energy for
finite dimensional subsytems, one expects that after defining K in terms of the renormalized
stress-energy tensor T̃kk, and the entropy in terms of some renormalized entropy S̃,12 that
Eq. (42) still holds:

S(ρ | σ) = [(〈K̃〉 − T S̃)ρ − (〈K̃〉 − T S̃)σ]/T. (50)

This is especially plausible given that the only quantities that enter into Eq. (42) are energy
and entropy differences.

As in my previous proof for Rindler horizons [12], I will assume that this equation is in
fact true in an appropriate renormalization scheme. There is a theorem to this effect for
quantum spin systems on an infinite lattice [22], and it seems likely that any QFT can be
approximated arbitrarily well by such a lattice.

12The proper way to renormalize the entropy is not completely clear, but one promising regulator scheme
uses the “mutual information” between two regions at finite spatial separation [37].
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If one wishes to interpret the GSL as a statement about a regulated entanglement entropy
on a spacelike surface, then it is also necessary for the regulator scheme defining S̃ on the null
surface H ∪ I+ to give the same answer as the regulator scheme defining S̃out on a spacelike
surface Σ. This is a plausible assumption since there exist choices of Σ which are arbitrarily
close to H . But it is not entirely trivial, because the way that the entropy divergence is
localized on a null surface is different from the way it is localized on a spacelike surface.

In the case of a spacelike surface the entropy can be regulated by cutting off all entropy
closer than a certain distance x0 to the boundary. As x0 → 0, the divergence with respect
to that cutoff then scales like x2−D

0 on dimensional grounds.
This method cannot work on H because there is no invariant notion of distance along

the horizon generators. By dimensional analysis, this means that the entropy must be
logarithmically divergent along the null direction. Therefore, there is an infrared divergence
as well as an ultraviolet divergence.

Even if one cuts off the entropy at an affine distance λU in the ultraviolet and λI in
the infrared, the entanglement entropy is still infinite due to the infinite number of horizon
generators. One must in addition regulate by e.g. discretizing the space of horizon generators
to a finite number N . One then finds that the entropy divergence of the vacuum state scales
like

Sdiv ∝ N(lnλI − lnλU). (51)

(Cf. section 3.7 for a justification of this statement.) The renormalized entropy S̃ can then
found by subtracting the entropy of the vacuum state:

S̃(ρ) = S(ρ)− S(σ). (52)

It is reasonable to hope that this renormalized entropy is the same as the renormalized
entropy defined on a spatial slice. Formally, one can simply take the limit of the entropy
difference as a spatial slice Σ slants closer and closer to H . However, the renormalization
of the generalized entropy is itself a limiting process, so there are issues involving orders of
limits. The analysis of section 2.7 implicitly assumes that these limits commute.

Another consequence of renormalization is to add higher curvature contributions to the
Lagrangian (cf. section 5.3) [38]. For example, for free fields in 4 dimensional spacetime,
the coefficients of the curvature squared terms in the Lagrangian are logarithmically diver-
gent. This would invalidate the assumption that the matter is minimally coupled to general
relativity. Fortunately, this effect can be neglected here, because the effects of these higher
order terms on the generalized entropy are of higher order in h̄.

3 Quantizing a Free Scalar on the Horizon

The proof of the GSL in section 2 was incomplete: it depended on four axioms describing the
properties of quantum fields on the null surface. The purpose of this section is to explicitly
show how these axioms are satisfied in the simplest case: a free scalar field. This completes
the proof in section 2 of the semiclassical GSL.
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Since the reader may not be familiar with the technical issues regarding null quantization,
this section will demonstrate null surface quantization for a free, minimally coupled scalar
field Φ with mass m2 ≥ 0 in D > 2 dimensions. This is a quick way to construct the algebra
of observables A(H). It will be shown that this algebra is nontrivial, and obeys the four
axioms required to prove the GSL: Determinism, Ultralocality, Local Lorentz Symmetry, and
Stability.

It will also be shown that the horizon algebra can be approximated by the left-moving
modes in a large number of 1+1 dimensional conformal field theories. This allows one to
understand, using the conformal anomaly, why the horizon algebra is not symmetric under
arbitrary reparameterizations of λ, but only special conformal transformations.

The discussion of null quantization will be confined mostly to those issues which are of
interest in determining the symmetry properties of the horizon. For a more detailed review
of null quantization, including a fuller treatment of the technically difficult “zero modes”,
consult Burkardt [14].

3.1 Stress-Energy Tensor

The Lagrangian of the Klein-Gordon field is

L = Φ(∇2 −m2)Φ/2. (53)

The classical stress-energy tensor on the horizon H can be derived by varying with respect
to the gkk component of the metric:

Tkk = (∇kΦ)
2/2. (54)

This is positive except when Φ is constant, and depends only on the pullback of Φ to H .
The total null energy on the horizon can be found by inserting Eq. (54) into Eq. (26):13

pk =
∫

(∇kΦ)
2

2
dλ dD−2y. (55)

The positivity of this quantity indicates that A(H) satisfies Stability. Classically this posi-
tivity is obvious. Quantum mechanically, this expression is divergent. After subtracting off
this divergence, one finds that Tkk is actually unbounded below. Nevertheless, the integral
of Tkk is bounded below by a vacuum state. This will become obvious after a Fock space
quantization is performed in section 3.6.

3.2 Equation of Motion and Zero Modes

For the purposes of specifying initial data, λ acts more like a space dimension than a time
dimension, in the sense that the value of Φ at one value of λ is (almost) independent of the

13This formula would have to be modified if the scalar field had a nonminimal coupling term Φ2R.
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value of Φ at other values of λ. However, there are some ‘zero mode’ constraints on the field
which must be treated carefully. There are also some convergence properties required if the
total flux of momentum across the null surface is to be finite.

The Klein-Gordon equation of motion is

(∇2 −m2)Φ = 0. (56)

This equation can be written in terms of horizon coordinates as

∇uΦ = ∇−1
v (∇2

y −m2)Φ. (57)

This equation almost permits us to arbitrarily specify Φ(y, λ) as ‘initial data’ on H . The
only constraint is that ∇uΦ must be finite. This requires that the operator ∇v be invertible,
which places constraints on the ‘zero modes’ of Φ(λ).

