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Abstract

I show that the principle of equipartition, applied to area elements

of a surface ∂V which are in equilibrium at the local Davies-Unruh tem-

perature, allows one to determine the surface number density of the mi-

croscopic spacetime degrees of freedom in any diffeomorphism invariant

theory of gravity. The entropy associated with these degrees of freedom

matches with the Wald entropy for the theory. This result also allows

one to attribute an entropy density to the spacetime in a natural manner.

The field equations of the theory can then be obtained by extremising this

entropy. Moreover, when the microscopic degrees of freedom are in local

thermal equilibrium, the spacetime entropy of a bulk region resides on its

boundary.

1 Motivation and Summary: Equipartition of

the ‘atoms of spacetime’

Considerable amount of theoretical evidence has accumulated over years sug-
gesting that gravity is better described as an emergent phenomenon like elastic-
ity or fluid mechanics. (For a recent review, see [1]. This approach has a long
history starting from the work of Sakharov; for a small sample of papers, imple-
menting and discussing this paradigm in different ways, see ref. [2].) Notable
among these pieces of evidence are the following facts:

• The field equations of gravity reduce to a thermodynamic identity on the
horizons in a wide variety of models much more general than just Einstein’s
gravity [3, 4]. As pointed out first in [5], and confirmed by several pieces of
later work, the thermodynamic paradigm seems to be applicable to a wide
class of theories much more general than Einstein gravity in 4-dimensions.

• There are peculiar holographic relations between the surface and bulk
terms in the action functionals describing several theories of gravity and
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the surface term in the action is closely related to entropy of horizons [6]
in all these theories.

• It is possible to obtain the field equations of gravity — again for a wide
class of theories — from purely thermodynamic considerations.

If this paradigm is correct, then the current situation regarding the dynamics
of spacetime is similar to the state of affairs in our understanding of bulk matter
before Boltzmann. Spacetime consists of some microscopic degrees of freedom
(“atoms of spacetime”) the dynamics of which will be governed by — as yet
unknown — laws of quantum gravity. In the long wavelength limit, we describe
the dynamics of spacetime by a set of variables (like metric, curvature etc.)
the evolution of which is governed by the field equations of gravity. This is
similar to the description of, say, the flow of gas in terms of variables like fluid
density, velocity etc. (which have no meaning at the microscopic scale) and
the field equations of gravity are similar to laws of thermodynamics used in the
description of bulk matter. As we said before, there is considerable amount of
evidence to suggest that this is indeed the case.

One key relation which connects the microscopic degrees of freedom with
macroscopic thermodynamic variables is the law of equipartition which — in
the simplest context of a gas with constant temperature — takes the form
E = (1/2)nkBT . In this relation, the energy E and temperature T are standard
thermodynamic variables. But the variable n giving the large, but finite, number
of microscopic degrees of freedom directly links the macroscopic thermodynamic
description to the existence of microscopic degrees of freedom. In fact, n has
no meaning in a fully continuum theory with no discrete internal degrees of
freedom.

In the thermodynamic paradigm of gravity, we assume that the spacetime
has microscopic degrees of freedom (just as Boltzmann assumed for a macro-
scopic body) and that the field equations of gravity in the continuum limit are
to be obtained as the coarse-grained, thermodynamic, limit of the unknown mi-
croscopic laws. If this paradigm is correct, then there should exist a relation
akin to E = (1/2)nkBT connecting the energy of a spacetime, temperature and
the number of microscopic degrees of freedom in a region of spacetime when
some condition similar to that of thermodynamic equilibrium is satisfied. What
is more, extensive thermodynamic potentials like for e.g. entropy S of spacetime
microscopic degrees of freedom should scale as S ∝ n (The connection between
this result and S = lnΩ is described in the footnote 4 on page 11).

Remarkably enough, such a relation does exist in any diffeomorphism in-
variant theory of gravity [7, 8] and the key purpose of this paper is to elaborate
on this aspect.

In Sec. 2, I will derive the equipartition law from the field equations of the
theory and thus identify the number density of microscopic degrees of freedom.
I shall show that the relation S ∝ n, with the n obtained from the equipar-
tition law, correctly reproduces the Wald entropy [9] for the horizons in any
diffeomorphism invariant theory. This part of the paper assumes the field equa-
tions and derives the equipartition law as well as the expression for spacetime
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entropy as a consequence. In Sec. 3, I will reverse the logic and indicate how
the field equations of any diffeomorphism invariant theory of gravity can be
obtained from an entropy extremising principle. This has already been done in
earlier papers [10] and hence my discussion will be limited to stressing some new
features and making the logical connections. Sec.4 comments on the possible
manner in which the key results of the earlier sections can arise in a microscopic
theory of gravity and the last section gives brief conclusions.

Rest of the current section elaborates on these conceptual aspects and the
reader who is familiar with them can skip ahead to Sec. 2 after glancing at
material around Eq. (1) and Eq. (2).

1.1 Boltzmann: “If you can heat it, it has microstructure”

In the study of a macroscopic system like e.g., a gas one uses two separate cat-
egories of physical variables. Those of the first category, like the bulk velocity
field v(t,x) of the flowing gas, are direct generalizations of the corresponding
mechanistic variables (viz., the velocity) used in the description of, say, a point
particle moving under the influence of a potential in classical mechanics. An-
other example of such a variable is the pressure exerted by the gas on the walls
of the container that is related to the force, which is also a familiar variable
used in point particle mechanics.

There is, however, a second category of variables which becomes necessary
in the macroscopic description but are not used in the point particle mechanics.
For example, we knew from prehistoric times that bulk matter can be heated.
The description of hot material bodies requires the introduction of concepts like
temperature and entropy. Their behaviour was governed by the laws of thermo-
dynamics, the microscopic origin of which was unclear for a long time. These
variables in classical thermodynamics (temperature, heat, entropy etc.) there-
fore acquire a special status different from, say, velocity field or pressure. They
are useful and arise in the macroscopic limit, when we study sufficiently large
number of microscopic degrees of freedom collectively, but cannot be defined
(usefully) for the microscopic point mechanics of particles.

