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Abstract

A method for obtaining solutions to the classical equations for scalars plus gravity in
five dimensions is applied to some recent suggestions for brane-world phenomenology.
The method involves only first order differential equations. It is inspired by gauged
supergravity but does not require supersymmetry. Our first application is a full non-
linear treatment of a recently studied stabilization mechanism for inter-brane spacing.
The spacing is uniquely determined after conventional fine-tuning to achieve zero four-
dimensional cosmological constant. If the fine-tuning is imperfect, there are solutions
in which the four-dimensional branes are de Sitter or anti-de Sitter spacetimes. Our
second application is a construction of smooth domain wall solutions which in a well-
defined limit approach any desired array of sharply localized positive-tension branes.
As an offshoot of the analysis we suggest a construction of a supergravity c-function
for non-supersymmetric four-dimensional renormalization group flows.

The equations for fluctuations about an arbitrary scalar-gravity background are also
studied. It is shown that all models in which the fifth dimension is effectively com-
pactified contain a massless graviton. The graviton is the constant mode in the fifth
dimension. The separated wave equation can be recast into the form of supersymmetric
quantum mechanics. The graviton wave-function is then the supersymmetric ground
state, and there are no tachyons.
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1 Introduction

Phenomenologists have recently studied higher dimensional gravitational models con-

taining one or more flat 3-branes embedded discontinuously in the ambient geometry.

Scenarios with two 3-branes provide an explanation of the large hierarchy between the

scales of weak and gravitational forces and contain a massless 2++ mode which repro-

duces Newtonian gravity at long range on the branes [1, 2]. In the following paper we

present results of our study of models of this type: specifically, results on the smoothing

of discontinuities and stabilization of inter-brane spacings in 5-dimensional models with

gravity and a scalar field. The issue of fine-tuning in such models is also addressed.

We also discuss the fluctuation equations in these models somewhat differently from

treatments in the recent literature.

The centerpiece of this work is a supergravity-inspired approach to obtain exact so-

lutions of the nonlinear classical field equations in gravity-scalar-brane models which

is valid even without supersymmetry. After a brief introduction to the technical issues

in section 2, this approach is presented in section 3 and applied to a class of models

containing one positive and one negative tension brane [1] with compact S1/Z2 geom-

etry in the fifth dimension. Stabilization of the brane spacing is a generic feature of

these models, but it is not guaranteed that the branes will be flat. Indeed, obtain-

ing flat branes requires a fine-tuning of the model precisely equivalent to setting the

four-dimensional cosmological constant to zero, and if the fine-tuning is imperfect, the

induced metric on the branes will be de Sitter space or anti-de Sitter space. The stabi-

lization mechanism is a generalization of the work of [3]; however, our treatment also

includes back-reaction of the classical scalar profile. An explicit model is presented in

section 4.

In section 5 we obtain smooth solutions of gravity-scalar models which approach

discontinuous brane geometries in a certain “stiff limit.” Any array containing only

positive tension branes can be smoothed in this way. We also remark on the usefulness

of our first-order formalism for the description of supergravity duals to renormalization

group flows.

Our constructions have some parallels in earlier supergravity domain wall literature

(see [4] for a review). There are also similarities with more recent literature, for example

[5, 6].

In section 6 we discuss the equations for linear fluctuations about a gravity-scalar-

brane configuration. We use the axial gauge and a parameterization in which the

4-dimensional graviton appears universally as a constant mode in the fifth dimen-

sion. This mode is normalizable since that dimension is either manifestly or effectively

compact. The graviton equation can be transformed into the form of a Schrödinger

equation in supersymmetric quantum mechanics. The graviton is the supersymmetric
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ground state, so there is no lower energy state which would be a tachyon in the present

context.

2 The issues

We start with the five-dimensional gravitational action

S =
∫

d5x
√

g
[

−1

4
R +

3

L2

]

, (1)

in +−−−− signature. The most general five-dimensional metric with four-dimensional

Poincaré symmetry is

ds2 = e2A(r) ηij dxidxj − dr2 , (2)

with ηij = diag{1,−1,−1,−1,−1}. Anti-de Sitter space is the solution of the field

equations of (1) with A(r) = −r/L. This metric describes a Poincaré coordinate patch

in AdS5 with boundary region r → −∞ and Killing horizon region r → +∞.

The basic positive tension brane considered in [1, 2] is given by A(r) = −|r|/L. This

can be thought of as the discontinuous (in first derivative) pasting of the horizon halves

of two Poincaré patches with the 3-brane at r = 0. One can obtain this as the solution

of the field equations for an action consisting of (1) plus a brane tension term:

Sbrane = −
∑

α

∫

d4x dr
√

| det gij|λα δ(r − rα) . (3)

Here we have generalized to any number of branes; gij is the metric induced on each

brane by the ambient metric gµν . For a single brane at r1 = 0 with brane tension λ1,

the AdS scale must be related by 1/L = λ1/3 to achieve a solution in which the induced

metric is flat. This constraint represents a fine-tuning which is precisely equivalent to

setting the four-dimensional cosmological constant equal to zero.

One can obtain a system of one positive and one negative tension brane [1] by

considering two branes in (3) with λ2 = −λ1 and r2 = r0. This leads to the piece-wise

linear scale function A(r) shown in figure 1a. The fifth dimension is then periodic

with period 2r0 and there is a reflection symmetry under r → −r. This is the S1/Z2

situation originally considered in [7, 8].

Another possibility is to consider [9] a second positive tension brane, which admits a

solution for A(r) shown in figure 1b. In this case, the bulk action (1) must be changed

to admit different scales L1, L2, L3 in the three spatial regions. The scales are related

to the brane tensions by 1/L1 + 1/L2 = 2λ1/3 and 1/L3 − 1/L2 = 2λ2/3 > 0. Again

these relations must be regarded as fine-tunings absent a dynamical mechanism by

which they arise.
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Figure 1: a) A as a function of r for the S1/Z2 geometry, with one positive and one
negative tension brane, each at a fixed point of Z2. b) A as a function of r for two
positive tension branes in an infinite fifth dimension.

There are solutions of the equations of motion for any choice of the inter-brane

spacing r0 in both scenarios above, so it is important to ask whether there is any

principle which fixes or stabilizes the value of r0. A first thought is that the total

action integral of the configuration might depend on r0, reflecting an imbalance of

forces on the two 3-branes, and therefore could be minimized. However it will be

shown in the next section that the action vanishes for all r0, which apparently reflects

the fact that the “output” value of the classical four-dimensional cosmological constant

vanishes, as is consistent with the “input” value assumed when we considered solutions

containing flat 3-branes. In later sections we discuss models in which a real scalar field

φ with potential V (φ) is coupled to gravity with brane tensions λα(φ) depending on φ.

For a given choice of V (φ) and λα(φ), it is generally the case that the brane spacing

r0 is uniquely determined.

Discontinuous solutions of field equations would be less artificial if they could be

obtained as a limit of smooth configurations. In section 5 we present coupled scalar-

gravity models with potential V (ξ) (and no branes initially present). In these models

the scalar ξ plays a different role, that of an auxiliary field, and hence is given a different

symbol. The models have smooth domain wall solutions which approach any desired

discontinuous configuration of positive tension branes as a scale parameter in V (ξ) is

varied. Other parameters in V (ξ) determine the inter-brane spacing (e.g. r0) and AdS

scales (e.g. Li) of the limiting solution, and the solutions have zero total action at all

stages of the limiting procedure. The scalar ξ is effectively frozen in the “stiff” limit

of discontinuous branes.

Only positive tension brane configurations can be smoothed in this way. A negative

tension brane effectively has negative energy which cannot be modeled in a conventional

gravitational theory. Nevertheless a negative tension brane is consistent with micro-
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physical requirements if it is located at the fixed point of a discrete group action. The

crucial point is that transverse fluctuations are then projected out; otherwise they

would have negative kinetic terms.

