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F(R) gravity equation of state
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The f (R) gravity field equations are derived as an equation of state of local space-time thermo-
dynamics. Jacobson’s arguments are non-trivially extended, by means of a more general definition
of local entropy, for which Wald’s definition of dynamic black hole entropy is used, as well as the
concept of an effective Newton constant for graviton exchange, recently appeared in the literature.
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1. Introduction.—In a key article [1], Jacobson ob-
tained Einstein’s equations (Ee) from local thermo-
dynamics arguments only. To derive this result, he
generalized black hole (Bh) thermodynamics to space-
time thermodynamics as seen by a local observer. He
noted his finding strongly suggests that, in a fun-
damental context, Ee are to be viewed as an equa-
tion of state and, therefore, they should probably
not be taken as basic for quantizing gravity. This is
consistent with the idea that gravity is an emergent
phenomenon of a more fundamental framework, like
string theory (e.g. [2]). Were this true, not only Gen-
eral Relativity, but presumably all generalized gravity
theories should be seen under this same light.

Modified gravity models constitute a very impor-
tant dynamical alternative to ΛCDM cosmology, in
that they have the capability to describe the current
accelerated expansion of our Universe (dark energy
epoch), but also the initial de Sitter phase and infla-
tion, and even the galaxy rotation curves correspond-
ing to dark (and ordinary) matter [3]. We will here
prove that Jacobson’s derivations can be generalized
to cover these more complicated theories of gravity
that are extensively used nowadays. First, we review
Jacobson’s arguments to introduce the basic notions
and then derive the desired generalization. In par-
ticular, we will completely close the program for the
so called f(R) gravities (see e.g. [3], and references
therein), where the Lagrangian only depends on the
Ricci scalar and its covariant derivatives, leaving the
problem open for more general cases. In [4], the field
eq. for f(R) of polynomial form were derived using
non-equilibrium thermodynamics arguments (see also
[5]). Here, we propose an alternative approach where
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local thermodynamic equilibrium is maintained, using
the idea of “local-boost-invariance” introduced in [6].

2. Jacobson’s construction in brief.—Any free-falling
local observer p has some gauge freedom to describe
his local coordinate system. The equivalence principle
can be used to describe space-time in a vicinity of p
as flat. Then, we choose the local space-like area ele-
ment perpendicular to the world-line of p to have zero
expansion rate θ and shear σ at a given point on the
history of p, that we call p0. In this setting, the past
horizon of p0 is called the “local Rindler horizon” at
p0. Since, locally, we have Poincaré symmetry, there
is an approximate Killing field K generating boost at
p0, vanishing at p0, which we take future pointing to
the inside past of p0.

Having this basic setting, we are ready to give pre-
cise meaning to the local thermodynamic definitions.
First, note that local Rindler horizons are null and
act as causal barriers. Therefore, we can associate
entropy S to it, measuring the “many degrees of free-
dom outside”, what presumably results in entangle-
ment entropy just at the horizon. With this under-
standing, entropy is proportional to the area elements
of the horizon, where a fundamental length has to be
provided to give an uv cut-off. Heat Q is energy flow
of microscopic degrees of freedom across the causal
barrier, and is felt, therefore, via gravitational energy,
where its source is undetectable. Lastly, the local tem-
perature T is defined as “Unruh temperature”, as seen
by a local accelerated observer hovering just inside the
horizon. Energy flow has to be measured by this same
observer, for consistency.

In more detail, different accelerated observers would
measure different energy flows and temperature, both
diverging at the horizon but with constant ratio, and
this is just what will be used. We have also imposed
θ = σ = 0 at p0, to give a sort of “local definition of
equilibrium” since, in general, causal horizons change
in time as they expand and twist. In this construc-
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tion, locally and at the instant p0 there is not such a
deformation, and the space is “at equilibrium”.

