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We study the Hamiltonian structure of the gauge symmetry enhancement in the enlarged CP (N)
model coupled with U(2) Chern-Simons term, which contains a free parameter governing explicit
symmetry breaking and symmetry enhancement. After giving a general discussion of the geometry
of constrained phase space suitable for the enhancement, we explicitly perform the Dirac analysis of
our model and compute the Dirac brackets for the symmetry enhanced and broken cases. We also
discuss some related issues.
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I. INTRODUCTION

It is well-known that the nonlinear sigma models exhibit many interesting physical properties in the large-N limit
[1]. One of them is the phenomenon of dynamical generation of gauge boson in CP (N) model [2], where the auxiliary
U(1) gauge field becomes dynamical through the radiative corrections [3]. Recently, some new properties have been
explored in relation with this phenomenon. In particular, in Ref. [4] the issue of dynamical generation of gauge boson
has been analyzed in the context of an enlarged CP (N) model in lower dimensions. In this model, two complex
projective spaces with different coupling constants couple with each other through interactions which preserve the
exchange of the two spaces. In addition to the two auxiliary U(1) gauge fields (corresponding to the diagonal aµ and
bµ fields of (2.4) below) which represent each complex projective space, one extra auxiliary complex gauge field (the
off-diagonal cµ field of (2.4)) is introduced to couple the two spaces in the way which preserves the exchange symmetry.
It turns out that when the two coupling constants are equal (which corresponds to the case of r = 1 of (2.3)), the
classical enlarged model becomes the nonlinear sigma model with the target space of Grassmannian manifold [5].
It was shown in Ref. [4] that the additional gauge field, cµ, also becomes dynamical through radiative corrections.
Moreover, in the self-dual limit where the two running coupling constants become equal, it becomes massless and
combine with the two U(1) gauge fields to yield the U(2) Yang-Mills theory. That is, the gauge symmetry enhancement
has occurred in the self-dual limit. Away from this limit, the complex gauge field becomes massive and the symmetry
remains to be U(1)× U(1).
The parameter r could be understood as an explicit gauge symmetry breaking parameter from U(2) to U(1)×U(1),

with the mass of the cµ field being induced radiatively through the loop corrections when the symmetry is broken.
This could provide a scheme of generating mass of the gauge bosons. Therefore, it would be worthwhile to study the
enlarged CP (N) model from different aspects. In this paper, we study this model in the Hamiltonian formulation.
We first recall that the gauge symmetry is realized as the Gauss law type of constraints in the Hamiltonian method.
In the enlarged model of Ref. [4], the original gauge fields are auxiliary fields which become dynamical through the
quantum corrections. From the Hamiltonian point of view, these auxiliary fields could be completely eliminated
through the equations of motion from the beginning, and the Gauss law constraints could be only implicitly realized.
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However, in order to see the structure of gauge symmetry more explicitly, we couple the enlarged CP (N) model with
some external gauge fields, which we choose to be described by the U(2) Chern-Simons term. Then, we perform the
Dirac analysis [6] of the resulting theory. The theory has both first and second class constraints, and it is found that
for r = 1 the Gauss constraints satisfy U(2) symmetry algebra, whereas for r 6= 1 only U(1) × U(1) algebra. What
happens is that two of the first class constraints generating the gauge symmetry become second class constraints away
from the self-dual limit, reducing the resulting gauge symmetry.
However, it turns out that a smooth extrapolation from the U(1) × U(1) to U(2) gauge symmetry algebra is not

possible in the Dirac analysis. The reason is that in the Dirac method we have to compute the inverse of the Dirac
matrix which is constructed with second class constraints only. This inverse matrix with parameter r becomes singular
if we take the limit of r → 1, because two of the constraints change from second class into first class. When this
happens, the Dirac matrix becomes degenerate and the inverse does not exist. From physical point of view, this
singular behaviour could be associated with the second order phase transition which one encounters in going to the
limit r = 1 [4].
The organization of the paper is as follows. In Sec. 2, we define the enlarged CP(N) model coupled with Chern-

Simons term and perform the canonical analysis. In Sec. 3, we give a somewhat general discussion of the geometry
of the constrained phase space suited for gauge symmetry enhancement. In Sec.4, we give an explicit computation of
the Dirac bracket in the case of r = 1 and r 6= 1 separately. Sec. 5 contains conclusion and discussions.