In fact, not only that these variables (like entropy, temperature etc.) are
useful, they are absolutely essential for the thermodynamic description. Right
from the early days, one knew, for example, that heat could be transfered be-
tween bodies and the laws of thermodynamics — incorporating the flow of heat
— can be used to describe the behaviour of, e.g., heat engines. When a hot
gaseous body is coupled to, say, a movable piston in a heat engine, one can
directly convert heat into mechanical energy. To describe such processes we will
use the standard, mechanistic, variables of the moving piston along with the
thermodynamical variables describing the gas. So, it appeared that one needed
two kinds of variables, purely mechanical ones (like velocity, pressure etc which
are generalizations of variables used in point mechanics) and thermodynamic
ones (like entropy, temperature, heat content etc. which did not have analogues
in the context of point mechanics) for the proper description of macroscopic
bodies.
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It took the genius of Boltzmann to unify these two categories of variables into
one. He realized that if one postulates that material bodies have a large number
of microscopic degrees of freedom, they can store up the energy which we call
heat. That is, heat can be interpreted as a form of motion of the microscopic
degrees of freedom and entropy can be given an interpretation in terms of the
unobserved (‘coarse-grained’) degrees of freedom. This allows one to reduce
entire thermodynamic phenomena to mechanical phenomena of the microscopic
degrees of freedom, thereby eliminating the need for two separate categories of
variables.

A key relation that connects the microscopic and macroscopic descriptions
is the law of equipartition of energy, say, in a gas. If the number of microscopic
degrees of freedom in certain amount of gas at temperature T is ∆n, then we
expect:

E =
1

2
kB

∫

dnT (1)

(The integral relation allows for the microscopic degrees of freedom at different
parts of gas to have different temperature.) This new variable ∆n appearing
in Eq. (1) has no significance in the absence of microscopic degrees of freedom
since it specifically counts these degrees of freedom. Both E and T were stan-
dard variables used in thermodynamics but the introduction of ∆n to obtain
the relation in Eq. (1) provides a direct link between the microscopic degrees
of freedom and the macroscopic variables. All extensive thermodynamical vari-
ables contributed by the microscopic degrees of freedom ∆n in certain amount
of gas will now scale in proportion with ∆n; in particular the entropy of a part
of gas will satisfy ∆S ∝ ∆n. We will see later that the equipartition law plays
a key role in our description of spacetime.

In principle, once we relate thermodynamics to the mechanics of microscopic
degrees of freedom, the laws of thermodynamics can be derived by taking the
suitable limit of the laws of microscopic physics. In practice, however, this
is not an easy task except for extremply simple systems. Fortunately, this is
often unnecessary. What is essential, in practical contexts, is the expression
for a suitable thermodynamic potential, say entropy (S) or free energy (F ),
in terms of appropriate macroscopic variables. By expressing the differentials
dS or dF in terms of appropriate dynamical variables, (or by extremising the
thermodynamic potential), one can obtain the macroscopic laws governing the
system. The thermodynamic description of matter in terms of these variables
turns out to be fairly universal and the differences between any two systems
(say, helium and hydrogen gas) could always be incorporated in terms of a
few well-chosen numbers (like e.g. specific heats or elastic constants). A law
like TdS = dE + PdV , for example, needed no outward modification either
due to relativity or quantum theory, unlike other laws of physics. The effects of
relativity or quatum theory only modifies the form of S(E, V ) thereby leading to
appropriate description. In this sense, thermodynamic description is remarkably
devoid of specifics and — at the same time — robust!

The key to this progress lies in the Boltzmann’s insight in postulating the
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microstructure for matter with a large but finite number of microscopic degrees
of freedom. Instead of treating heat, temperature etc as separate macroscopic
variables, Boltzmann related them to the microscopic degrees of freedom for
which — at that time — we did not have any direct observational evidence.
Boltzmann inferred the existence of microscopic degrees of freedom from the
elementary fact that one can heat up matter! A hot system need to store
the extra energy suppied to it internally and this demands the existence of
microscopic degrees of freedom.

In short, Boltzmann said: “If you can heat it, it has microstructure.”

1.2 And you can heat up the spacetime

Another physical system that can be heated is the spacetime. To see this in
an operational context, consider an observer who is at rest in the spacetime
around a a spherical body of mass M . She can arrange matters such that the
region around her has zero temperature as measured by a thermometer. Let the
spherical body collapse and form a Schwarschild black hole. The thermometer
will now indicate a non-zero temperature showing that the spacetime has been
heated up. In fact, we do not even need a collapsing spherical body. If the
observer accelerates through the inertial vacuum1 with a proper acceleration
κ, the thermometer carried by the observer will indicate [11] a temperature
T = κ/2π. Both these thought experiments show that spacetimes can be heated
up just like, say, a body of gas.

We stress that the temperature observed by, say, the accelerating thermome-
ter is as real as that observered by an inertial thermometer inserted in a hot gas.
The heat energy involved is also real and one can indeed heat up water using
a black hole or by accelerating through the inertial vacuum. The universality
of the phenomenon shows that it is the spacetime which is hot; other material
systems (like quantum fields) which reside in the spacetime reach thermal equi-
librium with the hot spacetime and behave as systems at nonzero temperature.

Given the fact that spacetime — just like a material body — can be heated
up, we assume, following Boltzmann, that spacetime has certain number density
of microscopic degrees of freedom. The exact nature of these degrees of freedom
and their microscopic description are at present unknown, just as the exact
nature of atoms and molecules and their microscopic description were unknown
when Boltzmann inferred their existence. This should not matter in the case of
spacetime — just as it did not matter in the case of bulk matter — if a suitable
coarse-grained thermodynamic limit exists, which is robust and independent of
the microscopic details.

There is an acid test to this paradigm. Static spacetimes with horizons can
be attributed both temperature and energy. Once we accept the existence of
microscopic degrees of freedom, it seems reasonable to assume that they will
reach equipartition at the given temperature. (The static nature of spacetime

1Ideally, the acceleration has to be constant at all times; practically, the result holds
approximately if the acceleration is constant for timescales sufficiently larger than 1/κ; see
e.g. [12]
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ensuring some kind of notion of equilibrium). Hence we expect a relation similar
to Eq. (1) to hold in the static spacetimes; that is, we expect the gravitational
energy E to be expressible in the form

E =
1

2
kB

∫

dnT (2)

where ∆n denotes the microscopic degrees of freedom of the spacetime which are
at temperature T . More importantly, such a relation will allow us to read off the
density of microscopic degrees of freedom of the spacetime thereby providing a
direct window to microphysics. We will see in Sec. 2 that such an equipartition
law arises in any diffeomorphism invariant theory of gravity whenever the field
equations hold.

