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Abstract

We study the relation between the thermodynamics and field equations of generalized gravity

theories on the dynamical trapping horizon with sphere symmetry. We assume the entropy of

dynamical horizon as the Noether charge associated with the Kodama vector and point out that it

satisfies the second law when a Gibbs equation holds. We generalize two kinds of Gibbs equations

to Gauss-Bonnet gravity on any trapping horizon. Based on the quasi-local gravitational energy

found recently for f(R) gravity and scalar-tensor gravity in some special cases, we also build up the

Gibbs equations, where the nonequilibrium entropy production, which is usually invoked to balance

the energy conservation, is just absorbed into the modified Wald entropy in the FRW spacetime

with slowly varying horizon. Moreover, the equilibrium thermodynamic identity remains valid for

f(R) gravity in a static spacetime. Our work provides an alternative treatment to reinterpret the

nonequilibrium correction and supports the idea that the horizon thermodynamics is universal for

generalized gravity theories.
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I. INTRODUCTION

With the discovery of quantum Hawking radiation, it became clear that a black hole

behaves as an ordinary thermodynamic system with temperature proportional to surface

gravity and entropy measured by its horizon area. The laws of black hole mechanics which

are implied in Einstein field equations can be treated as the laws of thermodynamics. To

comprehend why gravity knows thermodynamics, Jacobson turned the logic around and

disclosed that Einstein’s equation can emerge as an equation of state from the basic ther-

modynamic relation in local Rindler spacetime [1]. This puzzling thermodynamic feature

of gravity and/or spacetime acted as an important motivation of the proposal that grav-

ity might not be a fundamental interaction but rather an emergent large scale/numbers

phenomenon [2, 3]. If this were true, not only general relativity but also more generalized

theories of gravity, such as the ones with higher order curvature corrections, should be seen

under this same light, presuming higher order curvature terms originated from the quantum

corrections of underlying microscopic theory.

Actually, it was disclosed by Padmanabhan et al. that beside Einstein’s equation [4,

5], the field equation of Gauss-Bonnet gravity (as well as for a wider class of Lanczos-

Lovelock gravity) can be written as an equilibrium thermodynamic identity [6], which is a

Gibbs (-like) equation (or the so called first law of thermodynamics), near the horizon of

a static spherically symmetric spacetime. This result has been extended to general static

spacetimes recently [7]. But for the dynamical spacetime, Padmanabhan’s identity has

not been generalized. There exists another similar Gibbs equation based on Hayward’s

unified first law [8], which has been constructed on two special dynamical spacetimes, the

FRW spacetime [9, 10] and Vaidya spacetime [11]. Especially in the FRW spacetime, more

modified gravity theories like braneworld gravity [12–14] and loop quantum gravity [15] have

been similarly described.

However, the equilibrium thermodynamics, which is suitable for the Gauss-Bonnet gravity

and the mentioned other gravity theories, has not been extended trivially to f(R) gravity

and scalar-tensor gravity. Instead, it was shown that a nonequilibrium entropy production

term needs to be invoked to balance the energy conservation [16, 17]. In the local Rindler

spacetime, the entropy production term is presumed originated from the bulk viscosity of

internal spacetime. In this approach, it has been shown that even for Einstein gravity
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an entropy production term may still appear, which is interpreted as the space-time shear

viscosity with the ratio to entropy density as 1/ (4π), consistent with the result of AdS/CFT

duality. In a dynamical FRW spacetime, even for the case with slowly varying horizon, there

are also some extra terms when one tries to reconstruct the field equation as an equilibrium

identity of thermodynamics [9, 18–20]. These terms have been assumed as the entropy

production as well but it is not clear whether it can be attributed to the spacetime viscosity

too.

One alternative treatment to reinterpret the nonequilibrium correction was studied in the

FRW spacetime with slowly varying horizon [21], where a mass-like function is introduced

to absorb the entropy production terms. This mass-like function in Einstein gravity has a

close relation to Misner-Sharp energy (mass) [22], which is a widely accepted quasi-local

gravitational energy in the spherically symmetric spacetime and takes role as the gravi-

tational energy in the mentioned two Gibbs equations. We have showed [19] the similar

relation existed between the mass-like function and the generalized Misner-Sharp energy in

Gauss-Bonnet gravity [23], but it is not known whether it actually has the significance of

gravitational energy, especially in f(R) gravity.

Another alternative method was proposed by Elizalde and Silva [24], they noticed that

the entropy of stationary horizon is well defined by Wald entropy [25], which is a Noether

charge associated with the horizon Killing vector, but it is less understood for the horizon

entropy in a dynamical spacetime, where the Killing vector can not be found in general.

Iyer and Wald proposed that one can approximate the metric by its boost-invariant part to

“create a new spacetime” where there is a Killing vector. However, the obtained dynamical

entropy is not invariant under field redefinition in general [26]. Elizalde and Silva showed that

the equilibrium thermodynamics can derive field equations of f(R) gravity, provided that

the dynamical horizon entropy is still of same form as the stationary case but the entropy

variation is evaluated by its boost-invariant part at leading order. We have proved that

the same method can be suitable for the scalar-tensor gravity [27]. Although this method

has not invoked the dynamical entropy with complete metric, it suggests that the correct

dynamical entropy may be essential to understand the nonequilibrium entropy production.