2.1. Accelerated observer and approximations.—On
the above point p0 with its associated local Rindler
horizon H, take an accelerated observer hovering just
inside the horizon χ. By the above construction, χ
is an approximate local boost Killing field future di-
rected to the past of p0. Then, the variation of heat
(caused by energy flow across the horizon), measured
by χ, is δQ =

∫

H
Tabχ

bΣa, where the integration is
over a pencil of generators of H at p0. If K is a
tangent vector to the generators of H, with affine
parameter λ such that λ = 0 at p0, we have that
χa = −kλKa + O(λ2), where k is the acceleration of
χ. Therefore, dΣa = −kλ dλ dA, where dA is the cross
section area element of H. Thus, the final expression
for the variation of heat, at leading order, is

δQ = −

∫

H

kλTabK
aKbdλ dA . (1)

Note that for χ the Unruh temperature T is set to be

T = k/2π . (2)

On the other hand, Jacobson uses that the variation of
the entropy is proportional to the variation of the hori-
zon area A, i.e. δS = ηδA, with η an unknown pro-
portionality constant. Here, δA measures the change
of the area as we approach the point p0, and therefore
is given by δA =

∫

H
θ(λ)dλ dA. Next, we use Ray-

chaudhuri‘s equation to integrate θ near p0. In this
coordinate system, at leading order in λ, we obtain
θ = −λRabK

aKb + O(λ2), and the relevant expres-
sion for the entropy variation to this order is

δS = −η

∫

H

λRabK
aKbdλ dA . (3)

2.2. Thermodynamic relations.—To derive informa-
tion of thermodynamic systems, like the equation of
state, we need just the basic thermodynamic relation

δQ = TδS, (4)

and the functional dependence of S with respect to
the energy and size of the system. In our case we have
Eqs. (1,2,3) at disposal, to get the beautiful relation

TabK
aKb =

1

2π
ηRabK

aKb. (5)

Since K is an arbitrary null vector on H, we can write
the unprojected equation Tab =

1
2πηRab + gabh, with

h an unknown function, arbitrary as of now. Using
then that the lhs is divergence-free, plus the Bianchi

identities for the Ricci tensor, we get the integrability
conditions: 1

4πη∇aR = −∇ah, and therefore the final
form of the thermodynamic relation is

(

2π

η

)

Tab =

(

Rab −
R

2
gab

)

+ Λgab, (6)

where Λ is an integration constant.

To summarize, we have here obtained the Ee as an
equation of state for a local free-falling observer. To
deduce the above, we have used the following critical
assumptions: (i) Measurements are done in a vicinity
of a general point p0. (ii) Our local coordinate system
is at equilibrium, in the sense that θ, σ = 0 at p0.
(iii) The accelerated observer χ tends to K, a null
vector generator of the causal horizon. (iv) We always
restrict ourselves to the leading order approximation
in the affine parameter λ.

3. The general case of modified gravity.—We apply the
above construction to more general theories of grav-
ity. Following Iyer and Wald [6], we just assume that
our Lagrangian is diffeomorphism invariant, in a n-
dimensional oriented manifold M, being the dynam-
ical fields a Lorentz signature metric gab and other
matter fields ψ. The most general Lagrangian is

L = L
(

gab, Rcdef ,∇a1Rcdef , . . . ,∇(a1 . . .∇an)Rcdef ,

ψ,∇a1ψ, . . . ,∇(a1 . . .∇an)ψ
)

. (7)

The corresponding field equations con be found by a
variational procedure on (gab, ψ), so that we get

δL = ǫ
(

E
ab
g δgab +Eψδψ

)

+ dΘ, (8)

where ǫ is the volume element and Θ a (n − 1)-
form. Hence, the field equations of the theory are:
E
ab
g = 0, Eψ = 0. In [6], it was found how to write

them from a variation of the (gab, Rcdef ), as if they
were independent variables, so that we get, after the
corresponding identifications,

E
ab
g = Aab

g + E pqra
R R b

pqr + 2∇p∇qE
pabq
R , (9)

where (A ab
g , E pabq

R ) are the variations of L with re-
spect to (gab, Rpabq) in each case, taken as indepen-
dent variables. In the above expressions, if the deriva-
tives of Rcdef occur in the Lagrangian, one integrates

by parts and then takes its variation, to obtain E pabq
R .