II. THE MODEL

We start from the Lagrangian written in terms of the N × 2 matrix ψ such that

L =
1

g2
tr
[

(Dµψ)
†(Dµψ)− λ(ψ†ψ −R)

]

+ Lcs, (2.1)

where the field, ψ, is made of two complex N -vectors ψ1 and ψ2 such that

ψ = [ψ1, ψ2] , ψ† =

[

ψ
†
1

ψ
†
2

]

, (2.2)

and the hermitian 2× 2 matrix λ is a Lagrange multiplier. The 2× 2 matrix R is given by

R =

[

r

0

0

r−1

]

, (2.3)

with a real positive r. We will also use the notation Rab = raδab (a, b, · · · = 1, 2) with r1 = r, r2 = r−1. The covariant
derivative is defined as Dµψ ≡ ∂µψ−ψAµ with a 2× 2 anti-hermitian matrix gauge potential Aµ associated with the
local U(2) gauge transformations. The components of Aµ can be explicitly written as follows;

Aµ = −i

[

aµ c∗µ
cµ bµ

]

. (2.4)

Lcs is the non-Abelian Chern-Simons gauge action given by

Lcs = −
κ

2
ǫµνρtr

(

∂µAνAρ +
2

3
AµAνAρ

)

. (2.5)

The kinetic term of the Lagrangian (2.1) is invariant under the local U(2) transformation, while the matrix R with
r 6= 1 explicitly breaks the U(2) gauge symmetry down to U(1) × U(1). Thus, the symmetry of our model is
[SU(N)]global × [U(2)]local for r = 1, while [SU(N)]global × [U(1) × U(1)]local for r 6= 1. Therefore, the parameter r
could be regarded as an explicit symmetry breaking parameter.
Let us perform the canonical analysis using the Dirac method [6]. We first define the conjugate momenta of the ψαa

field by Παa = ∂L

∂ψ̇α

a

, which gives

Παa =
1

g2
(ψ̇α†a +A0abψ

α†
b ). (2.6)



3

The indices a, b... represent the U(2) indices 1 and 2, while Latin indices α, β.. represent the global SU(N) indices of
ψ1 and ψ2. We will occasionally omit the global SU(N) indices, when the context is clear. Likewise, the conjugate
momentum of the ψα†a field is given by

Πα†a =
1

g2
(ψ̇αa − ψαb A0ba). (2.7)

The momentum for the Lagrangian multiplier field λab is constrained to vanish,

Πλab = 0. (2.8)

The conjugate momentum P
µ
ab for the gauge field Aµab is given by

Piab = κǫijAjba, P0ab = 0. (2.9)

In the above, the indices i, j, .. represent the spatial ones with 1 and 2. In the following analysis we will not treat the
first equation as a constraint. Instead Piab is removed from the beginning and replaced by κǫijAjba [7]. The second
equation, together with (2.8), defines the primary constraint of the theory. The Poisson bracket is defined by

{ψαa (x), Πβb (y)} = δabδ
αβδ(x− y),

{λab(x),Π
λ
cd(y)} = δacδbdδ(x − y),

{A0ab(x), P0cd(y)} = δacδbdδ(x − y)

{Aiab(x), Ajcd(y)} = −
1

κ
ǫijδadδbcδ(x− y). (2.10)

After a straightforward Dirac analysis, we find that the system is described by the canonical Hamiltonian given by

H0 = g2ΠaΠ
†
a +

1

g2
(Diψ)

†
a(Diψ)a +

1

g2
λab(ψ

†
bψa −Rba) + (Πaψb − ψ†

aΠ
†
b + κF12ab)A0ba, (2.11)

where we denote FG ≡ FαGα and F12ab is the magnetic field given by

F12ab = ∂1A2ab − ∂2A1ab + [A1, A2]ab. (2.12)

Including all secondary constraints, we find that the dynamics is governed by the following constraints;

C
(0)
ab = Πλab ≈ 0,

C
(1)
ab = P 0

ab ≈ 0,

C
(2)
ab = ψ†

aψb −Rab ≈ 0,

C
(3)
ab = Πaψb − ψ†

aΠ
†
b + κF12ab ≈ 0,

C
(4)
ab = Πaψb + ψ†

aΠ
†
b −

1

g2
[A0, R]ab ≈ 0. (2.13)

One can check that the time evolution of the above constraints are closed with a total Hamiltonian HT = H0 +
∑4

u=0 Λ
(u)
ab C

(u)
ab using the relations (2.10).