[This equipartition law was first obtained for Einstein’s theory in ref.[7] in
the form S = E/2T . It was expressed in the explicit form of Eq. (2) and
elaborated upon in ref. [8] (see equation(12) of ref. [8]). For a sample of later
work, exploring related ideas, see ref.[13].]

The hot spacetimes also have a natural notion of entropy. In both the cases
(collapsing body or accelerating observer), the region of spacetime accessible
to the observer is limited by a causal horizon. The existence of the horizon,
blocking some information suggests that we could attribute an entropy to the
horizon. In the case of black hole horizon, it is generally accepted that the
horizon is endowed with an entropy, though the explicit expression for the
entropy depends on the theory for gravity one adopts. (In Einstein’s general
relativity, the black hole entropy is proportional to the horizon area but not
in more general theories). There is no general consensus as to whether other
horizons, like the Rindler horizon or deSitter horizon, should be endowed with
entropy but it seems inevitable from the thermodynamic point of view that all
horizons have entropy.

Again, if our ideas are correct, one should be able to determine the entropy
of the static spacetime horizons by counting the microscopic degrees of freedom
and using the extensivity in the form ∆S ∝ ∆n where the ∆n can be read off
from the equipartition law. (The connection between this result and S = lnΩ is
described in the footnote 4 on page 11.) The fact that it should match with the
entropy obtained using other prescriptions — like first law of thermodynamics
— will act as a crucial consistency check of the approach. We will see that our
approach indeed satisfies this consistency condition.

Once we relate the entropy to the microscopic degrees of freedom one would
like to obtain the dynamics of the system from extremising the entropy. We
assume that in the thermodynamic limit the spacetime can be described by a
smooth differential manifold with some dimension D, suitable signature (− +
+ + ....) and a metric. (This is far less ambitious a plan than trying to obtain
spacetime itself as an emergent entity etc. I do not believe we understand
the situation well enough to harbor such pretensions!). From the principle of
equivalence, we infer that the gravitational field can be described by a metric
tensor gab so that the determination of spacetime dynamics reduces to obtaining
suitable equations that determine this effective, ‘long-wavelength’ variable. The
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existence of microstructure implies that the dynamics could be obtained by
extremising a suitable thermodynamic potential, say, entropy S[qA] expressed
in terms of appropriate variables qA.

There is one crucial ingredient we need to incorporate into the description
at this stage: While we will see that there is a strong parallel between the nor-
mal thermodynamics of a macroscopic body and the thermodynamics of the
spacetime, there is one new feature which arises in the latter that needs to be
emphasized. It is clear from the thought experiments introduced earlier (accel-
erating through the vacuum, collapsing a body to form a blackhole ....) that
the phenomena arising from heating up the spacetime are observer-dependent
because horizons are observer dependent. An inertial observer (or an observer
falling freely into a black hole) will attribute different thermal properties to the
spacetime compared to an accelerated observer or an observer at rest outside
the black hole [15].

As a result, different observers will attribute different thermodynamic prop-
erties to the same spacetime endowed with a particular geometrical structure
(metric, curvature etc.). For example, a freely falling observer and a station-
ary observer will attribute different thermodynamic variables to a black hole
spacetime. The variables qA we choose to express the entropy S[qA], say, should
be capable of incorporating this observer dependence in a proper manner. In
particular, there is no need for these degrees of freedom to be same as the met-
ric; but the extremum principle δS[qA]/δqA = 0 must constrain the background
metric under suitable circumstances. In fact, these degrees of freedom qA itself
could be different in different contexts, just as we can express the entropy in
terms of different variables in normal thermodynamics, depending on our conve-
nience. For example, if we are only interested in the study of static spacetimes
with horizons, the entropy perceived by static observers will be the natural
quantity to study. On the other hand, in a general spacetime, one has no class
of preferred observers. Then it turns out to be useful to work with local Rindler
observers around any event and study the entropy functional in terms of the
variables appropriate to them [14]. In such a case no Rindler observer is spe-
cial and we need to maximize the entropy with respect to all Rindler observers
simultaneously. We will see that, such an approach emerges quite naturally
from the study of equipartition and one can indeed obtain the field equations
— which, of course, are observer-independent — from an entropy extremisation
principle. We shall now see how these objectives can be achieved.

2 Equipartition law and the density of micro-

scopic degrees of freedom

The simplest context in which one can determine the density of microscopic
degrees of freedom is in the case of a static spacetime in Einstein’s general
relativity. To fix the ideas, we will begin with this case.
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Consider a a 3-volume V with a boundary ∂V in a static spacetime2 with
metric components g00 = −N2, g0α = 0, gαβ = hαβ. An observer at rest in this
spacetime with four-velocity ua = δa0/N will have an acceleration aj = (0, aµ)
where aµ = (∂µN/N). In a static spacetime, it is easy to show [7] that

Rabu
aub = ∇ia

i =
1

N
Dµ(Naµ) (3)

where Dµ is the covariant derivative operator corresponding to the 3-space met-
ric hαβ . Einstein’s field equations relate the divergence of the acceleration to
the source:

Dµ(Naµ) ≡ 8πNT̄abu
aub ≡ 4πρKomar (4)

where T̄ab ≡ (Tab− (1/2)gabT ) and ρKomar is the (so called) Komar mass-energy
density which is the source. Integrating both sides of Eq. (4) over V and using
the Gauss theorem gives:

E ≡
∫

V

d3x
√
hρKomar =

1

2

∫

∂V

√
σ d2x

L2
P

{

Naµnµ

2π

}

(5)

where σ is the determinant of the induced metric on ∂V and nµ is the spa-
tial normal to ∂V . (We have temporarily restored G = L2

P 6= 1 keeping
~ = c = kB = 1.) We will now show, along the lines of [8], that this result
has a remarkable interpretation.