3 The Goldberger-Wise mechanism

It was proposed in [3] that the dynamics of a scalar field could stabilize the size of an

extra dimension in the brane-world scenario of [1]. The mechanism was to have a scalar

φ with some mass in the bulk of a five-dimensional spacetime and some potentials λ1(φ)

and λ2(φ) on two four-dimensional branes at the boundaries of this spacetime. Such a

situation might be realized in the context of type I′ string theory [10, 7], the Horava-

Witten version of the heterotic string [8], or some more ornate string theory realization

of the basic scenario of [1]: in all cases, spacetime has the topology R3,1 ×S1/Z2. The

claim of [3] is that stabilization of the length of the interval S1/Z2 can be achieved

without fine-tuning the parameters of the model (namely the mass of the scalar and

the potentials λ1(φ) and λ2(φ)).

The analysis presented in [3] neglected back-reaction of the scalar field on the metric

as well as the effect of different scalar VEV’s on the tensions of the branes. The aim of

this section is to include these effects exactly. To achieve a static solution with 3 + 1-

dimensional Poincaré invariance to the full gravity-plus-scalar-plus-branes equations,

one fine-tuning is necessary. This fine-tuning amounts to setting the four-dimensional

cosmological constant to zero.

The fine-tuning is somewhat different from the ones discussed in [11, 12]. In [11] it

was argued for a theory with only gravity in the bulk that a nonzero four-dimensional

cosmological constant must necessarily be accompanied by rolling moduli (correspond-

ing to changing brane separations). In [12] it was conjectured that a state with nonzero

cosmological constant might relax to zero cosmological constant, again through evolu-

tion of some moduli specifying a brane configuration: in short, it was suggested that

an appropriate brane dynamics might fine-tune itself to zero cosmological constant.

We will find a more conventional alternative: there is generically a solution which is a

warped product of a maximally symmetric four-dimensional spacetime and an interval.

The four-dimensional spacetime can be flat Minkowski spacetime, de Sitter spacetime,

or anti-de Sitter spacetime, and which is chosen depends on the details of the scalar

potentials in the bulk and on the branes. Roughly speaking, one can construct a four-

dimensional effective potential Veff whose extremal value determines the cosmological

constant. There is no obvious dynamical principle in the absence of supersymmetry

which seems capable of forcing Veff = 0. In particular, the presence of a fifth dimension

simply does not constrain the extremal value of Veff . From a certain viewpoint this

should not come as a surprise: brane-world scenarios must reduce at low energies to a
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four-dimensional gravity-plus-matter theory, including some brane moduli with some

potential, and it would seem rather accidental than otherwise for this potential to enjoy

a fantastic property like zero extrema.

3.1 A solution generating technique

We generalize the action (1) + (3) to include a scalar field φ(xi, r):

S =
∫

M
d4xdr

√

| det gµν |
[

−1

4
R +

1

2
(∂φ)2 − V (φ)

]

−
∑

α

∫

Bα

d4x
√

| det gij |λα(φ) , (4)

where M is the full five-dimensional spacetime and Bα is the codimension one hyper-

surface where each brane is located. It will always be assumed that the branes are at

definite values of r, so that the xi are perpendicular to the brane hypersurfaces.

The solution generating method described in this section could be applied to a fairly

general setup with many codimension one branes on a finite or infinite interval. In this

section our focus will be the case of a finite interval S1/Z2 where the only branes are the

ones at the ends of the interval. We will work in the “upstairs” picture: Z2-symmetric

configurations on the circle S1. The bulk integration will extend over the entire S1.

Properly speaking, the action should be cut in half after this integration. This can be

achieved simply by setting G5 = 1/8π rather than 1/4π.

We will initially assume a five-dimensional metric of the form (2). We also assume

that the scalar depends only on r. These assumptions follow if one demands a solution

with 3+1-dimensional Poincaré invariance. We will later generalize slightly by replacing

ηij with a de Sitter or anti-de Sitter metric. It is straightforward to obtain the Ricci

tensor:

Rij = e2A (4A′2 + A′′) ηij R55 = −4A′2 − 4A′′ , (5)

and to show that the equations of motion are

φ′′ + 4A′φ′ =
∂V (φ)

∂φ
+
∑

α

∂λα(φ)

∂φ
δ(r − rα) ,

A′′ = −2

3
φ′2 − 2

3

∑

α

λα(φ)δ(r − rα) ,

A′2 = −1

3
V (φ) +

1

6
φ′2 .

(6)

We generally use primes to denote d/dr. The last of the equations in (6) is the usual

zero-energy condition that follows from diffeomorphism invariance. If one differentiates

it with respect to r, the result can be shown to vanish identically if the first two

equations are satisfied.

5



By integrating the first two equations on a small interval (rα − ǫ, rα + ǫ) one can

derive the jump conditions

A′
∣

∣

∣

rα+ǫ

rα−ǫ
= −2

3
λα(φ(rα)) , φ′

∣

∣

∣

rα+ǫ

rα−ǫ
=

∂λα

∂φ
(φ(rα)) . (7)

If these conditions are satisfied at each brane, and if the first and third equations of (6)

are satisfied away from the branes, then we have a consistent solution of the equations

of motion everywhere.

Unfortunately we are still left with a difficult non-linear set of equations. We have

been able to take advantage of one integral of the motion (namely the zero-energy

condition) to eliminate A′′, and if we wished we could eliminate A′ algebraically in the

φ equation by using the zero-energy condition, but we would still have a difficult second

order equation for φ with no further obvious conserved quantities. The purpose of this

section is to exhibit a general method of reducing the system (6) to three decoupled

first order ordinary differential equations, two of which are separable. The method

is inspired by supersymmetry but can be carried out independent of it. We should

remark at the outset that our method is only simple in the case of a single scalar φ:

one of our differential equations has φ as the independent variable, and if there were

several scalars it would become a difficult partial differential equation.

Suppose V (φ) has the special form

V (φ) =
1

8

(

∂W (φ)

∂φ

)2

− 1

3
W (φ)2 , (8)

for some W (φ). Then it is straightforward to verify that a solution to

φ′ =
1

2

∂W (φ)

∂φ
, A′ = −1

3
W (φ) , (9)

is also a solution to (6), provided we have

1

2
W (φ)

∣

∣

∣

rα+ǫ

rα−ǫ
= λα(φ(rα)) ,

1

2

∂W (φ)

∂φ

∣

∣

∣

∣

∣

rα+ǫ

rα−ǫ

=
∂λα

∂φ
(φ(rα)) . (10)

(It was previously noted in [13] that the jump conditions could be satisfied in a specific

model if the brane tension was given identically by W (φ), which is a much stronger

constraint on the model than we assume.) Potentials of the form (8) occur in five-

dimensional gauged supergravity [14], and the conditions (9) arise as conditions for

unbroken supersymmetry: the vanishing of the dilatino variation leads to the first

equation in (9) and gravitino variation leads to the second.

For us, the key observation is that, given V (φ), (8) can be solved for W (φ), and there

is one integration constant in the solution. Whether a gauged supergravity theory can
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be constructed so that the supersymmetry conditions lead to any desired W (φ) is an

interesting question which we will not address in this paper. (It would also be amusing

to ask whether one could come up with interesting supersymmetry-breaking scenarios

by starting with a five-dimensional gauged supergravity and constructing a solution

using (9) with the “wrong” W (φ).) The relevant point for the analysis at hand is

that (8) and (9) together have solutions specified by three integration constants, one

of which is the trivial additive constant on A. There are likewise three integration

constants for the solutions of (6), and again one is the trivial additive constant on A.

From this simple parameter count we may expect that the space of solutions includes

all possible solutions to (6).∗ Issues of global existence and discrete ambiguities seem

to be the only obstacles to realizing this expectation. These are best seen in a more

definite framework, so we will now proceed to our main example.