Recently, one important step to realize the equilibrium or nonequilibrium spacetime has

been taken, which shows that the field equations for arbitrary diffeomorphism-invariant

gravity theories can be obtained as an equilibrium state equation of Rindler horizon ther-
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modynamics [28–30]. Moreover, it proves that the Wald entropy satisfies the second law

of thermodynamics when the null energy condition is met. If this approach is perfect, it

completed the implementation of Jacobson’s proposal to express Einstein’s equation as a

thermodynamic equation of state, and the nonequilibrium entropy production is not nec-

essary. However, since the approximate Killing field is invoked and the horizon entropy is

assumed as Wald entropy, this result may be not applicable to dynamical spacetimes.

Thus it is urgent to study the dynamical horizon entropy and the corresponding horizon

thermodynamics. Besides constructing the entropy by a created Killing vector with the

boost-invariant metric, it is natural to consider a Noether charge construction associated

with certain special dynamical vector field. Unfortunately, if the vector is not a Killing

vector, the construction is not unique [26], because an arbitrary exact form can be added

in Lagrangian which affects the Noether current but not the field equation. Moreover, the

Noether current and the Noether potential have the freedom to the addition of a closed

form. In the absence of a deeper understanding of black hole entropy, it seems impossible

to impose a fundamental criterion in defining the entropy of a nonstationary black hole.

However, there is an important assistant criterion given in [31] that if an entropy expression

that satisfies the second law can be defined, that would be a preferred definition. Of course,

the dynamical entropy should recover the Wald entropy in stationary cases, and can be

expected with a covariant form.

This kind of entropy expression has been presented for Einstein gravity in spherical sym-

metry spacetimes. It is well known that in these spacetimes, there is a preferred time

direction given by the Kodama vector [32], which is a natural dynamical analogue of a

stationary Killing vector. Hayward hence proposed that the Wald entropy can be alterna-

tively associated with Kodama vector [33, 34]. For Einstein gravity, the dynamical horizon

entropy, which has been called as Wald-Kodama entropy, has the same simple form A/4

(A is the area of horizon surface) as for stationary black holes. This was also justified by

evaluating the surface terms in a dual-null form of the reduced action in two dimensions

[35]. Importantly, it was proved that the surface entropy satisfies the second law in the

dynamical spacetime [33].

For modified gravity theory, however, the Wald-Kodama entropy has not been obtained.

In this paper, we will give the general expression of Wald-Kodama entropy and evaluate it for

Gauss-Bonnet gravity, f(R) gravity and scalar-tensor gravity. One can find that the former
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has the same form as the stationary case, while for later two cases the forms are different. We

will show that if Hayward’s equilibrium thermodynamic identity can be built up using these

entropy expressions, they can satisfy the second law under the null energy condition. We will

try to construct the equilibrium thermodynamics both in Padmanabhan’s and Hayward’s

approaches. For Gauss-Bonnet gravity, our construction will invoke the generalized Misner-

Sharp energy which has been obtained in any spherical symmetry spacetime [23]. For f(R)

gravity and scalar-tensor gravity, a very recent work [36] has disclosed that the desired

generalized Misner-Sharp energy can not be always found and written in an explicit quasi-

local form. Fortunately, such a form exists for f(R) gravity and scalar-tensor gravity in

an FRW universe and exists for f(R) gravity in the static spherically symmetric solutions

with constant scalar curvature. We will show that for Gauss-Bonnet gravity, the equilibrium

thermodynamics can be derived by Padmanabhan’s and Hayward’s methods, respectively.

For f(R) gravity and scalar-tensor gravity in an FRW universe, it is interesting to see that

the equilibrium thermodynamics also holds on slowly varying horizon. For the static case,

Hayward’s unified first law is trivial. But based on the generalized Misner-Sharp energy, we

can set up Padmanabhan’s identity for f(R) gravity too.

II. ENERGY OF TRAPPING HORIZONS

Suppose the n-dimensional spacetime (Mn, gµν) to be a warped product of an (n − 2)-

dimensional spherical symmetry space (Kn−2, γij) and a two-dimensional orbit spacetime

(M2, hab) under the isometries of (Kn−2, γij). Namely, the line element is given by

ds2 = habdx
adxb + r2(x)γijdy

idyj,

where r is the areal radius for an (n− 2)-sphere Kn−2. It is useful to locally rewrite the line

element in the double-null coordinates as

ds2 = −2e−φ(u,v)dudv + r2(u, v)d2Ωn−2 (1)

where d2Ωn−2 denotes the line element of the (n − 2)-sphere. The key geometrical objects

are dynamical trapping horizons [33], which are hypersurfaces H (in space-time) foliated

by marginal surfaces. A marginal surface is a spatial surface on which one null expansion

vanishes. The null expansions of two independent future-directed radial null geodesics are
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expressed as θ+ = (n− 2)r−1r,u and θ− = (n− 2)r−1r,v. A marginal sphere with θ+ = 0 is

called future if θ− < 0, past if θ− > 0, bifurcating if θ− = 0, outer if ∂vθ+ < 0, inner if ∂vθ+

> 0 and degenerate if ∂vθ+ = 0. We will follow Hayward’s local definition of black holes (or

white holes) as an outer trapping horizon and the black hole’s possible inner boundary or

cosmological horizon is taken as an inner trapping horizon. Recalling that in the spherically

dynamical case, it is possible to introduce the conserved Kodama vector, given by