To separate the constraints into first and second-classes, we first calculate the commutation relations of (2.13) to
yield the nonvanishing Poisson brackets

{C
(1)
ab (x), C

(4)
cd (y)} =

1

g2
(rc − rd)δadδbcδ(x− y), (2.14)

{C
(2)
ab (x), C

(3)
cd (y)} = (rc − rd)δadδbcδ(x− y), (2.15)

{C
(2)
ab (x), C

(4)
cd (y)} = (ra + rb)δadδbcδ(x− y), (2.16)

{C
(3)
ab (x), C

(3)
cd (y)} =

(

δbcC
(3)
ad − δadC

(3)
cb

)

δ(x− y), (2.17)

{C
(3)
ab (x), C

(4)
cd (y)} =

1

g2
([A0, R]adδbc − [A0, R]bcδad)δ(x − y), (2.18)

{C
(4)
ab (x), C

(4)
cd (y)} = κ(F12cbδad − F12adδbc)δ(x− y). (2.19)

Note that (2.17) satisfies U(2) Gauss law algebra. Nevertheless, C
(3)
12 and C

(3)
21 become second class constraints for

r 6= 1, because in this case the right hand sides of (2.15) and (2.18) are nonvanishing for c 6= d.
Before proceeding to the calculation of the Dirac brackets we briefly review in the next section the structure of the

constrained phase space in a geometric language. This section is included mainly to fix our notations, conventions
and terminology.
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III. GEOMETRY OF CONSTRAINED PHASE SPACE

A phase space can be described by a manifold Γ with a non-degenerate closed 2-form, ΩAB. The capital Roman
letters (A,B · · ·) are used to represent collectively the indices of the phase space coordinates. In our case xA =
(Παa , ψ

α
a , Aiab, A0ab, P0ab, λab,Π

λ
ab). The Poisson bracket structure on Γ is defined as follows. For any given two

functions F , G

{F,G} = ΩAB∂AF∂BG, (3.1)

where ΩAB denotes the inverse of ΩAB.
If a theory is constrained by the constraints, Cµ̄ = 0, the space of physical interests will be the submanifold Γ̄

consisting of all points of Γ satisfying the constraints. This constrained subspace inherits a closed 2-form, Ω̄AB, from
ΩAB by restriction, i.e., for any two vector fields X̄A, Ȳ B tangent to Γ̄ we define Ω̄AB by

Ω̄ABX̄
AȲ B ≡ ΩABX̄

AȲ B. (3.2)

Let us divide the discussion in two cases.
1. Ω̄AB is non-degenerate.
In this case, (Γ̄, Ω̄AB) is the reduced phase space and the reduced bracket structure can be defined as before, using

the inverse of Ω̄AB. For any two functions F̄ , Ḡ of Γ̄ we define

{F̄ , Ḡ}D = Ω̄AB∂AF̄ ∂BḠ. (3.3)

The condition for non-degeneracy of Ω̄AB can be stated as

det{Cµ̄,Cν̄} 6= 0. (3.4)

This condition, in turn, is equivalent to the fact that none of the vectors ΩAB∂BC
µ̄ is tangent to Γ̄. In this case, the

constraints Cµ̄ = 0 are said to form a second class and the resulting bracket structure on Γ̄ is called the Dirac bracket
to distinguish it from the original Poisson bracket, (3.1).
It is well known that Ω̄AB, when regarded as a tensor field of Γ, both of whose indices are tangent to the submanifold

Γ̄, is related to ΩAB as follows.