The rest of this section is devoted to the case where the only branes are the ones

at the ends of the interval S1/Z2. Again, we work in the “upstairs” picture where

these branes are realized as kinks in A(r) at the fixed points of Z2. If the Z2 reflection

includes an orientifolding, then string theory allows one of these two branes to have

negative tension. The negative tension brane must be located at a fixed point of the

discrete group action: it does not introduce difficulties with negative kinetic terms or

unboundedness of energy because it is just part of a background, not something which

can be dynamically created anywhere in space. We fix the additive ambiguity on the

variable r by taking the positive tension brane to be at r = 0. The negative tension

brane then lives at some r0 (see figure 1) which is the modulus of the theory that the

mechanism of [3] purports to stabilize. The physical parameters that go into the theory

are the scalar potential V (φ) and the tensions λ1(φ) and λ2(φ). These are assumed to

emerge from the microscopic physics (for instance string theory) which leads to this

five-dimensional picture in a low-energy limit (that is, low-energy compared to string

scale and ten-dimensional Planck scale as well as any further compactification scales).

A moduli stabilization mechanism would be regarded as fine-tuned if one has to impose

some relationship among V (φ), λ1(φ), and λ2(φ) to achieve a static solution.

Before explaining how the solutions to (6) can be generated using (8) and (9), let us

do a quick count of parameters and constraints to show that a fine-tuning is necessary

to obtain a static solution with flat branes. There are three integration constants for

the φ equation plus the zero-energy equation in (6): they are φ(0), φ′(0), and A(0).

There is one additional parameter, namely r0, so four parameters in all. There are

four constraints coming from the two jump conditions at the two branes. Naively one

would conclude that there is no fine-tuning: four contraints on four parameters can

∗R. Myers [15] has also noted that (8) and (9) can be used to generate kink solutions, independent
of supersymmetry. In the study of RG flows in AdS/CFT he has considered an example with cubic
W (φ) which is similar to the single-brane solution which we will discuss in section 5.
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generically be solved. But A(0) is completely irrelevant because A(r) enters into the

equations of motion and the jump conditions only through its derivatives. That leaves

three parameters subject to four constraints: indeed fine-tuned. This fine-tuning is

equivalent to the fine-tuning required in a theory without scalars between the brane

tensions and the bulk cosmological constant.

We will now argue in detail that any solution of (6) can be written as a solution to

(8) and (9) with an appropriately chosen W (φ). It is necessary to choose W odd under

the Z2 symmetry, just because A′ is equal and opposite at the two points on any given

Z2 orbit away from the fixed points. With this in mind we can restrict our attention

to region a in figure 1. The jump conditions become

A′(ǫ) = −1

3
λ1(φ(0)) , φ′(ǫ) =

1

2

∂λ1

∂φ
(φ(0)) ,

A′(r0 − ǫ) =
1

3
λ2(φ(r0)) , φ′(r0 − ǫ) = −1

2

∂λ2

∂φ
(φ(r0)) .

(11)

Plugging these relations into the zero energy condition, we learn that

1

8

(

∂λ1

∂φ

)2

− 1

3
λ2

1 = V at φ = φ1 ,

1

8

(

∂λ2

∂φ

)2

− 1

3
λ2

2 = V at φ = φ2 ,

(12)

where φ1 and φ2 are the values attained by φ(r) at r = 0 and r = r0, respectively.

Notice these constraints have the same form as (8) , with the λα playing the role of W .

For generic V and λα, the equations (12) admit only a discrete set of solutions for φ1

and φ2. Given the physical input into the model, namely V (φ), λ1(φ), and λ2(φ), the

discrete values φ1, φ2 are the points in field space where flat branes can be consistently

inserted.

Let us now integrate the equation (8) and fix the single integration constant by

requiring W (φ1) = λ1(φ1). Because of (8) we have ∂W
∂φ

(φ1) = ±∂λ1

∂φ
(φ1), and the plus

sign is guaranteed if we assume that ∂W (φ)
∂φ

has the same sign as ∂λ1

∂φ
(φ1) in the vicinity

of φ = φ1. The solution (A′(r), φ(r)) of (9) subject to φ(0) = φ1 must coincide with the

solution (A′(r), φ(r)) of (6) subject to φ(0) = φ1 and φ′(0) = 1
2

∂λ1

∂φ
(φ1), because both

of them satisfy the same boundary data. This is enough to conclude that locally every

solution of (6) can be generated by solving (8) and (9). Global issues of the existence

and uniqueness of solutions to (8) and (9) are best addressed with a specific model in

hand. We will return to these points in section 4.

Besides providing an efficient method for generating solutions to (6), the use of (8)

and (9) also allows us to characterize in a simple way how λ1(φ), λ2(φ), and V (φ)

have to be fine-tuned. Having first fixed W (φ) in the manner described in the previous

8



Φ1Φ2

Φ

Λ1HΦL

-Λ2HΦL

WHΦL

VHΦL

Figure 2: Sample W (solid line), V (dotted line), λ1 and λ2 (grey lines) as functions of
φ. By adjusting the integration constant of (8) one can arrange for λ1 to be tangent
to W , but then for λ2 also to be tangent amounts to a fine-tuning.

paragraph, and then integrated (9) to obtain φ(r), we can determine the position

of the second brane by φ(r0) = φ2. There are no parameters left to fix (except for

the trivial additive constant on A), but we must still demand W (φ2) = −λ2(φ2) and
∂W
∂φ

(φ2) = −∂λ2

∂φ
(φ2) in order that the jump conditions at the second brane be satisfied.

Because of the defining property (12) of φ2, either one of these last two equations

implies the other up to a sign. Thus there is precisely one fine-tuning, as expected from

the earlier parameter count. The advantage of introducing W is that the fine-tuning

condition can be expressed in terms of the solutions of the single ordinary differential

equation (8) (see figure 2). It should be kept in mind that we are working strictly at

the classical level. If we tune parameters so that W (φ) and −λ2(φ) are tangent, then

loop corrections to λα(φ) and V (φ) must be expected to spoil the relation.

It is true that if this fine-tuning can be achieved, there is no cosmological constant

allowed in the four-dimensional action. A quick way to see this is to show that the

lagrangian is a total derivative with respect to r when (8), (9), and (10) are satisfied:

then the four-dimensional lagrangian must vanish.† Let us define

Ŵ (φ, r) =







W (φ) for 0 < r < r0

− W (φ) for r0 < r < 2r0 ,
(13)

†Since we assumed 3 + 1-dimensional Poincaré invariance in our ansatz from the start, zero four-
dimensional cosmological constant was guaranteed. The following computation is therefore only a
consistency check.
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which is appropriately Z2 odd. Then it is straightforward to show that

L =
√

| det gµν |
[

−1

4
R +

1

2
(∂φ)2 − V (φ)

]

−
∑

α

√

| det gij|λα(φ)δ(r − rα)

= e4A



3
(

A′ +
1

3
Ŵ
)2

− 1

2

(

φ′ − 1

2

∂Ŵ

∂φ

)2

+
1

2

∂Ŵ

∂r
−
∑

α

λαδ(r − rα)





− d

dr

(

e4A
[

2A′ +
1

2
Ŵ
])

.

(14)

In (14) we have used (8) (with W replaced by Ŵ ) but not (9). If the perfect squares

in (14) vanish, then we have

1

2

∂Ŵ

∂r
= W (φ1)δ(r − r1) − W (φ2)δ(r − r2) =

∑

α

λαδ(r − rα) , (15)

where in the second equality we have used the jump conditions, (10). In comparing

with (13), recall that by convention r1 = 0 and r2 = r0.

The form of (14) makes it clear that (9) are indeed a sort of BPS condition for solu-

tions of (6). However, because the perfect squares in (14) come in with opposite signs,

there is no obvious analog of a Bogomolnyi bound. Another important implication of

(14) is that the total action of any configuration of flat branes vanishes. This is even

true of non-periodic arrays provided A → −∞ as r → ±∞.

3.2 Non-zero cosmological constant

The fine-tuning to achieve zero cosmological constant was already commented on in

[3]. The purpose of this section is show that if the fine-tuning is imperfect, then there

are solutions without rolling moduli but where the metric on the branes is de Sitter

space or anti-de Sitter space.