Kµ ≡ −ǫµν∇νr = (eφ∂vr,−eφ∂ur, 0, 0, · · · ), (2)

where ǫµν = ǫab (dx
a)µ

(

dxb
)

ν
, ǫab is a volume element of (M2, hab), and the minus in the

definition is added to reduce the Kodama vector to the Killing vector χµ = (1, 0, · · · ) for

a static Schwarzschild spacetime. The dynamical surface gravity [8] associated with the

trapping horizon can be defined directly from the Kodama vector [32]

κ ≡ −1

2
ǫab∇aKb = −eφ∂u∂vr. (3)

Similar to the Killing vector in the stationary case, the Kodama vector can be also related to

certain gravitational energy and the entropy of trapping horizon. Let’s consider the energy

first in this section. One can define a current by the energy-momentum tensor of matter

Jµ
E = −T µνKν . If there is a conservation law∇µJ

µ
E = 0, an associated charge can be obtained

as

E =

∫

Σ

Jµ
EdΣµ (4)

by integrating the locally conserved currents over some spatial volume Σ with boundary.

For Einstein gravity, the field equation is Gµν = 8πTµν , where we have set the gravita-

tional constant G = 1. It is easy to prove that the current is conserved and the conserved

charge is just the Misner-Sharp energy.

For Gauss-Bonnet gravity with Lagrangian

L = R + αLGB, (5)

where α is the coupling constant and

LGB = R2 − 4RµνR
µν +RµνλρR

µνλρ,

the field equation is

Gµν + αHµν = 8πTµν , (6)
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where

Hµν = 2(RRµν − 2RµλR
λ
ν − 2RλρRµλνρ +R λρσ

µ Rνλρσ)−
1

2
gµνLGB.

It has been proved that the current is still conserved, and the generalized Misner-Sharp

energy has been obtained as [23]

E =
(n− 2)Vn−2r

n−3

16π

[

(1 + 2eφr,u r,v ) + α̃r−2(1 + 2eφr,u r,v )
2
]

, (7)

where Vn−2 denotes the area of (n− 2)-sphere Kn−2 and α̃ = (n− 3)(n− 4)α.

For the nonlinear gravity theory with Lagrangian L = f(R), however, the energy current

Jµ
E is not always divergence-free. From the field equation

fRRµν −
1

2
fgµν −∇µ∇νfR + gµν�fR = 8πTµν , (8)

where fR = df(R)/dR, one can find that the energy current Jµ
E is divergence-free only for the

case with condition ∇µ∇νfR∇µKν = 0. Moreover, one can not arrive at a true quasi-local

energy from the integration (4) in general. Interestingly, for an FRW universe and static

spherically symmetric solutions with constant scalar curvature, the quasi-local energy have

been found [36]. For an FRW universe with the line element

ds2 = −dt2 + a2(t)dρ2 + ρ2a2(t)d2Ω2,

the generalized Misner-Sharp energy is

E =
(ρa)3

12

[

f + 6HḟR − 6fR(H
2 + Ḣ)

]

. (9)

Note that it is obviously not the special case of the mass-like function given in [21], contrary

to the case of GB gravity, see [19]. For static spherically symmetric solutions with line

element

ds2 = −h(r)dt2 + 1

g(r)
dr2 + r2d2Ωn−2, (10)

the energy for n = 4 is found as

E =
r

2

[

fR − gfR +
1

6
r2(f − fRR)

]

, (11)

where R, fR, and f are all needed to be constants.

For the scalar-tensor gravity with Lagrangian

L = F (Φ)R− 1

2
(∇Φ)2 − V (Φ)
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where F (Φ) is an arbitrary positive continuous function of the scalar field Φ and V (Φ) is its

potential, the equations of motion are

FGµν −∇µ∇νF + gµν�F − 1

2

[

∇µΦ∇νΦ− gµν(
1

2
∇λΦ∇λΦ + V )

]

= 8πTµν , (12)

�Φ − V ′(Φ) + F ′(Φ)R = 0. (13)

In an FRW spacetime, the energy current Jµ
E is divergence-free since

(

∇µ∇νF + 1
2
∇µΦ∇νΦ

)

∇µKν =

0. The generalized Misner-Sharp energy has been obtained as

E =
(ρa)3

12

[

6
(

FH2 +HḞ
)

− 1

2
Φ̇2 − V

]

. (14)

It has been proved that the unified first law, which was previously proposed in Einstein

gravity, holds also for Gauss-Bonnet gravity, f(R) gravity of these two cases, and scalar-

tensor gravity in an FRW spacetime, with the uniform

∇aE = AΨa +W∇aV, (15)

where A is the area of the sphere with radius r and V is its volume. W is called work density

defined as W = −habT ab/2 and

Ψa = T b
a∂br +W∂ar (16)

is the energy supply vector, with Tab being the projection of the n-dimensional energy-

momentum tenor of matter in the normal direction of the (n− 2)-dimensional sphere.