If one decomposes Φ into its Fourier modes:

Φ̃(y, ω) =
∫

e−iωλ

√
2π

Φ(y, λ) dλ, (58)

then ∇−1
v = 1/ω, which is singular at ω = 0. Thus for Eq. (57) to be well-defined, it is

necessary to require that
∫ +∞

−∞
Φ dλ = finite. (59)

An exception for this arises when m = 0, for solutions which are also zero modes in the y
direction (i.e. they lie in the kernel of ∇2

y). In this case, Eq. (57) becomes undefined rather
than infinite. Thus one can add a mode defined by

∫ +∞

−∞
Φ dλ = C, (60)

for some C which is constant over the whole (connected component of) H .
In addition to the zero mode constraints, it is natural to require that the flux of stress-

energy across the horizon be finite. In order for the null momentum to be finite, one needs
the integral of Tkk to converge:

∫ +∞

−∞
(∇kΦ)

2 dλ = finite. (61)

One can also demand that the other components of momentum have finite flux over the
horizon. This leads to an additional constraint:

∫ +∞

−∞
m2Φ2 dλ = finite, (62)

which is a nontrivial constraint only for a massive field. This permits massless fields to have
soliton-like solutions in which the asymptotic behavior of Φ at λ = +∞ may differ from the
behavior at λ = −∞.
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In the Fourier transformed description, the field should look like this near ω = 0:

Φ̃(y, ω) = c1δ(0) +
c2
ω

+ c3(y) +O(ω), (63)

where c1 corresponds to constant Φ, c2 corresponds to a soliton with Φ(+∞) = −Φ(−∞),
and c3 corresponds to the value of the integral (62). For a massive field, c1 = c2 = 0.14

None of the zero mode constraints are physically important when proving the GSL.
That is because they relate to infrared issues on the horizon—to modes which are very long
wavelength with respect to λ. In other words, they relate to the behavior of the fields at
λ → ±∞. But the GSL has to do with the relationship between two horizon slices at finite
values of λ. Any information which can only be measured at λ = −∞ is totally irrelevant
because it does not appear above either horizon slice. On the other hand, information
stored at λ = +∞ can without loss of generality be equally well regarded as present in the
asymptotic region I+ which ‘meets’ the horizon at λ = +∞.

Consequently the zero modes can simply be ignored. This is a relief because zero mode
issues tend to be one of the trickier aspects of quantum field theory on a null surface [14].
Since the mass m only matters for calculating the zero mode and finite energy constraints,
it will not be of significance for anything that follows.

3.3 Smearing the Field

Now Φ(x) is not a bona fide operator, because the value of a field at a single point undergoes
infinite fluctuations and therefore does not have well-defined eigenvalues (even though its
expectation value 〈Φ(x)〉 is well-defined for a dense set of states). In order to get an operator,
we need to smear the field in some n of the D dimensions with a smooth quasi-localized test
function f :

Φ(f) =
∫

fΦ dnx (64)

Because free fields are Gaussian, a finite width probability spectrum is sufficient to show
that the operator is well-behaved. So to check that Φ(f) has finite fluctuations, one can
look to see whether its mean square 〈Φ(f)2〉 is well-defined in the vacuum state. Since
spacetime is locally Minkowskian everywhere, the leading-order divergence can be calculated
in momentum space using the Fourier transform of the smearing function f̃ . Because f(x)
is smooth, f̃ falls off faster than any polynomial at large p values in all dimensions in which
it is smeared, while it is constant in all the other dimensions. Up to error terms associated
with m2 and the curvature (whose degree of divergence must be less by 2 powers of the
momentum), the fluctuations in Φ are thus given by:

〈Φ(f)2〉 ∝
∫

dDp δ(p2)H(p0)f̃
2(p) =

∫

E=|p|

dD−1p

2E
f̃ 2(E, p), (65)

14Because of the noninvertibility of ω = 0, one might be tempted to require that c3 = 0 as well, but
this would be a mistake. First of all, Φ̃(0) can be defined as limω→0 Φ̃(ω) using continuity. Secondly, the
requirement c3 = 0 is not invariant under special conformal transformations such as the inversion λ → 1/λ.
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whereH is the Heaviside step function. This means that in order to damp out the divergences
coming from large p values, it is sufficient to smear either in all the space directions or in
the time dimension. But neither of these is convenient for a null quantization procedure.
Instead one wants to be able to smear the integral in a null plane. To do this we rewrite Eq.
(65) in a null coordinate system (pu, pv, py) where y represents all transverse directions. The
mass shell condition is

pv =
p2y +m2

pu
, (66)

and the integral over the lightcone (again neglecting mass and curvature) is

〈Φ(f)2〉 ∝
∫

pupv=p2y

dD−2py H(pu)
dpu
pu

f̃ 2(pv, py), (67)

where f is smeared in the v and y dimensions but not in the u dimension. The integral is
dominated by momenta that point nearly in the pu direction. It falls off like 1/pu for large
pu, so it is logarithmically divergent. Therefore Φ does not make sense as an operator when
restricted to a horizon.

However, ∇kΦ does make sense as an operator, since its mean square has two extra
powers of the null energy pv (one for each derivative):

〈[∇kΦ(f)]
2〉 ∝

∫

pupv=p2y

dD−2py H(pu)
dpu
pu

p2vf̃
2(pv, py). (68)

By substituting in Eq. (66), this integral becomes

∫

pupv=p2
y

dD−2py H(pu)
dpu p

4
y

p3u
f̃ 2(pu, py) (69)

which is convergent. (This may seem surprising, because taking derivatives normally makes
fields more divergent, not less. The extra factors of pv do make the integral more divergent
in the v direction, but that direction is already very convergent because of the rapid falloff
of f̃ .)

Since ∇kΦ(f) is a genuine operator, it generates an algebra A(H) on the horizon.