Ω̄AB = ΩAB +Θ−1
µ̄ν̄Ω

AM∂MC
µ̄ΩBN∂NC

ν̄ , (3.5)

where Θµ̄ν̄ ≡ {Cµ̄, C ν̄}. In terms of the Poisson bracket, the Dirac bracket can be written as

{F,G}D = {F,G} − {F,Cµ̄}Θ−1
µ̄ν̄ {C

ν̄ , G}. (3.6)

2. Ω̄AB is degenerate.
The situation in this case is slightly more complicated because the inverse does not exist. Therefore, we cannot

define the bracket structure on all of the functions of Γ̄. However, Ω̄AB defines for us a non-degenerate closed 2-form
on the quotient manifold of Γ̄ where any two points of Γ̄ are identified if they are related by a curve which lies
along the degeneracy directions everywhere. In fact, Ω̄AB is the pull-back to Γ̄ of a non-degenerate closed 2-form
on the quotient space under the quotient map. We will interpret Ω̄AB in both ways, either as a degenerate 2-form
on Γ̄ or as a non-degenerate 2-form on the quotient manifold. In this case, the quotient space together with a non-
degenerate closed 2-form, Ω̄AB, is the fully reduced phase space and one can define the bracket structure. Physically,
the degeneracy directions represent gauge directions and the quotient space is the space of gauge orbits. Since gauge
invariant functions can be identified with the functions on the quotient manifold, the fact that we have a well defined
bracket structure on the quotient space means that the bracket structure can be well defined only on gauge invariant
functions on Γ̄.
Degeneracies are in fact associated with the existence of the so-called first class constraints. Let kA be an arbitrary

vector field on Γ̄ which points in some degeneracy direction. Then, for all vector fields, tB, tangent to Γ̄,

0 = Ω̄ABk
AtB = ΩABk

AtB, (3.7)

which implies that

ΩABk
A = λµ̄∂BC

µ̄ = ∂B(λµ̄C
µ̄) (3.8)
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for some non-trivial λµ̄. Such a linear combination of the constraints, λµ̄C
µ̄, is called a first class constraint and its

Poisson bracket with all other constraints vanishes, i.e.,

{λµ̄C
µ̄, C ν̄} = 0. (3.9)

Conversely, when Θµ̄ν̄ ≡ {Cµ̄, C ν̄} is degenerate, there exists a non-trivial λµ̄ such that λµ̄Θ
µ̄ν̄ = 0 and it can be

shown that λµ̄C
µ̄ generates a degeneracy of Ω̄AB. That is, kA = ΩAB∂B(λµ̄C

µ̄) is tangent to Γ̄ and Ω̄ABk
AtB = 0

for all tB tangent to Γ̄. Other linear combinations of the constraints independent with all first class constraints
belong to the second class. Therefore, in the degenerate case one can decompose the constraints into two classes,
(Cµ̄) = (C ā, C ī), where C ā denotes the first class constraints and C ī the second class and they satisfy

{C ā, Cµ̄} = 0, det{Cī,Cj̄} 6= 0. (3.10)

Unlike Ω̄AB, which can be regarded either as a non-degenerate 2-form on the quotient manifold or as a degenerate
2-form on Γ̄, Ω̄AB has a well defined meaning only as a tensor field on the quotient space. In order to compare it with
ΩAB we choose a gauge slice. Then, using this one to one map between the space of gauge orbits and the gauge slice
one obtains the corresponding non-degenerate closed 2-form and its inverse on the gauge slice. Note that the 2-form
on the gauge slice obtained this way is just the induced 2-form from ΩAB by restriction to the gauge slice. Therefore,
one can obtain the relations between Ω̄AB and ΩAB by treating the gauge slicing conditions as additional constraints.
When these are included all constraints form a second class as one can see from the fact that the induced 2-form on
the gauge slice is non-degenerate. Let Gā = 0 represent a choice of gauge slice. For this to be a good choice of gauge
slicing W āb̄ ≡ {Gā, C b̄} should be invertible. Then, from Eq. (3.6) one obtains, after a straightforward calculation,