III. DYNAMICAL HORIZON ENTROPY

In this section, we will follow Hayward’s proposal [33, 34] to define the dynamical horizon

entropy directly by replacing the Killing vector with the Kodama vector in Noether charge

method [25, 26]. However, one should be careful that the usually used Wald entropy ex-

pression (such as the one used in [28]) has invoked the property of Killing vector. In fact,

just after Wald and Iyer presented their entropy expressions, Jacobson has pointed out [31]

that for nonstationary case, there are three obvious candidate forms of the entropy, which

are the full potential produced by the Noether charge construction associated with certain

vector field, the potential eliminating the higher derivatives of the vector field via identities

that would hold for the Killing vector, and the standard Wald entropy that is the potential
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dropping the terms proportional to the vector field and the binormal of horizon is invoked

to replace the first order derivative of vector. All of the three expressions yield identical

results when pulled back to a bifurcate Killing horizon. But for a dynamical horizon, the

three forms are different in general. Because the later two forms are derived involving some

properties of Killing vector, we will consider the full Noether potential. In fact, if there is a

fundamental criterion which can be imposed to define the entropy of a nonstationary black

hole, after a deeper understanding of black hole entropy, the full Noether potential should

be considered as the first candidate.

For a generally covariant Lagrangian L, the variation of Lagrangian density n-form is

described as

δ (ǫµ1µ2···µn
L) = ǫµ1µ2···µn

E(i)δψ(i) + ǫµ1µ2···µn
∇βΘ

β,

where ψ(i) denote the field variables, E(i) = 0 is the equation of motion for ψ(i), and Θβ is

a functional of the field variables and their variations. When we identify the variation with

a general coordinate transformation Lςψ(i) induced by an arbitrary vector field ς, one can

obtain

∇µ (ς
µL) = −E(i)Lςψ(i) +∇µΘ

µ.

Then the vector field Jµ = Θµ − ςµL is divergence-free ∇µJ
µ = 0 on shell, for which one

can find an antisymmetric Noether potential satisfied with Jµ = ∇νQ
µν . The full Noether

potential Qµν can be calculated in a straightforward manner for a given action, as shown

in [37, 38]. For our aim, we will consider the Lagrangian involves no more than quadratic

derivatives of metric gµν and the first order derivative of a scalar field Φ, so the action is

given by

I =
1

16π

∫

dnx
√
−gL(gµν , Rµνλρ,Φ,∇µΦ). (17)

Variation of this action gives the equation of motion E(i) and Θβ as

E(g)
µν =Mµν −

1

2
gµνL−Xαβρ

(µRν)ρβα − 2∇ρ∇λX
λρ

(µ ν),

E(Φ) =
∂L

∂Φ
−∇µω

µ,

Θβ = 2X αβ

(µ ν)∇αδg
µν − 2∇αX

αβ

(µ ν)δg
µν + ωβδΦ,

where

Mµν =
∂L

∂gµν
, Xµνλρ =

∂L

∂Rµνλρ

, ωµ =
∂L

∂∇µΦ
.
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Regarding the variation as a coordinate transformation induced by an arbitrary vector ς, we

can obtain the Noether current

Jβ = 2∇α

[

Xαβµν∇µςν − 2ςν∇µX
αβµν

]

− 2ςµ
(

Mβ
µ − 2RανρµX

ανρβ − 1

2
ωβ∇µΦ

)

.

by manipulating the covariant derivatives and using the equation of motion. Since the

general covariance of the Lagrangian implies
(

Mβ
µ − 2RανρµX

ανρβ − 1

2
ωβ∇µΦ

)

∇βη
µ = 0

for an arbitrary vector ηµ, the Noether potential of the current Jµ can be obtained as

Qµν = −2Xµνλρ∇λςρ + 4ςρ∇λX
µνλρ. (18)

Integrating the Noether potential over any closed spacelike surface B of codimension n− 2,

the Noether charge is proportional to

S =
1

8κ

∫

B

QµνdBµν , (19)

where dBµν = 1
2
ǫµν

√
γdn−2y. When ςµ is a timelike Killing vector, the term proportional

to ςµ of Qµν is absent in the integral, because ςµ vanishes on the Killing horizon. Then

the entropy is reduced to the one used in [28]. For dynamical spacetimes, however, we

will take ςµ as the Kodama vector, so this term must be preserved. Moreover, it should

be noticed that for Einstein and Gauss-Bonnet gravity, while not for the f(R) gravity and

scalar-tensor gravity, this term also disappears because ∇λX
µνλρ = 0 in those cases. Hence

one can expect more difference between the stationary and dynamical entropy for f(R)

gravity and scalar-tensor gravity than for Einstein gravity and Gauss-Bonnet gravity.

Actually, for Einstein gravity, Hayward has found that the entropy has same form as the

stationary case. For Gauss-Bonnet gravity with Lagrangian (5), one has

Xµνλρ = gµ[λg|ν|ρ] + 2α
(

gµ[λg|ν|ρ]R + 2gν[λR|µ|ρ] − 2gµ[λR|ν|ρ] +Rµνλρ
)

. (20)

For simplicity, we consider only the case with n = 5. Using Eqs. (2), (3), (18) and (20), we

can evaluate the entropy (19), which is

S =
1

4
A+

3α

r2
A =

π2r3

2
+ 6π2αr. (21)

One can find that it has the same form as the stationary case, and when α = 0 it reduces

to A/4 consistent with the entropy of Einstein gravity.
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For f(R) gravity, we have

Xµνλρ = fRg
µ[λg|ν|ρ].