3.4 Determinism

Specifying Φ on H is almost enough to determine the value of Φ outside the horizon as
well, by using Eq. (57) as a time evolution equation in the u direction. Since Eq. (57) is
first-order in ∇u it is not necessary to specify the velocities of the field, only their positions.
The reason it does not quite work is that ∇−1

v is a nonlocal operator, making other boundary
conditions potentially relevant.

Whether or not Φ can actually be determined is therefore a global issue depending on the
causal structure of the whole spacetime. In the case of a de Sitter horizon, Φ is determined
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by the value on H since it is almost a complete Cauchy surface once one adds a single
point a conformal timelike infinity (the value of a free field must exponentially die away
when approaching this conformal timelike point, so the addition of this point doesn’t change
anything). In the case of a Rindler horizon in Minkowski space the field is generically
determined, since the only modes which are not determined are massless modes propagating
in the exact same direction as the horizon. But for a black hole horizon, the field Φ is not
determined, since fields can also leave to future timelike or null infinity (I+).

Let Σ be a complete Cauchy surface of the exterior of H , which includes both H itself,
and the asymptotic future I+ outside of H . H and I+ can be connected only at λ = +∞.
However, any zero mode information measurable at λ = +∞ can be assigned to the system
I+. In order to remove this redundant information from H , one can write the field at one
time as the boundary term in an integral:

Φ(λ) = Φ(+∞)−
∫ +∞

λ
∇kΦ dλ′, (70)

showing that classically, all the information in Φ(λ) not measurable at λ = +∞ is stored in
the derivative ∇kΦ. And this derivative, as shown in section 3.3, is a well defined operator
after smearing with a test function.

Thus the algebra of the whole spacetime can therefore be factorized into A(H)⊗A(I+),
ignoring any degrees of freedom in the zero modes.

This means that there also exist states that factorize:

Ψ(Σ) = Ψ[Φ(H)]⊗Ψ[Φ(I+)] (71)

The existence of these factor states is needed for the validity of the proof of the GSL in
section 2.7. If there are any operators in the algebra which depend on the zero modes of Φ,
these may be considered part of the algebra of I+.

3.5 Commutation Relations

Ordinarily we are used to quantizing a scalar field with equal-time canonical commutation
relation:

[Φ(x1), Φ̇(x2)] = ih̄δD−1(x1 − x2). (72)

On a curved spacetime this relation can be covariantly adapted to any spacelike slice Σ by
using the determinant of the spatial metric q and Σ’s future orthonormal vector na:

[Φ(x1), ∇nΦ(x2)] = ih̄δD−1(x1 − x2)/
√
q. (73)

In order to obtain the commutation relations on a null surface, one can take the limit of
an infinitely boosted spacelike surface. Measured in any fixed coordinate system, each side
of Eq. (73) diverges like 1/

√
1− v2 due to the Lorentz transformation of na or 1/

√
q. By

dividing out the common divergent factor as one takes the limit, one ends up with

[Φ(y1, λ1), ∇kΦ(y2, λ2)] = ih̄δD−2(y1 − y2)δ(λ1 − λ2)/
√
h (74)
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where h is the determinant of the D − 2 spatial components of the horizon metric. From
now on, the factors of 1/

√
g or 1/

√
h will be automatically be absorbed into the definition

of the delta functions dD−1x or dD−2y respectively.
By integrating Eq. (74) in the λ1 direction, one can find the commutator of Φ with itself

in terms of the Heaviside step function H :

[Φ(y1, λ1), Φ(y2, λ2)] = ih̄δD−2(y1 − y2)[H(λ2 − λ1)−H(λ1 − λ2)]/2, (75)

where because the constant of integration only affects the zero modes, I have chosen it so
that the commutator is antisymmetric.15

Notice how even though the null surface acts like an initial data slice, there are nontrivial
commutation relations of Φ on the horizon. Since neither the commutation relations nor
the generator of local null translations Tkk carry any derivatives in the space directions, the
horizon theory satisfies Ultralocality—i.e. the horizon theory is just the integral over a bunch
of independent degrees of freedom for each horizon generator.

3.6 Fock Space Quantization

In order to perform Fock quantization, the fields will be analyzed in terms of the modes Φ̃
with definite null-frequency ω:

Φ̃(y, ω) =
∫

e−iωλ

√
2π

Φ(y, λ) dλ, (76)

taking ω 6= 0 in order to ignore the zero modes. Because of Ultralocality, it is possible to
define a Fock representation even when y is kept in the position basis.

The commutation relations of the field in this basis can be calculated by taking the
Fourier transform of Eq. (75):

[Φ̃(y1, ω1), Φ̃(y2, ω2)] = 2h̄
δ(ω1 + ω2)

ω2 − ω1
δD−2y (77)

One can use this to define creation and annihilation operator densities

a†(y, ω) = Φ̃(y, ω)

√

ω

h̄
, a(y, ω) = Φ̃(y, −ω)

√

ω

h̄
, (78)

which create and destroy particles of any frequency ω > 0, and satisfy the commutation
relations

[a(y1, ω1), a
†(y1, ω1)] = δ(ω1 − ω2)δ

D−2(y1 − y2). (79)

15One should not attempt to use Eq. (75) in situations where zero modes are important, because then the
constant of integration is undefined. This happens because the commutator of the full spacetime theory is
ill-defined for null separations. The reason Eq. (75) can be used for the horizon theory is because all horizon
observables will ultimately be expressed in terms of ∇kΦ.
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The single particle Hilbert Space corresponds to normalizable wavefunctions in the space
Ψ(y, ω) (ω > 0) of creation operators. By taking the Fock space, one constructs the full
Hilbert space of the scalar field on the horizon.