Most of the analysis is similar to section 3.1, so we will be brief. The metric ansatz

is

ds2 = e2A(r)ḡijdxidxj − dr2 , (16)

where ḡij is the metric of four-dimensional de Sitter or anti-de Sitter spacetime: R̄ij =

−3Λ̄ḡij, where Λ̄ is the four-dimensional cosmological constant (positive for de Sitter

spacetime and negative for anti-de Sitter spacetime). Explicitly, we may write the

four-dimensional metrics as

dS4 : ḡijdxidxj = dt2 − e2
√

Λ̄t(dx2
1 + dx2

2 + dx2
3)

AdS4 : ḡijdxidxj = e−2
√

−Λ̄x3(dt2 − dx2
1 − dx2

2) − dx2
3 .

(17)
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The five-dimensional Ricci tensor and the equations of motion are

Rij = e2A
(

4A′2 + A′′ − 3Λ̄e−2A
)

ḡij , R55 = −4A′2 − 4A′′ ,

φ′′ + 4A′φ′ =
∂V (φ)

∂φ
+
∑

α

∂λα(φ)

∂φ
δ(r − rα) ,

A′′ + Λ̄e−2A = −2

3
φ′2 − 2

3

∑

α

λα(φ)δ(r − rα) ,

A′2 − Λ̄e−2A = −1

3
V (φ) +

1

6
φ′2 .

(18)

The jump conditions (7) are unchanged. Neither A(r) nor |Λ̄| can be determined

unambiguously from the equations of motion because they enter only in the com-

bination A(r) − 1
2
ln |Λ̄|. We will see that this combination is what determines the

four-dimensional cosmological constant in four-dimensional Planck units. We could

adjust the additive constant on A, if we so desired, to set Λ̄ = 1 for de Sitter space-

time or Λ̄ = −1 for anti-de Sitter spactimee. The important point is not to count the

magnitude of Λ̄ as an adjustable parameter separate from the additive constant on A.

Already from (18) we can see why there should be a solution with no fine-tuning

of parameters. The φ equation and the zero-energy condition together have three

integration constants, and there is also the brane separation r0. Because A itself rather

than just its derivatives enters into the equations (18), the additive constant on A is no

longer trivial. As before there are four boundary conditions (two jump conditions at

each brane), so generically one expects a (locally) unique solution for any given V (φ),

λ1(φ) and λ2(φ).

The solution in the bulk (more precisely, in region A of figure 1) can still be obtained

as a solution of a slightly modified system of first order equations,‡

A′ = −1

3
W γ(r) , (19)

φ′ =
1

2γ(r)

∂W

∂φ
,

V =
1

8γ(r)2

(

∂W

∂φ

)2

− 1

3
W 2 ,

which differ from (9) just by inclusion of the factor

γ(r) ≡

√

√

√

√1 +
9Λ̄

W (r)2
e−2A(r) . (20)

‡We are grateful to Martin Gremm and Lisa Randall for pointing out to us an error in an earlier
version concerning these first order equations.

11



Note that this completely changes the character of the problem. In the case of zero

cosmological constant, the first order equations (8), (9) allowed us to find solutions for

given V directly by first integrating (8) to solve for W (φ), then using the equations (9)

to solve consecutively for φ(r) and A(r). We now see that if we do not fine-tune the

cosmological constant to zero, we obtain a complicated non-linear first order system of

differential equations for 3 functions W (r), φ(r) and A(r), now viewed as functions of

a single independent variable r, which we cannot simply solve for in sequence. V (φ)

is still to be considered the information that is put in from the Lagrangian, but its

relationship with W can no longer be isolated from the rest of the system. Derivatives

with respect to φ should now be thought of as

∂

∂φ
=

1

φ′(r)

∂

∂r
. (21)

To make this point more transparent, it is useful to rewrite the system (19) as an

autonomous system, that is in the form

A′ = f(A, W, φ), φ′ = g(A, W, φ), W ′ = h(A, W, φ) , (22)

where

f(A, W, φ) = −1

3
γ(r) W (r) , (23)

g(A, W, φ) =

√

2 V (φ(r)) +
2

3
W (r)2 ,

h(A, W, φ) = 2γ(r)
(

2 V (φ(r) +
2

3
W (r)2

)

.

While for a generic V (φ) this system will still be hard to solve, it is very well suited

for generating examples where V (φ) is determined at the end. For any given shape of

the warp factor A(r) one desires, one can find a potential that supports such a solution

by the following procedure: pick A(r), calculate A′(r), solve A′ = −W
3
γ algebraically

for W (r), and use φ′ =
√

W ′

2γ
to obtain φ(r). V (r) can now simply be determined by

plugging in W and φ, and after inverting φ(r) to r(φ) one obtains the desired V (φ).

This procedure for example can be used to generate fat branes (as we will discuss them

in later chapters for the Minkowski case) with an AdS or dS worldvolume. Note that

this simple technique for generating examples is not possible in the obvious first order

system one could write down simply by introducing one new variable y with the one

new defining equation y = φ′, as it is a standard technique for converting a system of

higher order equations into a first order system.
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Assuming (19), the jump conditions reduce to

λ1(φ(0)) = W (r = 0)γ(0),
∂λ1

∂φ
(φ(0)) =

1

γ(0)

∂W

∂φ

∣

∣

∣

∣

∣

φ(0)

,

λ2(φ(r0)) = W (r = r0)γ(r0),
∂λ2

∂φ
(φ(r0)) =

1

γ(r0)

∂W

∂φ

∣

∣

∣

∣

∣

φ(r0)

.

(24)

If for a given V (φ) we fix A(0) arbitrarily, then the 5 other initial conditions, φ(0),

A′(0), W (0), W ′(0), φ(0), φ′(0) can be determined up to discrete choices, using the

3 equations from (19) evaluated at r = 0 and the 2 from the first line of (24). Then

(22) can be solved unambiguously for φ(r), W (r) and A(r). r0 is fixed by the last

equality in (19). One is left with one condition, namely the third equality in (24). It

is a (very complicated) constraint on A(0), which generically will have only discretely

many solutions. The point is that we wind up with exactly as many parameters as

constraints, so it doesn’t take any fine-tuning to get a solution.

There does not seem to be a simple way to express the action as a sum (or difference)

of squares plus total derivatives, in analogy to (14). However it is straightforward to

use the equations of motion to show that

L =
√

| det gµν |
[

−1

4
R +

1

2
(∂φ)2 − V (φ)

]

−
∑

α

√

| det gij|λα(φ)δ(r − rα)

=
√

| det ḡij|
[

3

2
e2AΛ̄ − d

dr

(

1

2
e4AA′

)

]

.

(25)

When L is integrated over the S1 parametrized by r, it must for consistency reduce to

the four-dimensional lagrangian,

L̄ =
1

4πG4

√

| det ḡij |
[

−1

4
R̄ − 3

2
Λ̄
]

, (26)

evaluated on de Sitter or anti-de Sitter spacetime, where R̄ij = −3Λ̄ḡij, with Λ̄ positive

or negative, respectively. Comparison yields the relation

1

G4

= 4π
∫

dr e2A , (27)

where as usual the r integration is over the whole of S1. For consistency with observa-

tion we must demand the bound

1

G4|Λ̄|
>∼
(

ℓHubble

ℓ4d Planck

)2

≈ 10120 . (28)

In view of (27) this translates to

4π
∫

dr e2(A(r)− 1

2
ln |Λ̄|) >∼ 10120 . (29)
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The function A(r) − 1
2
ln |Λ̄| is fixed by (19) and (24) once V (φ), λ1(φ), and λ2(φ) are

specified. A dramatic fine-tuning in these quantities is required to achieve (29).

In general it is difficult to obtain solutions to (18) or (19) in closed form. We can

however give a complete treatment of the case where there is no scalar and W is just a

constant (namely the square root of the bulk cosmological constant); see also [16, 17].