Considering a four-dimensional spacetime, we obtain the dynamical horizon entropy

S = πr2fR − 1

4

r,v fR,u
r,uv

. (22)

For the scalar-tensor gravity with

Xµνλρ = Fgµ[λg|ν|ρ],

the entropy has the similar form as Eq. (22)

S = πr2F − 1

4

r,v F,u
r,uv

. (23)

It should be noticed that for the entropy expression given by the boost-invariant fields, the

entropy of scalar-tensor gravity is generally different with the entropy of f(R) gravity [26].

But our result is reasonable since the f(R) gravity can be treated as a special scalar-tensor

theory by introducing the scalar field φ = R and potential V = φf ′ − f in the Brans-Dick

theory, and choosing the Brans-Dick parameter ω = 0 (see [39] for a review).

The entropies (22) and (23) reduce to A/4 for Einstein gravity where fR = F = 1. It

should be stressed that the stationary case has only the first term and the extra term may

change our understanding about the nonequilibrium thermodynamics of f(R) gravity and

scalar-tensor gravity in dynamical spacetimes, as we will show.

Before doing that, we want to discuss whether or not the dynamical entropy satisfies the

second law of thermodynamics. Hayward has shown that for Einstein gravity there is the

second law [33], which states that if the null energy condition holds on a future (respectively

past) outer trapping horizon, or on a past (respectively future) inner trapping horizon, then

the horizon entropy is non-decreasing (respectively non-increasing) along the horizon. We

review the proof briefly. Denote the tangent vector to the horizon by ξ = d/dλ = β∂u −α∂v

and fix the orientations by θ+ = 0 and β > 0 on the horizon. Then 0 = dθ+/dλ =

β∂uθ+ − α∂vθ+ yields dr/dλ = −α∂vr = −βrθ−∂uθ+/2∂vθ+. Considering the null energy

condition

Tuu ≥ 0 and Tvv ≥ 0, (24)

and the Einstein field equation, one can know ∂uθ+ ≤ 0. The signs of θ− and ∂vθ+ are given

by the definition of future or past, outer or inner trapping horizons. Defining the directional
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derivative along the tangent vector to the horizon

δλ ≡ D/dλ = ξa∇a, (25)

one can obtain δλS = 2πrdr/dλ ≥ 0 for future outer or past inner trapping horizons, and

vice verse.

Now we will give an alternative proof of the second law, which is important because it is

applicable to modified gravity theories. Consider the unified first law (15) projecting along

ξa

ξa∇aE = AΨaξ
a +Wξa∇aV.

For Einstein gravity, it has been shown that this equation can be written as a Gibbs equation

δλE =
κ

2π
δλS +WδλV. (26)

Hence δλS can be written as

δλS = 2πAΨaξ
a/κ = −2πAe−φβTuu∂vr/κ.

Considering the null energy condition (24) and the surface gravity (3), one can immediately

find δλS ≥ 0 for future outer or past inner trapping horizons, and vice verse. In the

following sections, we will show that the Gibbs equation (26) holds for Gauss-Bonnet gravity

in any dynamical spacetime, and also holds for f(R) and scalar-tensor gravity in the FRW

spacetime with slowly varying horizon. Thus our dynamical entropy expressions satisfy the

second law in these cases.

IV. EQUILIBRIUM THERMODYNAMICS OF GAUSS-BONNET GRAVITY IN

DYNAMICAL SPACETIMES

On any static horizon, the equilibrium thermodynamics of Gauss-Bonnet gravity has

been constructed recently using Padmanabhan’s identity [7]. For the dynamical case, one

also has the equilibrium thermodynamics after projecting the unified first law along the

horizon, where it was found that the entropy needs the same form as (21). However, the

thermodynamics is only restricted on FRW and Vaidya spacetimes [9, 11]. In this section,

we will study the generalization to any dynamical spacetime with spherical symmetry.
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A. Hayward’s identity

We will first consider the method based on Hayward’s unified first law. The components

of tangent vector ξa can be determined by ξa∂a∂ur = 0 up to a normalization of ξa, which

is irrelevant for our aim. In double-null coordinates, we write it clearly

ξa = (−∂u∂vr, ∂u∂ur). (27)

Using the field equation of Gauss-Bonnet gravity (6), the energy supply along the horizon

is obtained as

AΨaξ
a = eφ [−Tvvr,u (r,u φ,u+r,uu ) + Tuur,v r,uv ]

= −3π

4
eφr2r,v r,uv r,uu−3παr,v r,uv r,uu +O(r,u ), (28)

where O(r,u ) denotes some terms proportional to r,u (or its higher orders). One can find

that the variation of entropy (21) along the horizon ξa∇aS just equals to Eq. (28) up to

some different terms proportional to r,u and the temperature factor T = κ/(2π). So we can

recast the unified first law along the horizon as a Gibbs equation

δλE = TδλS +WδλV. (29)

B. Padmanabhan’s identity

Then we will extend Padmanabhan’s identity to the dynamical spacetime. The identity

has been constructed for Gauss-Bonnet gravity on static horizons, which reads [6]

dE = TdS − PdV. (30)