Because Tkk is quadratic in the free field Φ, the divergent part of the null energy pk is a
state-independent constant. In order to be Lorentz invariant the Hartle-Hawking vacuum |0〉
must have pk = 0, so any physically reasonable renormalization of pk (e.g. point-splitting)
is equivalent to simply subtracting off the zero-point energy of the vacuum state. Hence the
renormalized null energy of the state can be calculated by rewriting Eq. (55) in terms of the
normal-ordered creation and annihilation operators:

pk =
∫ ∞

ω=−∞

ω2 : Φ̃∗Φ̃ :

2
dω dD−2y =

∫ ∞

ω=0
h̄ω a†a dω dD−2y =

∑

n

h̄ωn, (80)

where the last equality is evaluated in the Fock basis of states which have a definite number
of quanta of frequency ω1 . . . ωn. Thus the particles satisfy the Planck quantization formula.

The resulting picture of the scalar field theory on the horizon is surprisingly simple: each
state is simply a superposition of a finite number of particles localized at distinct positions
on the horizon, each with some positive amount of null energy h̄ω. In contrast to the usual
quantization on a spacelike surface, each particle can be arbitrarily well-localized near any
horizon generator. The particles cannot however be localized with respect to the λ coordinate
on the horizon generator. No two particles can reside on exactly the same horizon generator,
because that would not be a normalizable vector in the Fock space.

There is an enormous amount of symmetry of the scalar field theory on the horizon. The
only geometrical structures used in the quantization are the affine parameters of each horizon
generator (up to rescaling), and the area-element (coming in via the dD−2y integration),
which comes in through the commutation relation (74). Therefore the Fock space is invariant
under 1) arbitrary translations and dilations of the affine parameter of each horizon generator
independently, 2) area-preserving diffeomorphisms acting on the space of horizon generators,
and even 3) any non-area-preserving diffeomorphism that sends dD−2y → Ω(y)2dD−2y so long
as one also sends Φ → Ω(y)−1Φ. This is so much symmetry that the only invariant quantity
is the total number n of particles; every n-particle subspace of the Hilbert space is a single
irreducible representation of the group of symmetries.16

16To see that this is the case, note that every n-particle state can be written as a superposition of states
in which each of the n identical particles is localized in a delta function on n different horizon generators.
All such states are equivalent to one another by the symmetry transformations, so pick one of them, Ψ.
If the n-particle representation were reducible, there would have to exist a projection operator which is
invariant under all the symmetry and acts nontrivially on this state by turning it into a linearly independent
state Ψ′. But by virtue of the symmetry, Ψ′ must be zero except on the n horizon generators initially
chosen, and therefore linearly dependent on Ψ. Consequently the projection operator does not exist and the
representation is irreducible.
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3.7 Conformal Symmetry

Even this does not exhaust the symmetries of the scalar field on the horizon (minus zero
modes); one is actually free to perform any special conformal transformation of each λ(y),
i.e. any combination of a translation, dilation, and inversion λ → 1/λ. It is easiest to see this
if the quantization is done in a slightly different way: by discretizing the horizon into a finite
number of horizon generators. Let there be N discrete horizon generators spread evenly
throughout the horizon area A, and let the field Φ(n, λ) be defined only on this discretized
space. The commutator is

[Φ(m, λ1), ∇kΦ(n, λ2)] = ih̄
A

N
δmnδ(λ1 − λ2), (81)

and the null energy is

pk =
N
∑

n=1

A

N

∫

(∇kΦn)
2

2
dλ. (82)

These expressions converge to Eq. (74) and (55) respectively as N → ∞. Since the theory
is ultralocal there are no divergences associated with the transverse directions, so the limit
should exist. Every continuum horizon state can be described as the N → ∞ limit of a
sequence of states in the discretized model. However, not every smooth seeming limit of
states in the discretized model corresponds to a state in the continuum model; for example,
there is no continuum limit of states in which one horizon generator has two particles on it
and the rest are empty.

The discretized model is nothing other than a collection of N different conformal field
theories each of which is the left-moving sector of one massless scalar field in 1+1 dimensions.
The entanglement entropy divergence is therefore just the same as in a CFT with N scalar
fields, which has central charge c = N [39]:

Sdiv =
c

12
ln

(

λI

λU

)

(83)

where λI is the affine distance of the infrared cutoff from the boundary, and λU is the
affine distance of the ultraviolet cutoff. This justifies Eq. (51) mentioned in section 2.8 on
renormalization.

In any CFT, the vacuum state |0〉 is invariant under all special conformal transformations.
But the N → ∞ limit of |0〉 is just the vacuum of the continuum theory, so the continuum
vacuum is also invariant under the group of special conformal transformations SO(2, 1).

A 1 + 1 dimensional CFT is also invariant under general conformal transformations,
i.e. arbitrary reparameterizations of a null coordinate v → f(v). However, the vacuum
state is not invariant under general conformal transformations. This is a consequence of the
anomalous transformation law of the stress energy tensor Tvv [39]:

Tvv → f ′(v)−2Tvv +
c

12
S(f), (84)
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where c = 1 is the central charge of one scalar field, and S(f) is the Schwarzian derivative:

S(f) =
f ′′′

f ′
− 3

2

(f ′′)2

(f ′)2
, (85)

which vanishes only when f(v) is special. Since the vacuum must have Tvv = 0, any nonspe-
cial conformal transformation of the vacuum must produce a nonvacuum state with positive
expectation value of the null energy pk.

What if one tries to perform a general conformal transformation λ → f(λ, y) of the
horizon generator parameters λ for D > 2 dimensions? In the discretized model, the null
energy of the transformed vacuum is

pk =
N
∑

n=1

1

12

∫

S(f, n)dλ (86)

and the integrand is positive. But now disaster strikes—as N → ∞, pk → ∞ too! The
general conformal transformation takes the vacuum out of the Hilbert space altogether, by
creating infinitely many quanta. So the conformal anomaly prevents λ from being reparam-
eterized, except by a special conformal transformation.