In this case the only equations we have to solve are the first equations in each line of

(19) and (24). The solutions can be expressed as follows:

dS4 : Λ̄ > 0

eA =
√

Λ̄L sinh
r1 − r

L
, λ1 =

3

L
coth

r1

L
, λ2 = − 3

L
coth

r1 − r0

L
AdS4 : Λ̄ < 0

eA =
√

−Λ̄L cosh
r1 − r

L
, λ1 =

3

L
tanh

r1

L
, λ2 = − 3

L
tanh

r1 − r0

L

(30)

In the dS4 case it is necessary to restrict r0 < r1. The main point which (30) demon-

strates is the following. Suppose one starts with any fixed negative bulk cosmological

constant, −4/L2, and arbitrary but specified λ1 and λ2, subject only to the constraint

that if one of the λα exceeds 3/L in magnitude, then the other must also exceed 3/L

in magnitude and be of the opposite sign. Then there is a unique solution to (30) up

to the usual ambiguity between the additive constant on A and the magnitude of Λ̄.

Both r1 and r0 will be fixed in this solution, and so will the combination A − 1
2
ln |Λ̄|

which determines the four-dimensional cosmological constant in Planck units. The only

exception is when λ1 = −λ2 = 3
L
: in this case the branes are flat, r1 is a meaningless

additive constant on A, and the brane separation r0 is not fixed.

The bulk solutions in (30) have vanishing Weyl tensor, hence they are locally AdS5.

All we have found, then, is an embedding of AdS4 and dS4 as codimension one hy-

persurfaces in AdS5. To verify this one can find an explicit change of variables which

brings the bulk metric into the standard form

ds2 = e−2r̃/L(dt̃2 − dx̃2
1 − dx̃2

2 − dx̃2
3) − dr̃2 . (31)

If we demand that the map from untilded to tilded coordinates be orientation preserv-

ing, then the natural choice is

dS4 : t̃ = −
√

Λ̄ coth
r1 − r

L
e−

√
Λ̄t , r̃ = −

√
Λ̄Lt − L log sinh

r1 − r

L
,

x̃1 = x1 , x̃2 = x2 , x̃3 = x3

AdS4 : x̃3 =
√

−Λ̄ tanh
r1 − r

L
e
√

−Λ̄x3 , r̃ =
√

−Λ̄Lx3 − L log cosh
r1 − r

L
,

t̃ = t , x̃1 = x1 , x̃2 = x2 .

(32)
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Let us now focus on the dS4 case with one positive and one negative tension brane at

the ends of the bulk. A solution of the form (30) maps to a strip of the t̃ − r̃ plane

between two curves of the form t̃ = −cαer̃/L. Here c1 and c2 are positive constants.

Because ∂/∂t̃ is a Killing vector of the bulk geometry, we can trivially obtain a broader

class of solutions which have as their boundaries curves of the form t̃ − t̃α = −cαer̃/L,

where now t̃1 and t̃2 are additional constants, only one of which can be set to 0 through

diffeomorphism freedom. In these solutions the proper distance between the branes is

not constant. In fact, generically the branes intersect at some point, or they intersect

the boundary of AdS5 at different points—or both. In the latter case the graviton

bound state ceases to exist at some finite time as measured on the negative tension

brane. This reinforces the intuition that brane-world cosmology can encounter some

curious pathologies.

The strategy of displacing one boundary by some distance along the flow of a Killing

vector of AdS5 can also be applied to flat branes. For instance, one could shift the

negative tension brane forward along the global time of AdS5 to obtain a new solution

where the proper distance between the branes is non-constant. The positive and neg-

ative tension branes would then intersect at some time in the distant past, and the

positive tension brane would again retreat to the true boundary of AdS5 at a finite

time as measured on the negative tension brane. This is a catastrophe since it means

that gravity would cease altogether in four dimensions: the four-dimensional Planck

length would vanish.

4 An explicit model

It is useful now to turn to an explicit example with non-trivial dynamics for a single

scalar. For simplicity, we choose quadratic W (φ), λ1(φ), and λ2(φ) which are tangent

to one another in the manner illustrated in figure 2. Explicitly,

W (φ) =
3

L
− bφ2 ,

V (φ) = − 3

L2
+

(

b2

2
+

2b

L

)

φ2 − b2φ4

3
,

λ1(φ) = W (φ1) + W ′(φ1)(φ − φ1) + γ1(φ − φ1)
2 ,

λ2(φ) = −W (φ2) − W ′(φ2)(φ − φ2) + γ2(φ − φ2)
2 .

(33)

We stress that the physical properties of the model are summarized by V (φ) and the

λα(φ): in the absence of supersymmetry, there is no preferred choice of W (φ). In

section 4.2 we will analyze the different possible W (φ) that lead to the particular

quartic V (φ) exhibited in (33). Until then we will just assume that the particular

W (φ) that is tangent to λ1(φ) happens to be the quadratic one shown in (33). We
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make this assumption in order to obtain solutions in closed form. The only physical

fine-tuning is the requirement that −λ2(φ) is also tangent to W (φ). The quantities

L, b, φ1, φ2, γ1, and γ2 are parameters of the various potentials, and no dimensionless

ratio of them should be large if we want to preserve naturalness.

We will always assume that γ1 and γ2 are positive so that the energetics of λ1 and

λ2 tend to stabilize the positions of the branes in field space. We will usually assume

b > 0 as well. It should be noted that V (φ) is unbounded below, as is common and

without pathology in AdS supergravity.

4.1 Analytical calculations

It is trivial to solve the first order equations (9) in the model (33) to obtain

φ(r) = φ1 e−br ,

A(r) = a0 −
r

L
− 1

6
φ2

1 e−2br .
(34)

The brane spacing is determined by the condition br0 = ln(φ1/φ2). The difference

A(0)−A(r0) gives the number of e-foldings in discussions [1, 9] of the gauge hierarchy

problem,§ and one easily obtains

A(0) − A(r0) =
1

bL
ln

φ1

φ2
− 1

6
(φ2

1 − φ2
2) . (35)

Phenomenologically one wants

A(0) − A(r0) ≈ ln
MPlanck

Melectroweak

≈ 37 . (36)

If b > 0, then φ2
1 − φ2

2 > 0, and only first term can contribute to the hierarchy. This is

conceivable if bL is fairly small: for instance, if φ1/φ2 = e then one needs bL ≈ 1/37.

If b < 0, then both terms in (35) could contribute to the hierarchy. One could for

instance obtain an acceptable hierarchy by taking bL = 1, φ1 = 1, and φ2 = 15.

The treatment of [3] ignored back-reaction of the scalar profile on the geometry.

Crudely speaking this means one should drop the second term in (35) since it came

from a term proportional to the square of the scalar field in (34). More precisely, (14)

of [3] can be reproduced exactly by dropping the second term in (35) and identifying

their m2L2 with our bL in the limit of small bL. Thus the analysis of [3] was essentially

adequate for the case b > 0, where to obtain a large hierarchy one wants a bulk

geometry which is not so far from AdS5 that the second term of (35) is large. However

§We assume that the four-dimensional and five-dimensional Planck scales are comparable. It is
possible to relax this assumption [18] since the additive constant on A(r) is a free parameter.
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the inclusion of back-reaction becomes quite important in the b < 0 case, where a large

hierarchy can be most easily obtained via a geometry which deviates strongly from

AdS5.

Any mechanism for generating large numbers must be probed for robustness. We

may ask, once the hierarchy (36) is obtained, how much can the parameters change

and still give the same weak scale to within errors? For definiteness, let us ask what

change of parameters shifts A(0)−A(r0) by no more than 0.02: this would amount to

a shift of the weak scale by two percent, which is about the ratio of the Z width to its

mass. In the b > 0 scenario we described above, a change of φ1/φ2 by about one part

in 2000 changes the weak scale by two percent: multiplicative shifts in this ratio are

magnified by the factor 1/bL. In the b < 0 scenario, changing φ2 by about one percent

changes the weak scale by two percent. Thus (superficially at least) the b < 0 scenario

is more robust.

4.2 Numerics

We now change gears and refocus on (8). The purpose is to illustrate the problem

of selecting a superpotential W (φ) which reproduces a given potential function V (φ).

However, we shall be content to explore this question only in the model of this section,

where V (φ) is given in (33). It is convenient to rescale variables, partly to prepare for

use of the MATLAB linked program DFIELD5 [19]. We therefore define

φ =

√

3

8
t ,

V (φ) = 3 b2 U(t) , U(t) = − 1

b2L2
+
(

1 +
4

bL

)

t2

16
− t4

64
,

W (φ) = 3 b x(t) , x0(t) =
1

bL
− t2

8
.