To see this, choose ∂V to be a N = constant surface so that the normal nµ

is in the direction of the acceleration and aµnµ = |a| is the magnitude of the
acceleration. We can then introduce an effective Davies-Unruh temperature[11]
T = NTloc = (Naµnµ/2π) = (N |a|/2π) in which the factor N takes care of the
Tolman redshift condition on the temperature [16]. Hence Eq. (5) is exactly in
the form of the equipartition law in Eq. (1) (with kB = 1) where

E =
1

2

∫

∂V

dnT ; ∆n ≡
√
σ d2x

L2
P

(6)

That is, demanding the validity of (a) Einstein’s equations and (b) law of
equipartition we can determine the number of microscopic degrees of freedom
in an element of area ∆A =

√
σd2x on ∂V to be

√
σd2x/L2

P . If these micro-
scopic degrees of freedom are in equilibrium at the temperature T , then the
total equipartition energy contributed by all these degrees of freedom on ∂V is
equal to the total energy contained in the bulk volume enclosed by the surface
— which could be thought of as a realization of holographic principle. One can,
of course, rescale ∆n → ∆n/f replacing the factor (1/2) in Eq. (6) by (f/2)
with some numerical factor f . We will stick with f = 1 for simplicity; our

2We use the signature - + + +; Greek letters go over the spatial coordinates while Latin
letters go over the spacetime coordinates. Except when otherwise indicated, we use units with
~ = c = kB = 1 and G = L2

P
= 1.
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results do not depend on this choice 3.
Remarkably enough, such an equipartition law exists for any diffeomorphism

invariant theory of gravity and allows us to identify the corresponding surface
density ∆n/

√
σd2x of microscopic states in a given theory. Consider a theory

based on the action

A =

∫ √−g dDx[L(Ra
bcd, g

ab) + Lmatt(g
ab, φA)] (7)

in D dimensions where Lmatt(g
ab, φA) is a suitable matter Lagrangian involving

some matter degrees of freedom φA. Varying gab in this action, with suitable
boundary conditions, leads to the field equations (see e.g. sec 3.5 of ref. [1] or,
for a textbook description, chapter 15 of ref.[17]):

Gab = P cde
a Rbcde − 2∇c∇dPacdb −

1

2
Lgab ≡ Rab −

1

2
Lgab =

1

2
Tab (8)

where

P abcd ≡ ∂L

∂Rabcd

(9)

The notation in terms of calligraphic fonts is suggested by the fact that, in Ein-
stein’s theory Rab = Rab/16π and Gab = Gab/16π with standard normalization.
The tensor P abcd has the same algebraic symmetries of the curvature tensor and
hence can be indicated as P ab

cd without any ambiguity. Any such theory of grav-
ity, which is invariant under the diffeomorphism xa → xa + qa, has a conserved
Noether current Ja which depends on the vector field qa (see e.g. p.394, chapter
8 of [17] for a textbook description). This current can be explicitly computed
to be:

Ja = −2∇b

(

P adbc + P acbd
)

∇cqd + 2P abcd∇b∇cqd − 4qd∇b∇cP
abcd (10)

The conservation law∇aJ
a = 0 implies that one can express the Noether current

in terms of an antisymmetric Noether potential Jab with Ja ≡ ∇bJ
ab. The

explicit expression for Jab which we will use is:

Jab = 2P abcd∇cqd − 4qd
(

∇cP
abcd

)

(11)

In static spacetimes, we have a Killing vector ξa corresponding to time trans-
lation invariance. If we take qa = ξa, the expression for the Noether current
is remarkably simple and we get Ja = 2Ra

bξ
b. Hereafter, we shall denote by

Ja, Jab etc., the Nother current and potential for this choice. Using the rela-
tions Ja ≡ ∇bJ

ab, ξa = Nua and the antisymmetry of Jab one can easily show
that:

2Rabu
aub = ∇a(J

baubN
−1) (12)

3Incidentally, Eq. (4) can be rewritten in a suggestive form as Dµaµ = 4π(ρ + ρg) where
ρ ≡ 2T̄abu

aub and ρg ≡ −(a2/4π) is the energy density of gravitational field. Note that
ρg = −πT 2

loc
acts as the source of gravity. The occurrence of T 2

loc
in the energy density rather

than T 4
loc

has important implications for the nature of microscopic degrees of freedom. This
aspect is under investigation.
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Next using the fact that, in a static spacetime ∇iQ
i = N−1Dα(NQα) for any

static vector (with ∂0Q
i = 0) we can also write this relation as:

2NRabu
aub = Dα(J

bαub) (13)

which is the generalization of Eq. (3) to an arbitrary theory of gravity. The
integral version of this relation for a region V bounded by ∂V is given by
∫

V

2NRabu
aub

√
h dD−1x =

∫

∂V

dD−2x
√
σ(niubJ

bi) =

∫

∂V

dD−2x
√
σ(NnαJ

α0)

(14)
where we have used ua = −Nδ0a and J0α = −Jα0. (The middle relation
shows that the result is essentially an integral over ∂V of Jbidσib, where dσib =
(1/2)n[iub]

√
σdD−2x.) Further, the source for gravity in a general theory (analo-

gous to Komar mass density) is defined through ρ ≡ 4NRabu
aub. On integrating

ρ over a region bounded by a N = constant surface and using Eq. (14) we get

E ≡
∫

V

√
hdD−1x ρ = 2

∫

∂V

dD−2x
√
σ(NnαJ

α0) (15)

This is the analogue of the equipartition law in Eq. (5). In Einstein’s theory,
Rab = Rab/16π and Jab = (16π)−1∂[aξb] giving Jµ0 = aµ/8π which will reduce
Eq. (15) to Eq. (5). In a general theory, the expression for ∆n is not just
proportional to the area and Jα0 encodes this difference. Our first aim is to
understand this difference.