Since the stress-energy Tkk is the generator of reparameterizations, this means that most
integrals of Tkk on the horizon do not give rise to operators in the Hilbert Space. Since
Tkk = (∇kΦ)

2/2 is a product of two fields, there is a danger of divergence. The fact that
only special conformal transformations of the vacuum are allowed implies that the only
integrals of Tkk which are horizon observables are those of this form:

∫ +∞

−∞
Tkk [a(y) + b(y)λ+ c(y)λ2] dλ dD−2y. (87)

For example, the restricted boost energy

K(Λ) =
∫ ∞

Λ
Tkk (λ− Λ) dλ dD−2y (88)

is not an operator because of the limitation of the integral to λ > Λ. However, the proof
is only concerned with the expectation value 〈K(Λ)〉. This is a function of 〈Tkk(x)〉, which
does not need to be smeared to be finite.

4 Other Spins

In this section some basic details of null quantization for alternative spins will be briefly
provided, omitting detailed derivations and neglecting zero modes.
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4.1 Spinors

The Lagrangian of a spinor field in spinor notation is

L = γABiΨA∇iΨB +mǫABΨAΨB, (89)

where A or B belong to spinor representations written in a real (Majorana) basis, γABi is
the gamma matrix, and ǫAB is the invariant symplectic structure on the spinor space.17 As
long as D > 2, the qualitative features of null surface quantization are the same for every
kind of spinor.18

The equation of motion is
∇iΨBγ

ABi = mΨA, (90)

using ǫAB to raise the spinor index. At any point on a spacelike slice of the horizon, the
D dimensional spinor decomposes into the tensor product of a Majorana spinor in D − 2
dimensional space, and a Dirac spinor on a 1 + 1 dimensional spacetime. The Dirac spinor
in 1 + 1 dimensions decomposes into the direct sum of a left-pointing spinor ΨL that and a
right-handed spinor ΨR, where we take γLLa to point in the ka direction and γRRa to point
along the other lightray la. The Majorana equation (90) takes the schematic form:

∇LLΨR +∇LRΨL +mΨL = ∇kΨR +∇yΨL +mΨL; (91)

∇RRΨL +∇RLΨR +mΨR = ∇lΨL +∇yΨR +mΨR. (92)

The first equation (92) only involves derivatives that lie on the horizon itself, and can be
used to define ΨR as a function of ΨL (up to zero modes):

ΨR(λ) = ΨR(+∞)−
∫ +∞

λ
(∇yΨL +mΨL) dλ

′. (93)

On the other hand, Eq. (91) determines the derivative of ΨL off the horizon, and so it does
not act as a constraint. Therefore, the spinor degrees of freedom are determined by the
arbitrary specification of ΨL(y, λ) on the horizon. From now on we will focus on just the
ΨL(y, λ) degrees of freedom.

ΨL(y, λ) yields a (fermionic) operator when smeared over the horizon directions by a test
function f . The mean-square of a massless spinor in momentum space is

〈ΨL(f)
2〉 ∝

∫

pupv=p2
y

dD−2py H(pu)
dpu
pu

pvf̃
2(pu, py). (94)

17In dimensions Dmod 8 = 0, 1, 2, 6, the irreducible spinor representations do not possess an invariant
symplectic structure ǫAB. Consequently, for m > 0 it is necessary to use reducible spinor representations.
The Majorana spinor basis has been chosen in order to keep the spinor expressions homogeneous across
different spacetime dimensions. Dirac and/or Weyl spinors may be obtained from representations which
admit a complex structure.

18In D = 2, the chirality of the field determines whether it propagates to the left or to the right. Only
fields which propagate across a null surface can be quantized on that surface.
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The extra power of pLL = pv = (p2y +m2)/pu comes from the contraction of the momentum
with the spin in the propagator, and serves to render the integral convergent. Thus for
spinors there is no need to take a ∇k derivative in order to restrict the field to the horizon.

The anticommutator of the field on a spatial slice Σ with normal vector na is:

{ΨA(x1), ΨB(x2)} = −ih̄ γAB
n δD−1(x1 − x2). (95)

By making an infinite boost, one can obtain the anticommutator for the field ΨL on the
horizon:

{ΨIL(y1, λ1), ΨJL(y2, λ2)} = −ih̄ gIJδ(λ1 − λ2)δ
D−2(y1 − y2), (96)

where I and J are (real) spinor representations of SO(D − 2) (the group of rotations of
the D − 2 dimensional transverse space). Since these representations are unitary, there is a
natural metric gIJ = γILJL

k on the transverse spinor space.
The null-null component of the stress-energy is

Tkk = gIJΨIL∇kΨJL. (97)

Tkk and the anticommutation relations look just like the integral of the corresponding quan-
tities for left-moving spinor fields in 1 + 1 dimensions. Therefore, if the horizon generators
are discretized, the corresponding CFT is that of N/2 massless left-moving chiral fermions,
where N is the number of components of the spinor field.

4.2 Photons

The Maxwell Lagrangian is
L = FabF

ab/4. (98)

After imposing Lorentz gauge ∇aA
a = 0 and null gauge Ak = 0, the only remaining (nonzero

mode) degrees of freedom are the transverse directions Ay on the horizon.
The commutator is

[Ai(y1, λ1),∇kAj(y2, λ2)] = ih̄gijδ
D−2(y1 − y2)δ(λ1 − λ2), (99)

and the stress-energy tensor is

Tkk = gij(∇kAi)∇kAj , (100)

where the indices i, j are restricted to the transverse directions. Ai cannot be smeared to
make a valid operator on the horizon, but ∇kAi can.

After discretization of horizon generators, the CFT of each horizon generator consists of
D − 2 left-moving massless scalars.
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4.3 Gravitons

In the semiclassical limit the metric can be described as a background metric gab ≡ g0ab plus

an order h̄1/2 metric perturbation hab = g
1/2
ab . Impose Lorentz gauge ∇ah

a
b = 0 and null

gauge hka = 0.
The Lagrangian and equations of motion are simply that of perturbative GR. The only

constraint on hab on the horizon at half order is the null-null component of the Einstein
equation:

Gkk = 0. (101)

By integrating ∇kθ
1/2 = 0 (the half order Raychaudhuri equation (14), one finds that there

is no half order contribution to the area:

hijg
ij = 0. (102)

In order to keep things simple, the trace degree of freedom of hij will therefore be set to zero
before quantization. Only the traceless part of hij represents physical graviton degrees of
freedom.19

hij cannot be smeared to make an operator on the horizon, but ∇khij can. Thus, the
only physical components of the field are the transverse shear components σij ∝ ∇khij .