{F,G}′D ≡ Ω̄AB∂AF∂BG

= {F,G}

+ W−1
ām̄W

−1
b̄n̄

(

{Gm̄, Gn̄} − {Gm̄, C ī}{Gn̄, C j̄}Θ−1
īj̄

)

{C ā, F}{C b̄, G}

+ W−1
āb̄

{C ā, F}{Gb̄, G} −W−1
āb̄

{Gb̄, F}{C ā, G}

+ W−1
āb̄

{Gb̄, C ī}Θ−1
īj̄

{C j̄ , F}{C ā, G} −W−1
āb̄

{Gb̄, C ī}Θ−1
īj̄

{C ā, F}{C j̄, G}

− Θ−1
īj̄

{C ī, F}{C j̄, G}, (3.11)

where Θīj̄ = {C ī, C j̄}. When the functions F , G are gauge invariant the above equation reduces to the usual Dirac
bracket constructed using the second class constraints only.
From geometric point of view what happens in our model can be explained as follows. The vector fields which are

(Poisson-)generated by the non-diagonal part of U(2) constraints point in fixed directions in Γ. When r 6= 1, they are
not tangent to Γ̄. As the parameter, r, approaches one, the constraints change gradually and Γ̄ becomes tangent to
those vector fields at r = 1. Initially second class constraints become first class, the gauge symmetry being enlarged
from U(1)× U(1) to U(2).

IV. DIRAC BRACKETS

In this section, we explicitly construct the Dirac brackets (3.6) of our model. It turns out that transition from
r 6= 1 to r = 1 is singular and we have to carry out the cases of r = 1 and r 6= 1 separately. The reason is that in the
Dirac method we have to compute the inverse of the Dirac matrix Θīj̄ of (3.5) which is constructed with second class
constraints only. This inverse matrix becomes singular in the limit of r → 1, because part of the constraints change
from second class into first class in the limit, and determinant of the Dirac matrix becomes zero.

A. r = 1 case

For the case of r = 1, we have Rab = δab, and it is easy to infer from the constraints algebra (2.14)-(2.19), only

C
(2)
ab and C

(4)
ab are second class constraints. All of C

(3)
ab ’s are the first class constraints whose Gauss law satisfies the

U(2) algebra (2.17). C
(0)
ab and C

(1)
ab completely decouple from the theory and can be put equal to zero.

One can thus obtain the following Poisson bracket relations Θīj̄ = {C ī, C j̄} among the second-class constraints

C ī = (C
(2)
11 , C

(2)
12 , C

(2)
21 , C

(2)
22 , C

(4)
11 , C

(4)
12 , C

(4)
21 , C

(4)
22 ) (̄i = 1, 2, ..., 8),

Θ =

[

O M

−MT N

]

(4.1)
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where

M =







2g11 0 0 0
0 0 2g11 0
0 2g11 0 0
0 0 0 2g11






, N =







0 −f12 f21 0
f12 0 −δf −f12
−f21 δf 0 f21
0 f12 −f21 0






. (4.2)

Here we have defined, g11 ≡ |ψ1|
2 = r, g22 ≡ |ψ2|

2 = r−1, fab = κF12ab and δf = f11 − f22. For r = 1 we have
g11 = g22 = 1
The inverse matrix of Θ is given by

Θ−1 =

[

MT−1NM−1 −MT−1

M−1 O

]

, (4.3)

with

M−1 =











1
2g11

0 0 0

0 0 1
2g11

0

0 1
2g11

0 0

0 0 0 1
2g11











, MT−1NM−1 =













0 f21
4g2

11

− f12
4g2

11

0

− f21
4g2

11

0 δf

4g2
11

f21
4g2

11

f12
4g2

11

− δf

4g2
11

0 − f12
4g2

11

0 − f21
4g2

11

f12
4g2

11

0













. (4.4)

The Dirac brackets (3.6) are then given by

{ψαa (x),Π
β
b (y)}D =

(

δabδ
αβ −

ψαc ψ
β†
c

2g11
δa1δb1 + (1 ↔ 2)

)

δ(x− y),

{ψα†a (x),Πβb (y)}D =

(

−
ψ
α†
1 ψ

β†
1

2g11
δa1δb1 −

ψ
α†
2 ψ

β†
1

2g11
δa1δb2 + (1 ↔ 2)