Although it is also a Gibbs equation similar to Eq. (29), there are two key difference which

should be clarified. First, the differentials d, which are different with δλ, are interpreted as

dE = (dE/dr+) dr+ etc., where r+ refers to the horizon radius. This means that we are

considering two solutions to the gravitational field equations differing infinitesimally in the

parameters such that horizons occur at two different radii r+ and r+ + dr+, instead of the

case in Eq. (29) where the variation is taken as the directional deriviative tangent to the

horizon. So one must be careful that here all quantities should be evaluated on the horizon

before manipulating the differentials. Second, in the static spacetime with line element (10),

13



the pressure in Eq. (30) is interpreted as the radial pressure of matter on the horizon,

given by P = T r
r , which is seemly different with the work density W = −1

2
(T t

t + T r
r ). In

dynamical spacetimes with line element (1), it is not known what is the radial pressure. We

will use the work density as the desired pressure, because we will show its consistency with

the (negative) radial pressure P on the horizon of static spacetime (10) with n = 5. From

the field equations of Gauss-Bonnet gravity, we have

8π
(

T t
t − T r

r

)

=
3

2

h(r)g′(r)− g(r)h′(r)

r3h(r)

[

r2 + 4α− 4αg(r)
]

.

Observing the regularity of the curvature scalars on the horizon, one must impose several

restrictions on the metric functions

g′(r+) = h′(r+), g(r+) = h(r+) = 0, (31)

which leads to T r
r = T t

t on the horizon, i.e. P = −W on the horizon as expected.

Thus our aim is to check the identity

dE = TdS +WdV (32)

on the dynamical horizon. The work density on the horizon can be derived as

W = eφTuv =
3

8πr3
[

r + eφr2r,uv +4αeφr,uv
]

r=r+
. (33)

Using the expression of entropy (21), one can easily obtain

dS =

(

3π2r2+
2

+ 6π2α

)

dr+. (34)

Using Eqs. (3), (33), and (34), we have

TdS +WdV =
3πr+
4G

dr+.

The generalized Misner-Sharp energy (7) on the horizon is

E =
3πr2+
8G

[

1 + 2αr−2
+

]

and its variation is

dE =
3πr+
4G

dr+. (35)

One can find that Eq. (32) holds on the horizon actually.

Obviously, the Gibbs equations (29) and (32) tell us that the equilibrium thermodynamics

of Gauss-Bonnet gravity can be constructed from gravity field equations in any dynamical

spacetime with spherical symmetry.
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V. EQUILIBRIUM THERMODYNAMICS OF f(R) GRAVITY

A. Hayward’s identity

Now we will study whether or not there is the Gibbs equation (29) for f(R) gravity in

an FRW spacetime. Using the coordinate transformation

u = t∗ − ρ, v = t∗ + ρ (36)

where t∗ is determined by dt∗/dt = 1/a, the FRW spacetime can be described as the double-

null form (1), with

e−φ =
a2

2
, r = ρa. (37)

In an FRW spacetime, the trapping horizon with θ+ = 0 is located at

ρ =
1

ȧ
, (38)

which coincides with the apparent horizon [40], that has the radius r+ = 1/H . Using the

transformation laws (36) and (37), we can read the Kodama vector as

Kµ = (1,−rH, 0, 0),

and the surface gravity on the horizon as

κ = −eφ∂u∂vr = −r
2
(2H2 + Ḣ) = −H(1 +

Ḣ

2H2
). (39)

Consider the model with a = tq, which leads to κ = −(q− 1
2
)t−1, that shows that the surface

gravity is negative in general (except the radiation dominated case). So we are treating an

inner trapping horizon, rather than outer trapping horizon. Using Hamilton-Jacobi method,

it has been pointed out in the recent work [41] that the temperature of the inner horizon

is T = −κ/ (2π) preserving the positive temperature. So we need to add a minus before

T in the Gibbs equations (29) and (32), which can be interpreted as that the energy may

decrease when the entropy of inner trapping horizon increases. However, to be concise, we

will still use T = κ/ (2π) for the inner horizon.

The tangent vector along the horizon ξb (here index b = t, r) (27) can be read as

ξb = (1,
1

a
− 2ρH − ρḢ

H
), (40)
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up to a proportional factor. Using the field equation of f(R) gravity (8) and the tangent

vector (40), the energy supply along the horizon can be obtained as

AΨbξ
b =

fRḢ(2H2 + Ḣ)

2H4
− ḟR(2H

2 + Ḣ)

4H3
+
f̈R(2H

2 + Ḣ)

4H4
, (41)

where we have used Eq. (38) to restrict the result on the horizon. The entropy (22) in the

FRW spacetime can be expressed as

S =
A

4
(fR − 2HḟR

2H2 + Ḣ
).

Multiplying the factor T = κ/ (2π) to the entropy variation along the horizon, we obtain

TδλS =
fRḢ(2H2 + Ḣ)

2H4
− ḟR(4H

4 + 16H2Ḣ + 3Ḣ2 + 2HḦ)

4H3(2H2 + Ḣ)
+

f̈R
2H2

, (42)

where we have used Eq. (38). It is interesting to find that Eq. (41) is same as Eq. (42),

provided that the horizon is varied so slowly that

Ḣ ≪ H2, Ḧ ≪ H3. (43)

So we have established the Gibbs equation (29) for f(R) gravity. In the general case,

however, Eq. (29) does not hold. The difference between Eq. (41) and Eq. (42) can be

given as

TdHS ≡ δλE −WδλV − κ

2π
δλS

= AΨbξ
b − κ

2π
δλS

=
Ḣf̈R
4H4

+
ḟR(6H

2Ḣ + Ḣ2 +HḦ)

4H3(2H2 + Ḣ)
.