To do this, we note that the expression in Eq. (15) simplifies to an interest-
ing form in two contexts. Let us recall that the field equations of the theory,
given by Eq. (8) will contain higher than second order derivatives of the metric
due to the ∇c∇dPacdb term. This undesirable feature can be avoided by re-
stricting to the class of theories for which ∇aP

abcd = 0, which are essentially
the Lanczos-Lovelock models [18]. (Because of the symmetries of P abcd, this
condition implies that it is divergence-free in all the indices.) In that case, we
see from Eq. (11) that Jab = 2P abcd∇cξd giving Jα0 = 4|a|P 0α

0β n
β giving

E =

∫

∂V

dD−2x
√
σ(16πP 0α

0β n
βnα)

(

N |a|
2π

)

≡ 1

2

∫

dnT (16)

where T = N |a|/2π is the Davies-Unruh temperature as before (which depends
only on the metric and not on the field equations of the theory) but the number
of microscopic degrees of freedom ∆n associated with an area element

√
σdD−2x

is now given by:

∆n = 32πP 0α
0β n

βnα

√
σdD−2x = 32πP ab

cd ǫabǫ
cd
√
σdD−2x (17)

where ǫab ≡ (1/2)(uanb − ubna) is the binormal to ∂V .
The second context in which the above analysis remains valid is when one

deals with a general theory but evaluates the surface integral in Eq. (15) on
the bifurcation horizon. In this case, we can again use the expression Jab =
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2P abcd∇cξd because the additional term in Eq. (11) vanishes on the bifurcation
horizon on which ξa = 0. We again get the same equipartition law in Eq. (16) on
the horizon of any diffeomorphism invariant theory of gravity. In either context,
Eq. (16) shows that the surface density of microscopic degrees of freedom in a
diffeomorphism invariant theory of gravity is given by

dn√
σdD−2x

= 32πP ab
cd ǫabǫ

cd (18)

when the field equations are satisfied. This is the key result of this paper.
The integrals over ∂V which occur in Eq. (15) also arise in another context.

In the action functional for gravity there will be a surface term Asur arising
from the spacetime integral of a total divergence in the Lagrangian Lsur. In the
static case, it can be shown that (see eq.(172) of [1]), this surface term is given
by the integral of

√−gLsur = −
√
h(NRabu

aub) = −1

2

√
hDα(uiJ

iα) (19)

The integral of this term over spatial coordinates will lead to the surface term
in Eq. (15). It is known that [5] one can obtain the field equations of the theory
from a particular kind of variations of the surface term alone in the action and
the above relation between Asur and the Noether potential connects these two
concepts. This will be discussed in detail in a future publication.

3 Entropy density of spacetime

The density of microscopic degrees of freedom obtained in Eq. (18) suggests
that the entropy associated with a general surface in Lanczos-Lovelock models
(which includes Einstein’s theory) or the entropy associated with a horizon in
a general theory will be proportional to an integral over P ab

cd ǫabǫ
cd. That is,4

S ∝
∫

∂V

dn ∝
∫

∂V

32πP ab
cd ǫabǫ

cd
√
σdD−2x (20)

This is precisely the expression for Wald entropy [9] but we have obtained it
using only the equipartition law ! We shall now examine the implications of this
result in detail.

For a macroscopic system like a gas, one can obtain the dynamical equations
from maximizing an entropy functional S[qA] expressed in terms of appropriate
variables qA. Analogously, one should be able to derive the field equations of
gravity from maximizing a suitable entropy functional of spacetime [10]. How-
ever, as we said before, there is one crucial difference between thermodynamics

4Note that in Einstein’s theory, we get ∆n = ∆A/L2
P
. One usually considers this as

arising due to dividing the area ∆A into ∆n patches of area L2
P . If we attribute f internal

states to each patch, then the total number of microstates ∆Ω will be ∆Ω = f(∆n) and
∆S = ln∆Ω ∝ ∆n which is how the extensivity ∆S ∝ ∆n arises. In a more general theory,
we replace ∆n = ∆A/L2

P
by the expression in Eq. (18).
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of gases and thermodynamics of spacetime. We know that the same spacetime
can exhibit different thermal behaviour to different observers and hence one
would expect the entropy functional etc. to take different forms in different
contexts. We will need to apply the maximization principle to a class of ob-
servers to obtain the dynamical equations. We will now describe how one can
obtain a suitable form of entropy functional.

To motivate this, consider a static spacetime with a bifurcation horizon H
given by the surface N2 ≡ −ξaξa = 0. The horizon temperature T ≡ β−1 =
κ/2π where κ is the surface gravity. Since the Wald entropy [9] of the horizon
is essentially the Noether charge (multiplied by β), we will attribute (along the
lines of [19]) the Noether charge density βJbu

b (multiplied by β) as the entropy
density of the spacetime as perceived by the static observers with four velocity
ua = ξa/N , so that the total entropy is

Sgrav[u
i] = β

∫

V

Jbu
b
√
h dD−1x (21)

Using Ja = 2Ra
bξ

b and Eq. (14) and integrating the expression over a region
bounded by the N = constant surface, it is easy to see that

S =
1

2
βE (22)

which is a statement of equipartition, discussed in detail earlier in ref. [7, 8].
Further, if we take ∂V to be the horizon H and use βT = 1, we get the horizon
entropy to be

S =
1

4

∫

H

dn =
1

4

∫

H

32πP ab
cd ǫabǫ

cd
√
σdD−2x (23)

which is the standard expression for Wald entropy [9] in a general theory thereby
justifying the choice in Eq. (21). This ansatz in Eq. (21) also fixes the propor-
tionality constant in Eq. (20) to be 1/4. It is easy to see that we get one quarter
of horizon area in Einstein’s theory.

We started by assuming the validity of field equations and then obtained
the equipartition relation in Eq. (15). This allowed us to determine the number
density of microscopic degrees of freedom and thus a possible expression for
entropy density. We can now close the logical loop by taking the form of the
entropy functional as the starting point and obtaining the field equations. If
the thermodynamic interpretation of gravity is correct, one should be able to
obtain get the field equations from extremizing the spacetime entropy of a set
of microscopic degrees of freedom.