This form of the field equations is useful due to
its relation to Bh thermodynamics. Basically, it has
been known for a while now [7], that in the case when
we have a stationary Bh solution, the entropy S can
be calculated as a Noether charge evaluated at the
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bifurcation (n− 2)-surface of the event-horizon Σ. In
these cases, the entropy is given by

S = −2π

∫

Σ

E abpq
R ǫabǫpq, (10)

where ǫab is the binormal vector of Σ.

What is less understood is the case of dynamical Bh
entropy. There, the event-horizon is not bifurcated
and, therefore, the above formula does not hold. Nev-
ertheless, in [6] a prescription that passes the basic
tests of consistency for the corresponding entropy is
presented, although it is not completely clear if that
is a good answer. In any case, the idea is to approx-
imate the metric g, in a vicinity of a given point p
of the event-horizon, by a boost-invariant metric gIq.
This is done by altering the original Taylor expansion
of the metric around p, so that the new metric is boost
invariant up to some order q, that defines the size of
the vicinity where our approximation is valid. Then,
for this boost invariant metric, there is a Killing vec-
tor field that, on the horizon, is null, and vanishes at
p. We thus have created an approximated bifurcation
surface of order q and can use the same expression
as before for the entropy, only that the integration is
done on the boost-invariant variables:

Sdyn(Σp) = −2π

∫

Σp

Ê abpq
R ǫabǫpq, (11)

where Ê abpq
R = E abpq

R (gIq ) (see [6] for details).

Having understood these modifications for calculat-
ing the Bh entropy, we are almost ready to continue.
Still, some information on the geometrical meaning of
Eq. (10). In [8] it was noticed that, for a static Bh,
entropy can always be re-expressed as the area of the
bifurcation (n− 2)-surface A divided by 4 in units of
an effective Newton constant Geff , i.e.

S =
A

4Geff
where

1

8πGeff
= E abpq

R ǫabǫpq. (12)

The above result has been checked for some string the-
ory cases where it was found that Geff is indeed con-
stant on the bifurcation surface. This result has to be
supplemented with the key observation that the above
effective Newton constant plays also the role of an ef-
fective gravitational coupling for graviton exchange.
In other words, the kinetic term of the n-dimensional
graviton, obtained from the general Lagrangian L, is
precisely of the form 1

4E
abpq
R (∇rhbq∇

rhap + . . .) and,

hence, E abpq
R can be thought of as the strength of

the graviton interaction in all possible polarizations.
In retrospective, Geff corresponds to the strength of

the gravitational interaction in the particular polar-
izations defined by the binormal of the bifurcation
(n− 2)-surface A.

3.1. Field equation as equation of state.—Now that
we have the basic inputs for the possible geometri-
cal interpretation of the Bh entropy S for generalized
theories of gravity, we are ready to consider the prob-
lem of defining there a local version of Bh thermody-
namics, following the steps of Jacobson. Note that
all definitions regarding local observers (accelerated
or not), local Rindler horizons, and so on, are based
on differential geometry and the equivalence principle.
We expect all these definitions to hold in the general
setting and, thus, we leave them unchanged.

What makes the difference, being one of the key
points in this generalization, is the definition of the
local entropy. After the discussion above, it seems
natural to relate entropy to the area of the causal
horizon, only that now we replace the proportionality
constant with a field-dependent effective constant. In
other words, we state that the local variation of the
entropy is still proportional to the variation of the
area of the causal horizon, but in units of this effective
Newton constant. Therefore, we write now [10]

δS = δ (ηeA), (13)

where ηe is, in general, a function of the metric and
its derivatives to a given order l + 2, i.e.

ηe = ηe

(

gab, Rcdef ,∇
(l)Rpqrs

)

. (14)

Using the above ansatz, we are ready to proceed with
our derivation. Since we just change the definition of
entropy variation, due to the energy flow across the
local Rindler horizon, we get the modified expression

δS = −

∫

H

λ (ηe Rab −∇a∇bηe)K
aKbdλ dA+O(λ2) .