In GR, gravitons do not contribute to the gravitational stress-energy tensor Tab found
by varying the matter Lagrangian with respect to the metric, since gravitons do not con-
tribute to the matter Lagrangian. And if one varies with respect to the full gravitational
Lagrangian, the resulting tensor vanishes when the equations of motion are satisfied. How-
ever, in perturbative GR, one can still define a stress-energy tensor perturbatively by varying
the Lagrangian with respect to the background metric, rather than the perturbed metric.
The resulting stress-energy tensor is proportional to the contribution of hab to the Einstein
tensor:

T 1
ab = G1

ab/8πG, (103)

to first order in h̄. On the horizon this is just

Tkk = (∇khij)∇kh
ij/32πG. (104)

The canonically conjugate quantities for canonical general relativity on a spacelike slice
Σ are the spatial metric qab and the extrinsic curvature Kab = ∇nqab/2 [40]:

[qab(x1), (K
cd − qcdK)(x2)] = ih̄(8πG)

δcaδ
d
b + δcbδ

d
a

2
δD−1(x1 − x2) (105)

19Rotational symmetry assures that the commutator of the trace degrees of freedom cannot mix with the
commutator of the traceless degrees of freedom. The constraint (101) generates diffeomorphisms in the k
direction. Consequently if one wished to impose this constraint after quantization, for consistency it would
also be necessary to include as a physical degree of freedom the parameter λ which breaks this symmetry.
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If one takes the infinite boost limit, the spatial extrinsic curvature Kij with i, j lying in the
transverse plane becomes the null extrinsic curvature:

Kij → Bij = ∇khij/2 = σij +
1

D − 2
gijθ. (106)

Because the trace part has been made to vanish by Eq. (102), only the traceless shear part
remains. Therefore the commutator is

[hij(y1, λ1), σ
lm(y1, λ1)] = ih̄(8πG)δlmij δ

D−2(y1 − y2)δ(λ1 − λ2), (107)

where δlmij = 1
2
(δliδ

m
j + δljδ

m
i ) − 1

D−2
gijg

lm is the Kroneker delta for the traceless symmetric
representation.

As for the other bosonic fields, σij is an observable when smeared on the horizon, but hij

is not. When the horizon generators are discretized, the graviton CFT is that of (D−2)2−1
left-moving scalar fields.

5 Interactions

Does the argument given in section 2 for the GSL continue to work when the quantum
fields have nontrivial interactions besides the minimal coupling to gravity? The question
is whether one can continue to define a horizon algebra A(H) satisfying the four axioms
required for the proof described in sections 2.1 and 2.3: Determinism, Ultralocality, Local
Lorentz Invariance, and Stability. Except for free fields and 1+1 CFT’s (see below), it is not
obvious that this is the case. Nevertheless, it is possible to give some handwaving arguments
that things work out even when there are interactions. Hopefully future work will clarify
these issues.

5.1 Perturbative Yang-Mills and Potential Interactions

Let φi stand for a field (indexed by i) in any free field theory, of any spin. What happens to
the horizon algebra upon adding interactions?

In general, the addition of arbitrary terms to the Lagrangian will change both the com-
mutation relations and the value of the null stress-energy tensor Tkk. But for certain special
kinds of interactions, the null algebra may remain unaffected.

In particular, at least at the level of formal perturbation theory, the horizon fields φi do
not care about the addition of an arbitrary potential term V (φ) to the Lagrangian. In order
to be a potential, V must depend only on the fields and the metric, not field derivatives or
the Riemann tensor.

The general horizon commutator can be written as

[φi, Π
i] = ih̄δD−2(y1 − y2)δ(λ1 − λ2), (108)
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where the conjugate momentum to the field in the null direction is given by

Πi =
∂L
∇kφi

, (109)

and the commutator is replaced with an anticommutator for fermionic fields. Now since V
does not depend on any derivatives of the field,

∂V

∇kφi

= 0, (110)

and the momentum Πi is the same as in the free theory. Since the horizon algebra is generated
by the free field operators subject to the above commutation relation, the horizon algebra
A(H) is unaffected by the perturbation.

A similar result holds for Yang-Mills interactions. The Yang-Mills Lagrangian coupled
to spinors and scalars is

L = −1

4
FabF

ab − 1

2
∇aΦ∇aΦ + γABiΨA∇iΨB, (111)

where Fab = ∇aAb − ∇bAa. Because ∇a is the covariant derivative, there are cubic boson
interactions which depend on the ∇k derivative, of the form AaAk∇kAa and AkΦ∇kΦ. How-
ever, these interactions both depend on Ak which vanishes in null gauge, which was used to
obtain the horizon algebra in section 4.2). The spinor interactions do not depend ∇k. So
Yang-Mills interactions also do not affect A(H), as a special consequence of gauge symmetry.

Because the horizon algebra is the same, the generator of null translations Tkk must
also be the same. Since for minimally coupled theories the canonical stress-tensor and the
gravitational stress-tensor of matter are the same up to boundary terms at infinity [41], this
means that the formula for the area A in terms of Tkk is the same. Also, the (translation-
invariant) vacuum state |0〉 of the interacting field theory is the same as the free field vacuum,
up to zero modes [14]. This is because, unlike spatial surfaces, null surfaces have a kinematic
momentum operator pk which is required to be positive.20 Since everything in A(H) is
exactly the same as in the free case, at the level of formal perturbation theory the entire
proof goes through without depending in any way on the interactions.

However, this entire discussion needs to be taken with a large grain of salt, because it
assumes that the interactions in the Lagrangian can be treated as a finite perturbation.
Once loop corrections are taken into account, there will be divergences which have to be
absorbed into the coupling constants. Even if one starts with an interaction potential V (φ)
which seems not to have any harmful derivative couplings in it, renormalization will typically
produce derivative couplings which will affect the commutation relations.