B. Padmanabhan’s identity

Next we will check Padmanabhan’s identity (32). Before doing that, we will show that

W is still consistent with −P for f(R) gravity in the static spacetime. This can be carried

out by evaluating the difference between T t
t and T r

r

8π
(

T t
t − T r

r

)

=
[2f + rf ′

R(r)] [h(r)g
′(r)− g(r)h′(r)]

2rh(r)
+ g(r)f ′′

R(r) = 0. (44)

The last equality holds on the horizon since we have used Eq. (31). In an FRW spacetime,

the work density on the apparent horizon can be get as

W =
1

16π

(

f − 6fRH
2 + 5HḟR − 4fRḢ + f̈R

)

. (45)
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The key step is to consider the variations. For the apparent horizon of FRW spacetime, we

notice that the differential d can be expressed as

d = dr+
d

dr+
= dr+

d

d 1
H(t)

= dr+
dt

d 1
H(t)

d

dt
.

Thus, we can replace the differential d with ∂t for the aim of checking Padmanabhan’s

identity (32). Using Eqs. (8), (22), (39), and (45), one can obtain the right hand of Eq.

(32) as

TdS +WdV ∼ T∂tS +W∂tV

= − fḢ

4H4
+
fRḢ

(

5H2 + 3Ḣ
)

2H2
−
ḟR

(

2H4 + 13H2Ḣ + 4Ḣ2 +HḦ
)

2H3
(

H2 + 2Ḣ
)

+
f̈R

(

2H2 − Ḣ
)

4H4
(46)

The left hand is

dE ∼ ∂tE = − fḢ

4H4
+
fRḢ

(

5H2 + 3Ḣ
)

2H2
−
ḟR

(

H2 + 3Ḣ
)

2H3
+

f̈R
2H2

. (47)

Comparing Eqs. (46) and (47) under the approximation (43), we have justified the Gibbs

equation (32). In the case without the approximation, we have

TdPS ≡ dE − κ

2π
dS −WdV

∼ ∂tE − κ

2π
∂tS −W∂tV

=
Ḣf̈R
4H4

+
ḟR(6H

2Ḣ + Ḣ2 +HḦ)

4H3(2H2 + Ḣ)
.

Interestingly, one can find dPS ∼ dHS, which suggests both of them have the same origin

and Padmanabhan’s approach is consistent with Hayward’s one.

We will further check Padmanabhan’s identity (32) in the static spacetime where the

generalized Misner-Sharp energy is also found. We will not consider another identity based

on Hayward’s unified first law because the energy supply (16) is vanishing on the horizon

of the static spacetime (10). Note that its time component is vanishing obviously, and its

radial component is Ψr = T r
r − 1

2
(T t

t + T r
r ) = 0 for T t

t = T r
r on the horizon (44). Now we

will evaluate the right hand in Eq. (30). The surface gravity is κ = g′/2 and the entropy is
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S = fRA/4. Using the field equation (8), we obtain

TdS +WdV =
1

4
r2f − rgf ′

R + rfRg
′ − r2gf ′

Rh
′

4h
+
r2fRg

′h′

8h
− r2fRgh

′2

8h2
+
r2fRgh

′′

4h

=
1

4
r2f + rfRg

′ +
r2fRg

′h′

8h
− r2fRgh

′2

8h2
+
r2fRgh

′′

4h

=

(

1

4
r2+f + r+fRg

′ +
r2+fRg

′h′′

4h′

)

dr+, (48)

where we have used f ′
R = 0 in the second line with the mind that R, f , and fR are all

constant, which is the requirement of quasi-local Misner-Sharp energy. Moreover, we have

used Eq. (31) in third line. Reading the generalized Misner-Sharp energy (11) on the horizon

and respecting that R, f , and fR are all constant, we can get the energy variation as

dE =

(

1

4
r2+f +

1

2
fR − 1

4
r2+fRR

)

dr+.

Substituting Ricci scalar on the horizon

R =
2(1− g)

r2
− 2g′

r
− 2gh′

rh
− g′h′

2h
+
gh′2

2h2
− gh′′

h

=
2

r2
− 4g′

r
− g′h′′

h′
,

where we have used Eq. (31) in the second equality, the variation dE can be recast as

dE =

(

1

4
r2+f + r+fRg

′ +
r2+fRg

′h′′

4h′

)

dr+,

which is same as Eq. (48). Thus, we have shown that Padmanabhan’s identity (32) holds.

VI. EQUILIBRIUM THERMODYNAMICS OF SCALAR-TENSOR GRAVITY

A. Hayward’s identity

We will study the thermodynamics of scalar-tensor gravity in an FRW spacetime. Using

the field equation (12) and the tangent vector (40), the energy supply along the horizon can

be obtained as

AΨbξ
b =

FḢ(2H2 + Ḣ)

2H4
− Ḟ (2H2 + Ḣ)

4H3
+
F̈ (2H2 + Ḣ)

4H4
+

Φ̇2(2H2 + Ḣ)

8H4
. (49)

Consider the second Friedmann equation

Ḣ =
1

F

[

−4π(ρ+ p) +
1

2
HḞ − 1

2
F̈ − 1

4
Φ̇2

]

.
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Obviously, when Ḣ is small, the term HḞ/2 = HΦ̇dF/dΦ/2 ∼ Φ̇ ∼ F̈ , is small in gen-

eral. Then the last term in (49), which is a higher order small quantity, can be neglected.