(37)

We denote the rescaled preferred superpotential by x0(t) since we will consider other

superpotentials corresponding to the potential U(t).

In this notation (8) takes the form

(

dx

dt

)2

= x(t)2 + U(t) . (38)

There is a sign ambiguity in taking the square root which must be kept in mind, but

we will discuss only the features of the differential equation which results from the

positive root, namely

dx

dt
=

√

x2 − 1

b2L2
+
(

1 +
4

bL

)

t2

16
− t4

64
. (39)
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Figure 3: The t–x plane, showing forbidden regions.

The equation is roughly like the energy equation in the mechanics problem of a particle

in an inverted harmonic potential. As in mechanics there are forbidden regions of the

t−x plane where x2+U(t) < 0. At a boundary of this region, which would be a turning

point in a mechanics problem, the slope dx
dt

vanishes. According to the general theory

of first order differential equations there is a unique solution curve through every point

not in a forbidden region. The inequality

∣

∣

∣

∣

∣

dx

dt

∣

∣

∣

∣

∣

≤ |x| +
√

|U(t)| , (40)

shows that no solution reaches |x| = ∞ at a finite field value.

The DFIELD5 program quite rapidly provides a reasonable global and quantitative

picture of the space of solutions. The quantities of our problem depend only on the

single dimensionless parameter bL, and we set bL = 1 in our numerical work.

A large-scale plot of the t–x plane is shown in figure 3, and we see two large forbidden

regions on the left and right and a small one in the center. The inclined lines at a grid

of points are the slopes, obtained from (39), of the solution curves through each point.

The solution through (t, x) = (0, 1) is shown, and it is easy to see that it gives the

preferred superpotential x0(t) = 1 − t2/8 only for t < 0. This is related to the sign

ambiguity of the square root in (39), and it is not a difficulty for us because we are
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primarily concerned with the region t < 0 which includes the full range of the geometry

containing two branes which was discussed in the first part of this section.

Some other representative solutions are also plotted in figure 3. It is not proven, but

it appears to be the case that the only solutions which give a superpotential defined

on the full field space −∞ < t < ∞ are the curve through (t, x) = (0, 1) and its mirror

image through (t, x) = (0,−1), which is also shown in figure 3. Other solution curves

reach the boundary of the allowed region at a finite value of t in one direction, and

one can see that x′(t) vanishes but x′′(t) diverges as one approaches the boundary.

By examining an approximate form of (39) and (9) , one can show that these curves

approach the boundary at a finite value of the coordinate r. It then appears that the

solution curve reflects, and one must consider solutions of (39) with the other sign

of the square root. The scale factor A(r) is smooth at the turning point. This issue

does not affect our application, since the full brane geometry is contained in a region

without turning points.

Let’s recall the logic of our construction. The potential V (φ) and left-hand brane

tension λ1(φ) are matched at a chosen value φ = φ1. We then choose the unique

superpotential W (φ) which satisfies W (φ1) = λ1(φ1) and agrees in sign of slope with

λ′
1(φ1). Agreement in the magnitude of the slope is guaranteed by (8) and (12). We

then integrate the first order equations (9) which gives the unique solution of the

second order problem (6) with the initial conditions φ(0) = φ1, φ′(0) = λ′
1(φ1), the

latter from the jump condition (7). For consistency, it is useful to know that any other

choice of W (φ) leads to a different solution of (6), one which does not satisfy the jump

conditions. This is quite clear from figure 3, since the jump conditons. e.g. (10), are no

longer satisfied if we change solution chosen at the relevant fixed value t1 =
√

8/3φ1.

We have explored our suggested solution generating technique in only one model.

Global issues associated with the turning points do not spoil the applicability of our

method, and the method is certainly easy to use in the reverse mode where we start

with a conveniently chosen W (φ). We believe that this favorable situation is generic.

5 Smooth solutions modeling branes

So far we have been considering solutions to an action that contains explicit δ-functions

at the positions of the branes. One might wonder to what extent this approach has

already built in the answers one wants to obtain. The purpose of this section is to

present a one-parameter family of purely 5d Lagrangians for gravity coupled to a scalar,

labelled by the parameter β, whose solutions are generically smooth and asymptote to

a specific δ-brane solution of the type considered so far. For generic β, the smoothed

branes appear as domain walls interpolating between various scalar vacuua. In the
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“stiff” limit (β → ∞) the second derivative of the scalar potential goes to infinity, so

the scalar becomes very heavy and can be integrated out. The parameters entering the

scalar potential become the brane tensions and positions associated with δ-function

terms in an action of the type (1) + (3) after integrating out the scalar.

Several comments are in order. First, as mentioned before, we will not be able to

treat negative tension branes in this framework. Second, the solutions presented in this

section do not have any fields living on the brane, since the smooth solitons that in the

stiff limit become the branes do not have any zero modes. Both these obstacles can be

avoided by introducing “by hand” the δ-functions in the action, but this is precisely

what we want to avoid with the smooth formalism. In principle, the second limitation

above could be overcome by studying a more complicated smooth model which allows

for non-trivial zero modes on the brane.

Last but not least we should emphasize that even though we are considering once

more 5d gravity coupled to a scalar, this time the scalar should not be thought of as

the bulk scalar φ we studied so far, which plays the role of a modulus for the fifth

dimension. Instead it is the scalar that the branes are made of! In order to avoid

confusion we will call this auxiliary scalar ξ and reserve the symbol φ for the modulus

scalar. In the stiff limit, where the soliton approaches the array of localized δ-like

branes the fluctuations of ξ are frozen out. The bulk scalar φ has to be introduced as a

second scalar. Interactions localized on the brane, like the λ(φ) we introduced earlier,

can be mimicked by coupling the bulk scalar φ only to derivatives of ξ.

We study a five-dimensional action of the form

S =
∫

M
d4x dr

√

|detgµν

[

−1

4
R +

1

2
(∂ξ)2 − V (ξ)

]

. (41)

We will work in the first order framework and hence take V (ξ) to be given in terms of a

“superpotential” as in (8) and study solutions to the first order equations (9). We will

show that once we specify the potential appropriately, the resulting solitonic solution

describing an array of branes with tension λα at positions rα in the fifth dimension is

specified uniquely.

We are interested in the case where the scalar profile is given as a solitonic domain

wall configuration interpolating between various vacua for the scalar field, e.g. written

as

ξ(r) =
∑

α

1√
β

κα tanh(β(r − rα)), (42)

or a similar function that has the properties that

• in the “stiff” limit (β → ∞) it reduces to an array of step functions of height

∼ κα√
β
, and that
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• its first derivative is always negative and approaches a collection of δ-functions

at position rα of strength ∼ κα√
β
.

Note that latter property requires all κα to be positive, ensuring that the function ξ(r)

is invertible. This solution in the stiff limit becomes an array of branes of tension

λα =
4

3
κ2

α (43)

and only positive tensions appear.

Can we find a W (ξ) in such a way that it allows a solution of the form specified in

(42)? In order to do so, we just rewrite the first order equation for the scalar flow in

(9) as

2ξ′ =
∂W (ξ)

∂ξ
=

∂W (ξ(r))

∂r

∂r(ξ)

∂ξ
=

W ′

ξ′
(44)

W (r) = 2
∫ r

(ξ(r′)′)2 dr′. (45)

Using invertibility of ξ(r) we can re-express W (r) as W (ξ) and hence obtain a potential

V (ξ) which leads to a solution of the desired form. The one integration constant in W

corresponds to an “overall” bulk cosmological constant. It should be chosen in such

a way that A′(r) = −1
3
W (r) is positive (negative) to the left (right) of all branes.

Since A′′ is always negative, it is always possible to choose the integration constant

this way. As we will see in the next section this property is enough to ensure that there

exists a 4-dimensional graviton. Now we can turn the philosophy around and say that

once we have specified V and hence specified the action, or more precisely the bulk

cosmological constant and the cosmological constants between the various branes given

in terms of the value of V (ξ) at its minima, the first order equations then provide us

with a solution of the form (42) for ξ(r) together with the A(r). In the stiff limit this

solution approaches an array of sharply localized branes at positions rα and tensions

λα.