To do this, we have to recast the expression for S in Eq. (21) as a spacetime
integral (rather than spatial integral) and generalize it to a context in which the
spacetime has no special attribute (like static nature). The first task is easy.
The spacetime entropy in Eq. (21) can also be expressed in the form

Sgrav[u
i] = β

∫

V

Jbu
b
√
h dD−1x =

∫

2Rabu
aub

√−g dDx (24)
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by restricting the time integration to the range (0, β) which can be justified by
using the Euclidean continuation of the static spacetime with a horizon in which
the time coordinate is periodic with period β. But since the last expression in
Eq. (24) does not involve a β, we are no longer confined to a spacetime with a
horizon. Further, in a general non-static spacetime, we do not have any special
class of observers who can be used to define the vector field ua. So we need to
generalize this notion and introduce a suitable vector field in its place. This issue
is conceptually more involved but — fortunately — has already been addressed
[10, 14]. We know from the study of accelerated observers in flat spacetime
that the null surfaces X = ±T in the inertial coordinates (T,X) appear as the
local horizon to the observer moving on the uniformly accelerated trajectory
X2−T 2 = κ−2 and has to be endowed with temperature and entropy. One can
introduce a local inertial frame around any event and local Rindler observers
moving along a hyperbolic trajectory in the locally inertial coordinate systems
around any event. These local Rindler observers will perceive the null surfaces,
generated by the null vectors at that event, as local Rindler horizons endowed
with thermal properties. This suggests that a suitable variable describing local
patches of null surfaces can play the role of qA in the entropy functional S[qA].
The simplest such choice will be the set of all null vectors on the spacetime
with some (as yet undetermined) metric. Denoting a generic member of this
set by ka we can express the spacetime entropy as a functional S[ka] obtained
by integrating the entropy density s[ka] over the spacetime volume. The total
entropy density will, of course, be the sum of s[ka] and the matter entropy
density. One can equivalently think of this procedure as attributing the entropy
to the normal displacements of null surfaces. (A more detailed justification for
this approach can be given in terms of local Rindler observers; see e.g. ref.
[1, 14]).

This suggests that the expression for gravitational entropy of spacetime can
be taken, in the general context, to be [19]

Sgrav[k
i] ∝

∫ √−g dDxRabk
akb (25)

It can be shown [1, 10] that maximizing (Sgrav + Smatter) for all null vectors
ka simultaneously5 leads to the field equations in Eq. (8). That is, the field
equations in any diffeomorphism invariant theory can be obtained from an en-
tropy maximization principle. This provides a conceptual connection between
equipartition and the spacetime entropy density.

If one accepts βJa = β(2Ra
bξ

b) as the entropy current in the local Rindler
frame, where ξa is the approximate Killing vector producing translations in the

5As explained in detail in ref. [14], this procedure is conceptually identical to using local
inertial frames to determine the kinematics of gravity, viz. how gravity couples to matter.
To do that, we choose local inertial frames around each event in spacetime and insist that
the equations of motion (or the action functional) for matter should reduce to the special
relativistic form in all the local inertial frames. Similarly here, to determine the dynamics of
gravity, we choose local Rindler frames around each event and insist that the entropy should be
an extremum in all local Rindler frames. This is why we need to demand that the extremum
principle is valid for all ka.
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rindler time coordinate, it is possible to obtain the field equations in several
different ways. All these procedures (described in [1, 14, 19]) use a suitable
vector va which satisfies ξava = 0 on the local Rindler horizon H and obtains
the relation

Java = (2Ra
bξ

bva) = T a
b ξ

bva (on H) (26)

from thermodynamic arguments. It is then possible to obtain the field equations,
except for a cosmological constant, from this equation.

For example, consider the entropy flux δS through a small patch (
√
σdD−2x)

on the stretched horizon at N = ǫ (where ǫ is an infinitesimal quantity), in a
propertime interval (Ndt). Since βJa is the entropy current, this flux will be
given by δS = βJana(

√
σdD−2x)(Ndt) where na is the spatial normal to the

stretched horizon. On the other hand, the flux of energy through the same
surface is δE = T abξbna(

√
σdD−2x)(Ndt), leading to a heat transfer of βδE.

Equating it to the entropy flux, we immediately get Eq. (26) for the choice
va = na. This approach — described in [19] — which uses Noether current
and is local in construction, shows that one can obtain the field equations from
an entropy balance argument, if one is prepared to accept βJa as the entropy
current — which, of course, needs independent justification. (The equipartition
result strengthens this idea but we needed to assume field equations to get
equipartition law; the same holds for Wald entropy construction which is also
an on-shell result.)

One can also attempt [20] to express the same result as a relation between in-
tegrated quantities by, say, associating the Wald entropy — which is the integral
of (β/2)Jabǫab(

√
σdD−2x) (where ǫab is the binormal to the stretched horizon)

— with two (D − 2) dimensional surfaces N = ǫ, t = t1 and N = ǫ, t = t2 on
the stretched horizon. The difference in the entropy associated with the two
surfaces is given by the flux of Ja = ∇bJ

ab through the boundaries and one
can try to relate it to matter energy flux through the stretched horizon. This
approach has two problems: First, it also needs an independent justification
as to why the integral of (β/2)Jabǫab(

√
σdD−2x) is entropy since the notion of

Wald entropy assumes validity of field equations. Second, since the notion of
local Rindler frames is only valid over a finite region, any integral one uses has
to be independently justified (or should be confined to sufficiently small region,
which reduces it to the previous, local, approach). But since the local approach
does work, the nonlocal approach in terms of integrated quantities will also lead
to the same result (viz. the derivation of field equations) if done correctly. In
particular, the correct approach will not have any extra dissipative terms.

The expression in Eq. (25) for Sgrav in a general theory can be expressed
in an alternate form by separating out a total divergence. Direct computation
shows that

2Rabk
akb ≡ 4∇c

[

P cd
ab k

a∇dk
b
]

+ Sgrav[k
i] (27)

where

Sgrav[k
i] = 4

[

P cd
ab∇ck

a∇dk
b + (kb∇ck

a)∇dP
cd
ab + kakc∇b∇dP

abcd
]

(28)
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is a quadratic expression in ka and its derivatives. One can obtain [1, 21] the
same field equations in Eq. (8) by using Sgrav as the entropy density instead of
2Rabk

akb. In the case of Lanczos-Lovelock models, the expression in Eq. (28)
simplifies considerably and we find that the gravitational entropy density of
spacetime is a quadratic expression Sgrav ∝ P cd

ab∇ck
a∇dk

b which was investi-
gated earlier in ref.[10].