Moreover, we notice that 1/F takes roles as the effective Newton gravitational constant in

the scalar–tensor theory. So Φ̇2 is very small indeed, since it is known that the experi-

mental bounds acquire the effective Newton constant as an approximate constant [42], i.e.

Ḟ = Φ̇dF/dΦ ∼ Φ̇ is small. Read the entropy (23) in the FRW spacetime as

S =
A

4
(F − 2HḞ

2H2 + Ḣ
), (50)

and its variation as

TδλS =
FḢ(2H2 + Ḣ)

2H4
− Ḟ (4H4 + 16H2Ḣ + 3Ḣ2 + 2HḦ)

4H3(2H2 + Ḣ)
+

F̈

2H2
. (51)

One can find that the Gibbs equation (29) holds under the approximation (43). The differ-

ence between Eq. (49) and Eq. (51) can be given as

TdHS ≡ δλE −WδλV − κ

2π
δλS

= AΨbξ
b − κ

2π
δλS

=
ḢF̈

4H4
+
Ḟ (6H2Ḣ + Ḣ2 +HḦ)

4H3(2H2 + Ḣ)
+

Φ̇2(2H2 + Ḣ)

8H4
.

B. Padmanabhan’s identity

Next consider another Gibbs equation. Using Eqs. (12) and (50), one can obtain the

right hand of Eq. (32) as

TdS +WdV ∼ T∂tS +W∂tV

= −FḢ

2H2
+
V Ḣ

4H4
−
Ḟ
(

2H4 + 13H2Ḣ + 4Ḣ2 +HḦ
)

2H3
(

2H2 + Ḣ
) +

F̈
(

2H2 − Ḣ
)

4H4
.(52)

The left hand is

dE ∼ ∂tE = −FḢ

2H2
+
Ḟ
(

H2 − 2Ḣ
)

2H3
+

F̈

2H2
+

6V Ḣ + 3ḢΦ̇2 − 2HΦ̇Φ̈

24H4
− V̇

12H3

= −FḢ

2H2
+
V Ḣ

4H4
−
Ḟ
(

H2 + 3Ḣ
)

2H3
+

F̈

2H2
+

Φ̇2
(

2H2 + Ḣ
)

8H4
, (53)

where we have invoked the equation of motion of scalar field (13) in the last equality with

the mind that V̇ = V ′Φ̇. Comparing Eqs. (52) and (53) using the approximation (43) and
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omitting the term with Φ̇2, we have justified the Gibbs equation (32). In the case without

the approximation, we have

TdPS ≡ dE − κ

2π
dS −WdV

∼ ∂tE − κ

2π
∂tS −W∂tV

=
ḢF̈

4H4
+
Ḟ (6H2Ḣ + Ḣ2 +HḦ)

4H3(2H2 + Ḣ)
+

Φ̇2(2H2 + Ḣ)

8H4
,

which shows dPS ∼ dHS.

VII. CONCLUSION AND DISCUSSION

In this paper, we have investigated the relationship between the gravitational field equa-

tion and the thermodynamics on the dynamical trapping horizon with spherically symmetry.

Following Hayward’s proposal, we have obtained a general expression of Wald-Kodama en-

tropy, by replacing the Killing vector as Kodama vector in the Noether charge method

proposed by Wald. We have evaluated Wald-Kodama entropy in Gauss-Bonnet gravity,

f(R) gravity and scalar-tensor gravity. It is shown that the dynamical horizon entropy

of f(R) gravity and scalar-tensor gravity have different forms with their stationary cases,

contrary to the assumption given in many references [9, 16, 18, 19, 21, 24, 36, 43].

We have shown that the second law of thermodynamics is satisfied under the null en-

ergy condition for the dynamical horizon entropy of arbitrary gravity theories, if Hayward’s

thermodynamic identity can be constructed using the entropy expression. We have built

up this identity for Gauss-Bonnet gravity in any trapping horizon and for f(R) gravity and

scalar-tensor gravity in the FRW spacetime with slowly varied horizon. Thus, the second

law holds and we can argue that the dynamical entropy is preferred at least in these cases.

Besides the Hayward’s thermodynamic identity, we have found that Padmanabhan’s ther-

modynamic identity can be generalized to any trapping horizon for Gauss-Bonnet gravity.

For f(R) gravity and scalar-tensor gravity, we have disclosed that the equilibrium identity

can still be constructed in the FRW spacetime with slowly varied horizon. Hence our work

provides an alterative method to absorb the nonequilibrium entropy production without

introducing the mass-like function [19, 21, 43]. For a general FRW spacetime, it is still not

known whether the nonequilibrium entropy production is necessary. We also study Pad-

manabhan’s thermodynamic identity for f(R) gravity in the static spherically symmetric
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spacetime with constant scalar curvature. We are restricted in these cases since the gen-

eralized Misner-Sharp energy was only found there. We have shown that Padmanabhan’s

equilibrium identity holds in the static spacetime. This supports the result given in [28–

30], which suggests that the nonequilibrium entropy production is dispensable at least for

stationary cases.
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