One should think of V (ξ) as being obtained from integrating out the microscopic

physics. One then can ask again whether there is some dynamical principle that de-

termines the parameters in V . Since we expressed W as an integral over (ξ′)2 those

parameters are the κα and the rα. Calculating the action integral of the solution as a

function of κα and rα one finds once more that it is always zero. We remain with a

serious fine-tuning problem: the underlying theory has to be arranged in such a way,

that for given λα and rα the potential has precisely the form specified by (45). In the

stiff limit all that remains of V are its values at the minima – the inter-brane cosmo-

logical constants¶ – and the fine-tuning problem reduces to the standard fine-tuning
¶The normalization in (42) was chosen in such a way, that those inter-brane cosmological constants

remain finite in the stiff limit, 1

L
jumps by 8κ

2

9
when crossing a brane.
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of the bulk cosmological constants against the brane tensions.

For example, in the case of a single brane we start with

ξ(r) =
κ√
β

tanh(βr) , (46)

leading to

ξ′(r) = κ

√
β

cosh2(βr)
, (47)

and hence

W = 2κ2
∫

(ξ′)2 dr = 2κ2
(

tanh(βr) − 1

3
tanh3(βr)

)

= 2κ
√

β(ξ − β

3κ2
ξ3) . (48)

A is simply obtained by integrating W . In the multi-brane arrays the solution becomes

slightly more complicated due to the cross-terms in (ξ′)2 but it is still analytical. One

can show that in the stiff limit all possible smoothings lead to the same brane array.

Before we end our discussion on smoothing of the singular solutions, let us comment

on how the coupling to the additional bulk scalar looks in this framework. In order to

mimic the localized interactions for the bulk scalar φ we couple it to the derivatives of

the auxiliary scalar ξ. Basically, this means that we couple a σ-model for the scalars to

gravity, where the kinetic terms of the auxiliary scalar ξ depend on the bulk scalar φ.

In the stiff limit this once more will reduce to the solutions discussed in the previous

sections.

Similar to (8) and (9) we can find a first order formalism for the general action

S =
∫

M
d4xdr

√

|detgµν |
[

−1

4
R +

1

2
GIJ∂µφJ∂µφ

I − V (φ)
]

, (49)

where GIJ is a metric on the scalar target space. Any solution to

(φI)′ =
1

2
GIJ ∂W (φ)

∂φJ
, A′ = −1

3
W (φ) , (50)

is also a solution to the full second order equations provided V is of the special form

V (φ) =
1

8
GIJ ∂W (φ)

∂φI

∂W (φ)

∂φJ
− 1

3
W (φ)2 . (51)

Choosing a two scalar model with φ1 = φ and φ2 = ξ and choosing G12 = G21 = 0,

G11 = 1 and G22(φ) to be an arbitrary function of φ we should once more be able (50)

to engineer a smooth model, this time limiting to multi-brane-array in the presence of

the bulk scalar φ with localized interactions.

A count of parameters similar to the ones in section 3.1 and 3.2 allows us to conclude

that—at least locally—any solution of the equations of motion following from (49)
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which preserves 3 + 1-dimensional Poincaré invariance can be written as a solution of

(50) for an appropriately chosen W (φ) satisfying (51). Suppose there are n scalars

involved in the action (49). Each of them satisfies a second order equation of motion.

The scale factor A satisfies a first-order zero-energy constraint analogous to the last

line of (6). So there are 2n + 1 integration constants. One of them can be absorbed

into an additive shift on r. Now, (50) leads to only n+1 integration constants since the

scalar equations are now first order. But there are also n integration constants in (51)

regarded as a partial differential equation for W (φ). Again one integration constant

can be absorbed into an additive shift on r. The point is that either way we have the

same number of integration constants, so barring non-generic phenomena and global

obstructions, the solution spaces are the same.

This is quite an interesting result in view of the AdS/CFT correspondence [20,

21, 22]. One of the main puzzles in the correspondence is how one might translate

the renormalization group (RG) equations, which are first order, into supergravity

equations, which are second order. In [14] first order equations were extracted from

the conditions for unbroken supersymmetry. These equations are suggestive of an RG

flow based on the gradient of a c-function. The c-function is W (φ), and its relation

to the conformal anomaly arises because of the equation A′ = −1
3
W : in regions where

the scalars are nearly constant and the geometry is nearly AdS5, an application of the

analysis of [23] shows that the Weyl anomaly coefficients in the conformal field theory

are proportional to the third power of the radius of AdS5, or equivalently to |W |−3.

(Thus in a sense it would be more appropriate to speak of |W |−3 as the c-function.)

In a non-supersymmetric “flow,” the c-function can still be defined [24, 14] as −3A′,

and it is possible to demonstrate A′′ ≤ 0 using only the weakest of positive energy

conditions [14]. But then the spirit of RG is lost: one wants to have a notion of

a first order flow through the space of possible theories labelled by different values

of parameters, and whatever c-function one constructs should be defined in terms of

those parameters. The construction of W indicated in (51) seems to realize this idea

explicitly.

However there are some caveats. First, W depends on n integration constants,

where as before n is the number of scalars. It seems reasonable that these integration

constants can be interpreted as specifying the state of the dual field theory, which does

not change under RG—only the Hamiltonian evolves. Second, the same phenomena of

forbidden regions and turning points that we discussed in section 4.2 occur also in the

case of several scalars. A forbidden region is a region of (W, φ) space where V (φ)+ 1
3
W 2

is negative. Barring singular behavior in GIJ , one finds that the gradient of W vanishes

at the border of these regions, so no flow can cross over. Rather, flows reflect from the

border and the subsequent flow is controlled by a different branch of W . Because of

the multi-valued nature of W , we do not regard (50) as a wholly satisfactory starting

23



point for the transcription of supergravity equations into RG equations. However it is

perhaps a step in the right direction.

6 Fluctuations around the solution

Finally we examine the equations governing fluctuations of the metric and scalar around

the classical background solutions of the equations of motion of the action (4). Our

methods are somewhat different from those in the literature. We choose an axial-

type gauge, and the resulting form of the four-dimensional graviton is particularly

simple. Transverse traceless modes in general obey the equation of a massless scalar

in the curved background, and by recasting this as the Schrödinger equation for a

supersymmetric quantum mechanics problem, we argue that there are no space-like

modes threatening stability.

We impose the “axial gauge” constraint, so named for its resemblance to A3 = 0 in

electrodynamics:

hµ5 = 0 , (52)

where µ = 0, 1, 2, 3, 5. We can then write the total metric in the form

ds2 = e2A(r)(ηij + hij) dxidxj − dr2 , (53)

where we extracted a factor e2A from the fluctuation term to simplify future equations.

Axial gauge is not a total gauge fix, as diffeomorphisms generated by a vector field

ǫi = e2A(r) ωi(x
j), ǫ5 = 0 preserve the condition (52) while transforming the fluctuations

hij as

hij(x
k, r) → hij(x

k, r) + ∂i ωj(x
k) + ∂j ωi(x

k) . (54)

Note the resemblance to four-dimensional diffeomorphisms. ‖

The Ricci tensor can be computed from the metric (53). To zeroth order in the

fluctuations we continue to have (5), while to first order we calculate (using Maple):

R
(1)
ij = e2A

(

1

2
∂2

r + 2A′∂r + A′′ + 4A′2
)

hij +
1

2
ηij e2AA′ ∂r(η

klhkl) −
1

2
hij

− 1

2
ηkl (∂i∂jhkl − ∂i∂khjl − ∂j∂khil) ,

R
(1)
55 = −1

2
(∂2

r + 2A′∂r) ηklhkl , R
(1)
j5 =

1

2
ηkl ∂r (∂khjl − ∂jhkl) ,

(55)

where = ηij∂i∂j is the flat four-dimensional Laplacian. Einstein’s equations in Ricci

‖There is a more general residual gauge invariance involving a non-vanishing ǫ5(x
k). See [25].
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form require that Rµν = T̄µν ≡ Tµν − 1
3
gµν T α

α, and we find

T̄
(1)

ij = −2

3
e2A

[(

2
∂V (φ)

∂φ
+
∑

α

∂λα(φ)

∂φ
δ(r − rα)

)

φ̃ ηij

+

(

2V (φ) +
∑

α

λα(φ)δ(r − rα)

)

hij

]

T̄
(1)

55 = 4φ′φ̃′ +
4

3

(

∂V (φ)

∂φ
+ 2

∑

α

∂λα

∂φ
δ(r − rα)

)

φ̃ , T̄
(1)

j5 = 2φ′ ∂jφ̃ .