For example, a field strength renormalization of the propagator term will change the
overall coefficient of the commutation relation. This field strength renormalization will

20In the case of spacelike surfaces, the interacting vacuum cannot even lie in the Fock space of the free
vacuum [42].
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usually be infinite, except when the theory is superrenormalizable. Even then, it is not clear
whether the null hypersurface formulation of the theory continues to exist nonperturbatively.

In the case of spacelike hypersurfaces, there is a series of theorems [43] which show that
for any quantum field theory which is reducible to bosons and fermions satisfying the equal
time canonical (anti-)commutation relations (ETCCR), the theory must be free unless the
interactions are sufficiently weak in the ultraviolet. Superrenormalizable theories do obey the
ETCCR, nonrenormalizable theories cannot obey the ETCCR (even if they can be defined
using a UV fixed point), while the status of marginally renormalizable theories is unclear.
The problem arises because of infinite renormalization of the fields. Thus there exist at least
some QFT’s which do not satisfy the equal time ETCCR. One possible interpretation of this
result is that the “equal time” is at fault, and it is necessary to smear the fields in time as
well as in space in order to get a well defined operator. This probably would mean that such
fields are not well defined when smeared on a null surface either. However, it could still be
that there exist a different set of fields which do not obey canonical commutation relations,
and can be defined on the horizon algebra.

5.2 Conformal Field Theories

So do nonperturbatively interacting QFT’s really have a horizon algebra? One can get some
insight by studying conformal field theory (CFT). Any physically consistent QFT must have
good ultraviolet behavior as length scales are taken to zero. The conventional wisdom is
that this happens if and only if the theory approaches an ultraviolet fixed point of the
renormalization group flow. At short distances, the theory is therefore scale invariant. All
known scale invariant QFT’s are also conformally invariant, so let us ask whether CFT’s
have a null surface formalism. Since the near-horizon limit is a type of ultraviolet limit, it
seems probable that a QFT has a null surface formulation if and only if the scaling limit
CFT does.

The situation is very different for 1+1 CFT’s (which have an infinite conformal group)
and higher dimensional CFT’s (which have a finite conformal group).

1+1 CFT. In the case of 1+1 CFT’s, there always exists a nontrivial algebra of observables
A(H) on the horizon (i.e. on a lightray), which is simply the algebra of the left-moving chiral
fields. To see this, we remind the reader of some facts about 1+1 CFT’s (from e.g. [39]). The
operators of a CFT fall into infinite dimensional representations of the conformal algebra
associated with the theory’s central charges c and c̃. These representations are classified by
the weight spectrum of primary operators (h, h̃), which specify the weight of the primary
operator in the representation with respect to left and right dilations. Descendants of these
operators have weights given by the primary operators plus integers.

The algebra of operators which are well-defined on the horizon is simply the algebra of
left-moving chiral operators (i.e. the algebra generated by quasi-primary operators weight
(h, 0)). Such fields do not depend on the u coordinate and therefore must be localizable
to the horizon. (On the other hand, the two two-point function of a non-chiral operator
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diverges when the two points are null separated on the horizon, so such operators cannot be
smeared in one null direction alone.) Since the identity operator has weight (0, 0), there is
always an infinite sequence of such operators, including the null stress-energy Tkk of weight
(2, 0). Thus there is always an infinite nontrivial horizon algebra A(H), which includes the
generators of the conformal group itself.

We now examine whether this horizon algebra obeys the necessary axioms described in
section 2.3 for the proof of the GSL. Ultralocality is trivial in 1+1 dimensions, since there is
only one horizon generator. Lorentz Symmetry and Stability hold by virtue of the normal
QFT axioms.21

The only tricky point is Determinism, which requires the exterior of the horizon to be
determined by A(H) and A(I+). In the case of a chiral CFT which breaks into independent
left-moving and right-moving sectors, Determinism is obvious. In the case of a non-chiral
theory, the only new issue is that there may be superselection constraints relating the left-
moving and right-moving fields. For example, in the theory of a free fermion, it is possible to
introduce a “twist operator” with weight (1/16, 1/16), but one cannot view this operator as
a product of two operators with weight (1/16, 0) and (0, 1/16) without destroying modular
invariance [39]. Thus there might be nontrivial constraints relating A(H) with A(I+).

However, a non-chiral CFT can be extended into a chiral CFT simply by ignoring these
superselection constraints and making the left-moving and right-moving sectors independent.
This can ruin modular invariance, but modular invariance was not needed for the proof of
the GSL. By the operator-state correspondence, it will also increase the number of states of
the theory, but it does not affect the vacuum state σ, and one can simply choose the state
ρ to satisfy the constraints of the non-chiral CFT.

Higher dimensional CFT. In higher dimensional interacting CFT’s, a local field will no
longer obey the free wave equation. This means that it must have a nonzero anomalous
dimension η. For example, a primary scalar field in D dimensions will have a dimension
∆ = (D−2)/2+η, with η > 0 due to the unitarity bound. Such fields do not form operators
when smeared on the horizon alone. This can be seen from evaluating the square of the
smeared field using the spectral decomposition of the operator:

〈Φ(f)2〉 ∝
∫

p2<0
dDpH(p0)

f̃ 2(pv, py)

(−p2)1−η
, (112)

where f̃ is the Fourier transform of the smearing integral on the horizon. This expression
is the analogue of Eq. (67)), but now the integral is performed over all timelike momenta
p2 < 0. Because of the smearing, the integral is dominated by momenta which point nearly
in the pu direction. Since p2 = p2y − pupv, the integral falls off in the pu direction like pη−1

u .

21Although the discussion in this subsection is entirely about QFT on a fixed background spacetime, the
reader may wonder why one would want to consider a 1+1 CFT’s for a matter sector given that GR is
topological in 2 dimensions. The answer is that the proof given in section 2 is equally applicable to 2d
dilaton gravity, in which the dilaton plays the role of the “area”.
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This is divergent for all permitted values of η. Consequently no operator can be defined.
Unlike the free case, it is no longer possible to improve the situation by taking ∇v derivatives,
since the pu and pv directions are no longer related by the null mass shell condition.