)

δ(x− y),

{Παa (x),Π
β
b (y)}D =

[(

Πα1ψ
β†
1 − ψ

α†
1 Πβ1

2g11
+
ψ
α†
2 ψ

β†
1 − ψ

α†
1 ψ

β†
2

2g11

f12

2g11

)

δa1δb1 +

(

Πα2ψ
β†
1 − ψ

α†
2 Πβ1

2g11

+
ψ
α†
1 ψ

β†
1

2g11

f21

2g11
−
ψ
α†
2 ψ

β†
2

2g11

f12

2g11
−
ψ
α†
2 ψ

β†
1

2g11

δf

2

)

δa1δb2 + (1 ↔ 2)

]

δ(x− y),

{Παa (x),Π
β†
b (y)}D =

[(

Παc ψ
β
c − ψα†c Πβ†c
2g11

+
ψ
α†
2 ψ

β†
1

2g11

f12

2g11
+
ψ
α†
1 ψ

β†
2

2g11

f21

2g11
−
ψ
α†
2 ψ

β
2

2g11

δf

2

)

δa1δb1

−
ψα†c ψβc
2g11

f12

2g11
δa1δb2 + (1 ↔ 2)

]

δ(x− y),

{λab(x),Π
λ
cd(y)}D = δacδbdδ(x− y),

{A0ab(x), P0cd(y)}D = δacδbdδ(x− y),

{Aiab(x), Ajcd(y)}D = −
1

κ
ǫijδadδbcδ(x− y). (4.5)

B. r 6= 1 case

In this case, we first note that two of the constraints C
(3)
12 and C

(3)
21 which were first-class in the case of r = 1

become second-class, because the gauge symmetry is reduced to U(1) × U(1). This is evident from (2.14), whose
right hand side is nonvanishing for rc 6= rd. Therefore, we have all together twelve second class constraints

(C
(1)
12 , C

(1)
21 , C

(2)
11 , C

(2)
12 , C

(2)
21 , C

(2)
22 , C

(3)
12 , C

(3)
21 , C

(4)
11 , C

(4)
12 , C

(4)
21 , C

(4)
22 ). One could proceed to the computation of the Dirac

bracket with these twelve constraints, which is quite involved. However, it greatly simplifies the computation if one

observes that the constraints C
(4)
12 and C

(4)
21 can be eliminated from the list by solving them explicitly with the variables

A0ab (a 6= b)given by

A0ab =
g2

rb − ra
(Πaψb + ψ†

aΠ
†
b) (a 6= b). (4.6)
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Then, from (2.14)-(2.19), C
(1)
12 and C

(1)
21 commutes with the rest of the costraints, and the number of the second-class

constraints become eight; C ī = (C
(2)
11 , C

(2)
12 , C

(2)
21 , C

(2)
22 , C

(3)
12 , C

(3)
21 ,C

(4)
11 , C

(4)
22 ), (̄i = 1, ..., 8).

We now find a 8× 8 matrix Θīj̄ = {C ī, C j̄} of the form

Θ =

[

O M

−MT 0

]

, (4.7)

where M is given by

M =







0 0 2g11 0
0 δg 0 0

−δg 0 0 0
0 0 0 2g22






, (4.8)

with δg = g11 − g22. The inverse matrix of Θ is given by

Θ−1 =

[

O −(M−1)T

M−1 0

]

, (4.9)

with

M−1 =











0 0 − 1
δg

0

0 1
δg

0 0
1

2g11
0 0 0

0 0 0 1
2g22











. (4.10)

The Dirac bracket is then given by

{ψαa (x),Π
β
b (y)}D =

[

δabδ
αβ +

(

−
ψα1 ψ

β†
1

2g11
+
ψα2 ψ

β†
2

δg

)

δa1δb1 + (1 ↔ 2)

]

δ(x− y),

{ψα†a (x),Πβb (y)}D =

[

−
ψ
α†
1 ψ

β†
1

2g11
δa1δb1 +

ψ
α†
2 ψ

β†
1

δg
δa1δb2 + (1 ↔ 2)