(15)
It is important to notice that, in this expression,
(ηe, k

a∇aηe) are to be evaluated at its leading con-
tribution in λ. We have used its boost-invariant part
at first order in lambda to effectively incorporate the
boost invariant notion of [6] creating an “approxi-
mated bifurcation point at first order in λ” at p0.

The other part of the derivation is unaffected and
gives the same result of (1), namely

δQ = −

∫

H

kλTabK
aKbdλ dA+O(λ2) . (16)

Therefore, the thermodynamic relation (4) implies

TabK
aKb =

1

2π
(ηeRab −∇(a∇b)ηe)K

aKb . (17)
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At this point we consider the general differential equa-
tion, removing the contraction with K, thus

T ab =
ηe
2π
Rab −∇

(a
∇
b) ηe
2π

+ gabH , (18)

where the new terms are added based on the fact that
K is a tangent vector of the null geodetics at p0, gener-
ating local boost. Hence, at this point we have a local
equation with two unknown functions of the metric
and its derivatives (ηe, H).

To find the form of these three functions, we use the
integrability condition

∇a

( ηe
2π
Rab −∇

(a
∇
b) ηe
2π

+ gabH
)

= 0, (19)

obtained from the observation that the rhs should be
divergence free. After some algebra,

0 =
ηe
4π

∇
bR+

(

∇a∇
b
∇
a
−∇

b
∇

2
) ηe
2π

+∇
bH

−
1

2

(

∇
2
∇
b +∇a∇

b
∇
a
) ηe
2π
. (20)

At this point, with no lose of generality, we can set

H = h+∇
2 ηe
2π
, (21)

finally obtaining the expression

0 =
ηe
4π

∇
bR+∇

bh. (22)

3.2. The specific case of f(R) gravities.—Eq. (19) can
in principle be solved in many different ways. Here we
will consider the simplest possibility, that eventually
leads to the so-called f(R) gravities [3], a special—
but phenomenologically very important—family of
the general theories of modified gravity where only
the Ricci scalar is involved, as well as their covariant
derivatives, i.e. L = f(R,∇nR).

The solution of Eq. (19) we are considering is per-
haps the simplest one where the first two terms cancel
each other. The last one can be easily integrated as-
suming ηe is a function of R only, thus h = −

1
2 f(R),

with ηe
2π = ∂f

∂R
. Therefore, the final form once we have

collected all terms in the above derivation is

Eab =
∂f

∂R
Rab −∇

(a
∇
b) ∂f

∂R
+ gab

(

−
1

2
f +∇

2 ∂f

∂R

)

,

(23)
f a function of R and its covariant derivatives only.

Eq. (23) is in fact the correct field theory equation
for f(R) gravities, provided we identify the function
f(R) as the Lagrangian of the theory. Also, in this

case the effective Newton constant of (12) is related
to ηe, as is expected from the relation

1

8πGeff
= EpqrsR ǫpqǫrs =

∂f

∂R
(gprgqs − gqrgps)ǫpqǫrs

=
∂f

∂R
=
ηe
2π

(24)

Note that, for these theories, the different polariza-
tions of the gravitons only enter in the definition of
the effective Newton constant through the metric it-
self. This is an important simplification that, in turn,
permits to find the solution of the integrability con-
dition (19). In retrospective, and to summarize, we
have succeeded in our thermodynamic derivation of
f(R) gravities where, remarkably, exactly as in the
case of Einstein gravity, the local field equations can
be thought of as an equation of state.

It will be very interesting to see if this derivation can
be extended to the more complicated cases, stemming
from string theory, where the full Riemann tensor is
involved in the Lagrangian. This seems to imply a
sort of tetrad decomposition of the effective Newton
constant such that one recovers, at the end, only the
polarization normal to the causal barrier of the local
Rindler horizon. Work along this line is in progress.
As a last comment, in our derivation we have used the
first law, but no information is given bout the second
law. In fact it is not know if the second law is present
in generalized gravities (see [9]).
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