There are two interesting features worth mentioning about the expression
for entropy in Eq. (28). First, it can be shown that (see e.g., sec 7.4 of ref.[1])
when the field equations hold, the entropy Sgrav[k

i] of a volume V will reside on
its surface ∂V . Second, and probably more interesting fact is that in any static
spacetime Sgrav[u

i] (defined using the four velocity of static observers instead
of null vectors ki) will be a total divergence identically — that is, even off-shell.
This follows from the fact that, in any static spacetime Rabu

aub itself is a total
divergence (see Eq. (12)). Using this expression and simplifying the terms, one
can show, after some algebra that

Sgrav[u
i] = −∇b[4uaud∇cP

abcd] (29)

Hence, in any static geometry, the entropy perceived by static observers also
resides on the surface. Both these results generalizes the notion of holography
beyond Einstein’s theory.

4 Speculations on the connection with the mi-

croscopic theory

The discussion so far has been devoid of unnecessary speculations which was
possible because we took a ‘top-down’ approach. The key result, expressed,
for example, in the form of Eq. (18), could be derived from classical theory
with the only quantum mechanical input being the formula for Davies-Unruh
temperature. In fact the ~ enters the expression only through the formula
kbT = (~/c)(a/2π). It nicely combines with G in classical gravitational field
equations and leads to G~/c3, one of the central constants in quantum gravity.
So we did not make any unwarranted speculations or dubious assumptions from
the domain of quantum gravity to obtain Eq. (18).

One may, however, be curious to know where a result like Eq. (18) fit in
the broader picture. For example, one might wonder how such a result might
emerge from a microscopic candidate theory of quantum gravity like for example,
string theory (for a texbook description see e.g.,[22]) or loop quantum gravity
(for a texbook description see e.g.,[23]). Given the fact that all such candidate
theories involve fair amount of leaps of faith, it is not possible to discuss this
issue without entering into some speculation. We will do so in this section, just
to indicate the realm of possibilities but it must be stressed that the rest of the
paper is completely independent of the discussion in this section.

To begin with, it is clear that our result in Eq. (18) should not depend on the
details of the final, correct, theory of quantum gravity. This is exactly analogous
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to the fact that the thermodynamics of gases, say, is fairly independent of the
microscopic details of the gaseous system one is considering. The microscopic
description of Helium gas can be quite different from that of Argon but at the
level of ideal gas equation or thermdynamic processes we can ignore most of
these details and quantify the relevant differences in terms of a few parameters
like, e.g., specific heat. Similarly, any model of quantum gravity which has
(i) correct classical limit and (ii) is consistent with Davies-Unruh acceleration
temperature, will lead to our Eq. (18). Since one would expect any quantum
gravity model to satisfy these two conditions (i) and (ii) above — and because
our results only depend on these two features — our ‘top-down’ approach will
meet the ‘bottom-up’ approach of such a theory in the overlap domain. So if
string theory or loop-quantum-gravity or dynamical triangulations or any other
candidate model for quantum gravity satisfies (i) and (ii), it will lead to our
result. (On the other hand if the quantum gravity model does not satisfy the
conditions (i) and (ii), such a candidate model is probably wrong in any case.).

Thus Eq. (18) does not — and it is not expected to, either — put a serious
constraint on the microscopic models. This is again in the same spirit as the fact
that law of equipartition in statistical mechanics does not put any constraint on
the atomic nature of matter. After all, one cannot derive Schrodinger equation
for hydrogen atom, knowing the equipartition law for hydrogen gas.

Even though it seems reasonable to accept that thermodynamic limit con-
tains far less information about the system than a microscopic description will
provide, one could still wonder what could be the possible route or mechanism
by which a wide class of candidate models in quantum gravity (all of which
satisfies (i) and (ii) in the last paragraph) can lead to a relation like Eq. (18)
in the appropriate limit. Obviously, such a mechanism should use sufficiently
general theoretical concepts which are independent of the specific details of the
microscopic models. This question can be answered by indicating one possibility
by which such results can emerge but such a discussion is necessarily specula-
tive. We will now briefly describe this possibility, based on the results of several
earlier papers, especially ref. [24]. (This is also motivated by the author’s view
that the currently available candidate models for quantum gravity are failures
and a fresh outlook needs to be developed.)

Let us first consider Einstein’s theory in which the equipartition law assigns
A/L2

P degrees of freedom to a proper area element A so that A ≈ nL2
P for n ≫ 1.

(This corresponds to the semiclassical limit in which one can meaningfully talk
about proper area elements etc. in terms of a coarse grained semiclassical met-
ric.) This is, of course, nothing but area quantization in the asymptotic limit.
Though LQG probably leads to such an exact result, in the asymptotic limit
we are interested in, it can be obtained from the Bohr-Sommerfeld quantization
condition applied to horizons. In fact, Bekenstein conjectured [25] long back
that, in a quantum theory, the black hole area would be represented by a quan-
tum operator with a discrete spectrum of eigenvalues. (Bekenstein showed that
the area of a classical black hole behaves like an adiabatic invariant, and so,
according to Ehrenfest’s theorem, the corresponding quantum operator must
have a discrete spectrum.) Extending these ideas to local Rindler horizons
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treated as the limit of a stretched horizon, one can understand how a result like
quantization of any spatial area element can arise in a microscopic theory.

A more interesting situation emerges when we go beyond the Einstein grav-
ity to Lanczos-Lovelock models. In Einstein’s gravity, entropy of the horizon is
proportional to its area. Hence one could equivalently claim that it is the grav-
itational entropy which has an equidistant spectrum. But, when one considers
the natural generalization of Einstein gravity to Lanczos-Lovelock models the
proportionality between the area and Wald entropy breaks down. (There is, of
course, no generalization of LQG for Lanczos-Lovelock models.) The question
then arises as to whether it is the quantum of area or quantum of entropy (if at
all either) which arises in a natural manner in these models. This question was
addressed in ref. [24] where it was shown that in the Lanczos-Lovelock models,
it is indeed the entropy that is quantized with an equidistant spectrum. This
matches nicely with the fact that it is the quantity in the right hand side of
Eq. (18) — which, as we pointed out in Sec.3, leads to the Wald entropy of
horizons — that takes integral values in the equipartition law. Thus one can
alternatively interpret our result as a form of entropy quantization.