(56)

Additionally, the equation of motion for the scalar fluctuation φ̃ is

e−2A φ̃ − φ̃′′ − 4A′φ̃′ +

(

∂2V (φ)

∂φ2
+
∑

α

∂2λ(φ)

∂2φ
δ(r − rα)

)

φ̃ =
1

2
φ′ηijh′

ij . (57)

The equation R
(1)
ij = T̄

(1)
ij further simplifies as a consequence of the zeroth-order equa-

tion of motion (6) :

A′′ + 4A′2 = −4

3
V (φ) − 2

3

∑

α

λα(φ)δ(r − rα) , (58)

to

e2A
(

1

2
∂2

r + 2A′∂r

)

hij −
1

2
hij

+
1

2
ηij e2AA′ ∂r(η

klhkl) −
1

2
ηkl (∂i∂jhkl − ∂i∂khjl − ∂j∂khil) =

− 2

3
e2A

(

2
∂V (φ)

∂φ
+
∑

α

∂λα(φ)

∂φ
δ(r − rα)

)

φ̃ ηij .

(59)

Let us now consider the transverse traceless components of hij , defined by the non-local

projection [26]:

hij =
(

1

2
(πik πjl + πil πjk) −

1

3
πij πkl

)

hkl = hij + . . . , (60)

where πij ≡ (ηij − ∂i∂j/ ) and . . . indicates nonlocal terms. The hij satisfy

∂jhij = ηij hij = 0 . (61)

We emphasize that (61) applies only to the components defined in (60) and is not a

gauge choice; it would be incompatible with (52) and the residual gauge freedom (54).

For the hij, (59) simplifies enormously. The transverse traceless projection removes

the right-hand side, and we are left with
(

∂2
r + 4A′∂r − e−2A

)

hij = 0 . (62)
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Notice that all δ-function jumps have canceled out; this is nothing but the equation

of motion for a free massless scalar in our curved background. In an AdS5 black hole

background, the spin-2 components of the graviton were also found to obey a free scalar

wave equation [27, 28].

We expect one solution of our equations to be the four-dimensional graviton. Since

it is massless in the four-dimensional sense, it must obey hij = 0. We can easily see

that such a solution to (62) is simply the r-independent plane wave

hij = Cij eipx , (63)

where p2 = 0 and Cij is a constant. Thus in this presentation the phenomenological

graviton has a very simple form.

As we will argue below, the norm of metric fluctuations is

|| h ||2 =
∫

dr e2A(r) hij h
ij

, (64)

where indices are raised with ηij. We see that the graviton mode (63) is normalizable

because the r-direction is effectively compactified in these models. The S1/Z2 geome-

tries are manifestly compact. For arrays of positive-tension branes only, the range of r

is − ∞ < r < ∞, but the norm converges if we restrict to cases where

A′ → 1/L− > 0 as r → −∞ ,

A′ → −1/L+ < 0 as r → ∞ ,
(65)

which are asymptotically anti-de Sitter geometries. In all such models, which include

the smooth configurations of section 5, there is a naturally massless four-dimensional

graviton as described above.

Having identified the four-dimensional graviton, we next turn to the question of

stability. If the equations of motion were to admit fluctuations with a space-like mo-

mentum, it would be evident that the zeroth-order solution — our classical background

— is not stable. For the transverse traceless components, we can cast the expression

(62) in the form of a supersymmetric quantum mechanics problem, where p2 plays the

role of the energy, and thus argue that p2 ≥ 0.

To accomplish this, we first need to eliminate the factor e2A multiplying the momen-

tum. We can do this by changing variables to coordinates in which the background is

conformally flat:

ds2 = e2A(z)
(

(ηij + hij) dxidxj − dz2
)

. (66)

Now (62) takes the form

(−∂2
z − 3 A′(z) ∂z + ) hij = 0 . (67)
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In terms of Hij(z) = e−ipx e3A/2 hij, this becomes

(

−∂2
z +

9

4
A′(z)2 +

3

2
A′′(z)

)

Hij(z) = p2Hij(z) . (68)

This differential operator has the same form as a Hamiltonian in quantum mechanics,

with a potential V (z) = 9
4
A′(z)2 + 3

2
A′′(z) and p2 as the energy eigenvalue. One can

easily check that it factorizes

(

(∂z +
3

2
A′(z))(−∂z +

3

2
A′(z))

)

Hij(z) = p2Hij(z) . (69)

In flat space, these terms are one another’s adjoint, and (69) can be regarded as a

factorization of the Hamiltonian into QQ. This is supersymmetric quantum mechan-

ics, and the transformed graviton wave-function is the supersymmetric ground state.

However, to complete the argument we must show that a flat-space norm is correct for

Hij(z) in our curved background.

In Lorentzian signature field theory, the norm of fluctuations is determined by the

requirement that formally conserved quantities such as the contraction T µνKν of the

stress tensor and a Killing vector of the background have convergent integral

∫

dz d3x
√

g T 0ν Kν , (70)

over a constant time 4-surface and vanishing flux through its boundary 3-surface. Stress

tensors for metric fluctuations are complicated, but in this linearized situation the stress

tensor must be covariantly conserved for all solutions of the equation of motion (62)

or (67) - (68) . Thus for the Killing vector (K0 = 0, Ki =constant, K5 = 0) of spatial

translations parallel to the domain wall, one can take the form

T 0
i = e−2A ∂0hkl ∂ih

kl
, (71)

obtained by specializing the obvious covariant expression for T 0
i to our description of

the background. (The index i takes values 1,2,3 in (71) while k, l are raised with

ηkl.) The requirement of a convergent integral for the spatial momentum carried by

the fluctuation then constrains the radial eigenfunctions Hij(z) to satisfy∗∗

∫

dz Hij H ij = finite. (72)

which is the usual Schrödinger norm for (68) (and equivalent to (64) when rephrased

in terms of hij and the radial coordinate r). Supersymmetric quantum mechanics thus

∗∗We thank the authors of [29] for pointing out that our initial discussion of the norm was incorrect.
The correct norm appears in [29] and elsewhere; see, for example [13, 30].
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ensures that there are no normalizable modes with p2 < 0. Thus we can state that there

are no transverse traceless modes with space-like momentum that might destabilize the

backgound solution.

Before concluding this section, we briefly remark on the non-transverse traceless

components of the metric fluctuation, which are coupled to the scalar by the equations

(55), (56), and (57). These coupled equations are not easy to solve, and we have not

attempted to rule out tachyonic modes of these fluctuations here.

However, it seems likely that the Boucher non-supersymmetric positive-energy the-

orem [31, 32] can be extended to include actions such as ours with potentials localized

on hypersurfaces, in which case stability would be guaranteed for our solutions, by

virtue of their satisfying the first-order equations.

Note Added

As this manuscript was nearing completion, several papers appeared [33, 34, 35, 36]

which overlap somewhat with our results. For instance, (14) was also derived in [36],

and the dS4 solution in (30) was also obtained in [33]. In [35], solutions similar to the

single domain wall of section 5 were shown to emerge from a U(1) gauged supergravity

theory.

The coupled equations relating scalar and non-transverse metric fluctuations have

recently been studied in [37]. The equations can again be reduced to the form of super-

symmetric quantum mechanics, and consequently there are no normalizable spacelike

modes. Thus our backgrounds have been shown to be entirely free from tachyonic

fluctuations.
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