Similar arguments rule out operators formed from interacting fields with spin φI , where
I transforms in a spin-s irrep. Let the conjugate field be written φ∗

I′. In this case it is
necessary (but not always sufficient) to satisfy the unitary bound that the primary have
weight ∆ = (D− 2)/2+ s+ η for an η > 0 [44]. The absolute square of the field smeared on
the horizon looks like:

〈φ(f)Iφ∗(f)′I〉 ∝
∫

p2<0
dDpH(p0)ǫII′(p)

f̃ 2(pv, py)

(−p2)1−s−η
, (113)

where ǫII′(p) is the scalar product of the spins I and I ′ in the little group SO(D − 1) that
preserves the momentum p. At fixed pv and large pu, ǫ can scale like p2xu where −s ≤ x ≤ s
depends on the weight of the particular polarization under Lorentz boosts. This integral is
still divergent. So it is also impossible to construct A(H) from fields of higher spin.

Nevertheless, this does not entirely rule out the possibility that there might be a nontrivial
horizon algebra A(H), so long as it is constructed from operators that do not come from
smearing local fields. As an analogy, there exist CFT’s in which fields cannot be defined by
smearing on a D − 1 dimensional spacelike surface Σ.22 Nevertheless, one can still define
a local algebra on an incomplete spatial surface Σ by means of the Hodge duality A(Σ) =
A′(Σ′), i.e. by defining A(Σ) to include any observable that commutes with all observables
which are spacelike separated to Σ. It may be that some similar trick can be used to define
the observables on a null surface.

A possible argument that A(H) should exist is that in a CFT there is no distinction
between finite and infinite distances. Consequently, one can apply a Weyl rescaling gab →
Ω2(x)gab with the property that the affine distance to the horizon becomes infinite. Because
curvature has mass dimension 2, this also should lead to the scaling away of any curvature
effects. The existence of an algebra on the horizon is now equivalent to the existence of final
scattering observables for particles travelling into this new, nearly flat asymptotic region.
This converts the ultraviolet problem of null restriction to the infrared problem of final
scattering states.

However, because a CFT has no mass gap, there are long range interactions, and the
asymptotic states might not form a Fock space, due to the possibility of creating an infinite
number of soft massless particles. In order to apply the proof of the GSL in section 2, one
would need to show that despite the existence of these long range forces, the final scattering
algebra can be decomposed into a part associated with H and a part associated with I+:

A(H ∪ I+) = A(H)⊗A(I+)), (114)

and also show that A(H) obeys the other three axioms: Ultralocality, Local Lorentz Invari-
ance, and Stability.

22This can be seen by doing a spectral decomposition of a primary scalar field with η ≥ 1/2.
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If there are any QFT’s in which the algebra A(H) does not exist, extending the proof
would presumably require a more delicate near-horizon limit. One would have to show that
a small smearing of fields out from the horizon does not break the symmetry group of the
horizon sufficiently to spoil the proof.

5.3 Higher Curvature and Nonminimal Coupling

Further generalization of the proof is necessary when the gravity theory goes beyond the
Einstein theory, either because the matter fields are nonminimally coupled, or because there
are higher curvature terms in the gravitational Lagrangian. In general, the presence of
such terms will not only change the metric field equations, but also lead to the addition of
extra terms in the horizon entropy SH. These corrections can be calculated for stationary
black holes by means of the Wald Noether charge method [45]; however, there are certain
ambiguities which arise for the case of dynamically evolving horizons. Except for some
special cases like f(R) gravity (which can be related by field redefinitions to scalar fields
minimally coupled to general relativity [46]) it is unknown whether such theories even obey
a classical second law, let alone a generalized one. For example, it appears that the Wald
entropy can decrease when black holes merge in Lovelock gravity [47].

Although the present work is restricted to the Einstein theory, some insight into these
problems might be gained by analyzing the structure of horizon observables in non-Einstein
theories. The reason why the GSL holds on black holes in general relativity is that A(H) is
small enough to have lots of symmetry (Local Lorentz Invariance) and yet large enough to
contain all the information falling across the horizon (Determinism). In general, alternative
gravities will require A(H) to depend on additional information besides the metric and affine
parameter on the horizon, e.g. curvature components.

If this additional information breaks the ability to translate each horizon generator in-
dependently, this may account for the failure of the second law in these theories. Another
reason why theories may fail to obey the second law is if the theory permits negative energy
excitations, violating the Stability axiom.

On the other hand, if a horizon field theory for matter and gravitons can be found which
still obeys all four axioms used in section 2, this is auspicious for the GSL. It might be that
the ambiguities in the Wald Noether charge can be fixed by requiring that SH depend only
on quantities measurable in A(H) itself. Suppose that this were done. Then the GSL might
be shown by the following argument:

First we need an analogue of Eq. (23), relating the horizon entropy to the boost energy
falling across the horizon:

SH(Λ) = SH(+∞)− 2π

h̄

∫ ∞

Λ
〈Tkk〉 (λ− Λ) dλ dD−2y. (115)

But the Wald Noether charge method shows that this is true in any classical diffeomorphism
invariant theory when Tkk is interpreted as a canonical stress-energy current [45]. (The
“gravitational” stress energy tensor defined by varying with respect to the metric is not very
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meaningful at this level of generality, because it is not invariant under field redefinitions of
the metric). Wald’s argument is classical, so in order to use Eq. (115), one would have to
show that it survives a semiclassical quantization of the matter fields.

Since the canonical stress-energy tensor generates diffeomorphisms, one can also rewrite
Eq. (115) in terms of K(Λ), the generator of boost symmetries about a horizon slice with
λ = Λ:

SH(Λ) = C − 8πG 〈K(Λ)〉. (116)

Since the canonical stress-energy tensor is the generator K of boost symmetries, by the
Bisongano-Wichmann theorem, the quantum fields should be in a thermal state with respect
to K. Assuming that a non-Einstein gravity theory satisfies each of the criteria described
above, it too should obey a semiclassical GSL.
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