We can now indicate a sufficiently general ‘mechanism’ by which any mi-
croscopic model of quantum gravity can possibly lead to such a quantization
condition, in terms of two ingredients. First one is the peculiar ‘holographic’
structure of the action functionals in Lanczos-Lovelock models [6, 26]. The ac-
tion functionals in all these theories can be separated into a bulk and surface
term and the surface term has the structure of an integral over d(pq). It can also
be shown [1, 6] that the same ‘d(pq)’ structure emerges for the on-shell action
functional in all Lanczos-Lovelock models; that is,

A|on−shell ∝
∫

V

dDx∂i(Π
ijkgjk) =

∫

∂V

dΣi Π
ijkgjk (30)

where Πijk is the suitably defined canonical momenta corresponding to gjk. The
second ingredient is the fact that, in all these theories, the above expression for
the action leads to the Wald entropy of the horizon. (For example, in Einstein
gravity, the surface term in action, evaluated on a horizon will give one quarter
of the area [6].)

In the semiclassical limit, Bohr-Sommerfeld quantization condition requires
the integral of d(pq) should be equal to 2πn. Since the action in Eq. (30) has
this ‘d(pq)’ structure, it follows that the Bohr-Sommerfeld condition reduces to
A|on−shell = 2πn. Since A|on−shell is also equal to Wald entropy, we get

SWald = A|on−shell = 2πn (31)

The Bohr-Sommerfeld quantization condition, of course, was the same used
originally by Bekenstein and others to argue for the area quantization of the
black hole horizon but in the more general context of Lanczos-Lovelock models
it appears as entropy quantisation [24]. (It is also possible to argue that in the
semiclassical limit, the on-shell value of the action will be related to the phase
of the semiclassical wave function Ψ ∝ exp (iA|on−shell). If the semiclassical
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wave function describing the quantum geometry, relevant for a local Rindler
observer, is obtained by integrating out the degrees of freedom beyond the
horizon inaccessible to the observer then one can argue that [24], this phase
should be 2πn in the asymptotic limit leading to A|on−shell = 2πn. Given the
conceptual ambiguities related to interpretation of ‘wave function of geometry’,
it is probably clearer to invoke Bohr-Sommerfeld condition.) To summarize, the
three facets of the theory: (i) the structure of the gravitational action functional
(ii) the equality of on-shell gravitational action functional and Wald entropy and
(iii) the Bohr-Sommerfeld quantization condition, combine together to provide
a possible backdrop in which Eq. (18) can arise in any microscopic theory.

We once again stress that the above analysis is speculative and involves
ill-understood concepts from semiclassical gravity but the rest of the paper is
completely independent of these speculations. The purpose of this discussion is
only to point out one possible, tentative, scenario in which results like Eq. (18)
can arise from a microscopic theory of quantum gravity. In the absence of
the latter, it is not possible to do better or provide a more concrete or unique
discussion.

5 Conclusions

We see that the the equipartition law allows one to identify the number density of
microscopic degrees of freedom on a constant redshift surface. Using this one can
define the entropy of the horizon in a general theory of gravity (which agrees with
Wald entropy). This definition of entropy, recast in terms of null vector fields,
allows us to obtain the field equation by an entropy extremisation principle.
These facts further strengthen the idea that gravity is an emergent phenomenon
and spacetime thermodynamics — which extends far beyond Einstein gravity —
is more fundamental. Rather than repeat the arguments given in the text, I have
summarized them in the form of a table.

The thermodynamic approach to gravity brings to the centrestage the Noether
current and potential, which were not considered major players in the theory of
gravity before. In the case of a continuum fluid or elastic solid, the displacement
xα → xα + qα(x) is considered as an elastic deformation of the solid and the
physics can be formulated in terms of how the thermodynamic potentials (like
the entropy) change under such displacement. Similarly, in the case of space-
time, one could think of Ja and Jab as providing the response of the spacetime
entropy density to the ‘deformation’ of the spacetime xa → xa + qa. Then
Eq. (10) and Eq. (11) give the response in terms of the dependence of Jab on
qa and its gradients. For example, treating qa and ∇bqa as independent at any
event one can write

P abcd =
1

2

∂Jab

∂∇cqd
(32)

which completely determines the structure of the theory. Since Jabdσab gives
the number density of microscopic degrees of freedom, the above relation con-
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Table 1: Equipartition law applied to a macroscopic body and spacetime

System Macroscopic body Spacetime

Can the system be hot? Yes Yes

Can it transfer heat? Yes; for e.g., hot gas Yes; water at rest
can be used to in Rindler spacetime
heat up water will get heated up

How could the heat The body must have Spacetime must have
energy be stored microscopic degrees microscopic degrees
in the system? of freedom of freedom

How many microscopic Equipartition law Equipartition law
degrees of freedom is dn = dE/(1/2)kBT dn = dE/(1/2)kBT
required to store energy
dE at temperature T ?

Can we read of dn? Yes; when thermal Yes; when static field
equilibrium holds; equations hold; depends
depends on the body on the theory of gravity

Expression for entropy ∆S ∝ ∆n ∆S ∝ ∆n

Does this entropy match Yes Yes
with the expressions
obtained by other methods?

How does one close the Use the entropy Use the entropy
loop on dynamics? extremisation to extremisation to

obtain thermodynamical obtain gravitational
equations field equations

Are the thermal phenomena Yes; however, No!
observer-independent? see [15].
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nects P abcd to the response of microscopic degrees of freedom on a surface to
spacetime displacements. We can now formulate the theory in terms of this
response function. For example, in the m-th order Lanczos-Lovelock model in
D− dimension the field equations are just

Rjabc

(

∂J ia

∂∇bqc

)

= T̄ i
j (33)

with T̄ i
j ≡ [T i

j − (1/(D − 2m))Tδij]. More details of this approach towards
dynamics will be described in a future publication.
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