]

δ(x− y),

{Παa (x),Π
β
b (y)}D =

[

Πα1ψ
β†
1 − ψ

α†
1 Πβ1

2g11
δa1δb1 +

Πα2ψ
β†
1 + ψ

α†
2 Πβ1

δg
+ (1 ↔ 2)

]

δ(x− y),

{Παa (x),Π
β†
b (y)}D =

[(

Πα1ψ
β
1 − ψ

α†
1 Πβ†1

2g11
+

Πα2ψ
β
2 − ψ

α†
2 Πβ†2

δg

)

δa1δb1 + (1 ↔ 2)

]

δ(x − y),

{Aiab(x), Ajcd(y)}D = −
1

κ
ǫijδadδbcδ(x− y). (4.11)

We note that not only the structure of constraints is different from r = 1 case, but also r → 1 is not defined in the
above algebra (4.11).

V. CONCLUSION

We performed canonical analysis of the gauge symmetry enhancement in the enlarged CP (N) model coupled with
U(2) Chern-Simons term. We discussed the transition between r = 1 and r 6= 1 cases in terms of the degeneracy
of the constrained phase space geometry. We found that the conventional Dirac method does not allow a smooth
extrapolation of the symmetry enhanced and broken phases. This was essentially due to the fact that Dirac procedure
requires an inverse of the Dirac matrix which is constructed with second class constraints only, and becomes singular
when some of the second class constraints become first class. Physically, second order phase transition occurring as
the symmetry breaking parameter r approaches the critical value 1 could be responsible for the non-smooth transition.
We conclude with a couple of remarks. We have computed the Dirac bracket of (3.6) without gauge fixing and thus

are considering only gauge invariant functions which commutes with the first class constraints. Instead one could
try to fix the gauge first thereby rendering all the constraints second class, and then proceed to the Dirac bracket
(3.11). This would involve technically more difficult steps; for example, in the case of r = 1, we need four gauge fixing
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conditions corresponding to the U(2) gauge symmetry, which could be chosen as Lorentz gauge. Then the matrix
would become 16 × 16. For the gauge conditions corresponding to U(1) × U(1) in the case of r 6= 1, we have to
evaluate the inverse of 12× 12. Finally, it would be interesting to perform other quantization methods of our model.
For example, in the BRST-BFV method [8] which avoids the second class constraints from the beginning by enlarging
the phase space, the issue of the connection between r = 1 and r 6= 1 values could be reexamined.
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[3] A. D’Adda, M. Lüscher, and P. Di Vecchia, Nucl. Phys. B 146, 63(1978); ibid 152, 125 (1979); E. Witten, Nucl. Phys. B

149, 285 (1979).
[4] T. Itoh, P. Oh, and C. Ryou, Phys. Rev. D 64 (2001) 045005; J. Phys. A: Math. Gen. 35, 1025 (2002).
[5] A. J. Macfarlane, Phys. Lett. B 82 (1979) 239; R. D. Pisarski, Phys. Rev. D 20 (1979) 3358 ; E. Gava, R. Jengo, and C.

Omero, Nucl. Phys. B 158 (1979) 381; E. Brezin, S. Hikami, and J. Zinn-Justin, Nucl. Phys. B 165 (1980) 528; S. Duane,
Nucl. Phys. B 168 (1980) 32; G. Duerksen, Phys. Rev. D 24 (1981) 926.

[6] P.A.M. Dirac, Lectures in Quantum Mechanics (Yeshiva University, New York, 1964); M. Henneaux and C. Teitelboim,
Quantization of Gauge Systems (Pinceton University Press, New Jersey,1992).

[7] L. D. Faddeev and R. Jackiw, Phys. Rev. Lett. 60, 1692 (1988); R. Jackiw, Diverse Topics in Theoretical and Mathematical

Physics (World Scientific, Singapore, 1995).
[8] I. A. Batalin and I. V. Fradkin, Nucl. Phys. B 279, 514 (1987); I. A. Batalin and I. V. Tyutin, Int. J. Mod. Phys. A6, 3255

(1991)


