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Abstract
On Minkowski spacetime, the angular momentum flux through null infinity of Maxwell fields,

computed using the stress-energy tensor, depends not only on the radiative degrees of freedom, but

also on the Coulombic parts. However, the angular momentum also can be computed using other

conserved currents associated with a Killing field, such as the Noether current and the canonical

current. The flux computed using these latter two currents are purely radiative. A priori, it is not

clear which of these is to be considered the “true” flux of angular momentum for Maxwell fields.

This situation carries over to Maxwell fields on non-dynamical, asymptotically flat spacetimes for

fluxes associated with the Lorentz symmetries in the asymptotic BMS algebra.

We investigate this question of angular momentum flux in full Einstein-Maxwell theory. Using

the prescription of Wald and Zoupas, we compute the charges associated with any BMS symmetry

on cross-sections of null infinity. The change of these charges along null infinity then provides

a flux. For Lorentz symmetries, the Maxwell fields contribute an additional term, compared to

the Wald-Zoupas charge in vacuum general relativity, to the charge on a cross-section. With this

additional term, the flux associated with Lorentz symmetries, e.g. the angular momentum flux, is

purely determined by the radiative degrees of freedom of the gravitational and Maxwell fields. In

fact, the contribution to this flux by the Maxwell fields is given by the radiative Noether current

flux and not by the stress-energy flux.
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1. INTRODUCTION

There is a surprising fact in Maxwell electromagnetism on Minkowski spacetime. While

one typically thinks of fluxes of energy, linear momentum and angular momentum radiated

away to null infinity as depending only on the radiative degrees of freedom, this is not

always true. While the flux of energy and linear momentum is completely determined by

the radiative fields, the flux of angular momentum, when calculated using the stress-energy

tensor, also depends on the Coulombic degrees of freedom [1, 2]. These Coulombic degrees

of freedom appear through an interaction term with the radiative degrees of freedom and are

only relevant if the total charge of the system is non-zero. This occurs in realistic scenarios:

for instance, all of the angular momentum radiated by a charged spinning sphere with

variable angular velocity is due to the interaction term between radiative and Coulombic

degrees of freedom [3].

However, there are other conserved currents for Maxwell fields that are also naturally as-

sociated with Killing symmetries in Minkowski spacetime: (1) Using the Lagrangian one can

define a Noether current for Maxwell fields which is the natural conserved current associated

with Killing symmetries through Noether’s theorem; (2) Similarly, using the covariant phase

space formalism, one can also define a canonical current associated with Killing symmetries.

Just like the current defined by the stress-energy tensor, each of these currents is conserved,

and can be used to define the flux of energy and linear momentum (associated with a time or

space translation Killing field) and angular momentum (associated with a rotational Killing

field). The fluxes through finite regions of null infinity defined by these conserved currents

differ by “boundary terms” on the cross-sections bounding this region. When one instead

considers the flux through all of null infinity, the difference between these currents depends

on the Coulombic part of the Maxwell fields evaluated at spacelike and timelike infinity,

which is non-vanishing in general. In particular, in the context of the electromagnetic mem-

ory [4], this difference is non-zero. Thus a priori it is not obvious which (if any) of these

currents defines the “correct” notion of energy and angular momentum flux at null infinity

for Maxwell fields on Minkowski spacetime.

In this paper we first show that the above considerations generalize to the asymptotic sym-

metries in Maxwell theory on any non-dynamical, asymptotically flat background spacetime.

In particular, one can define the fluxes through null infinity using any of the aforementioned

currents associated with the generators of the Bondi-Metzner-Sachs (BMS) algebra. We

find that the Noether and canonical currents define fluxes associated with all BMS symme-

tries, and these fluxes are completely determined by the radiative degrees of freedom of the

Maxwell fields. However, the flux associated with asymptotic Lorentz symmetries that is

defined by the stress-energy current depends also on the Coulombic part via a “boundary

term” exactly as in Minkowski spacetime. Further, none of these fluxes can be written as

the change of a charge computed purely on cross-sections of null infinity. Thus, working
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purely on null infinity none of these fluxes can be interpreted as the change in “energy” or

“angular momentum” on cross-sections of null infinity.

To investigate this issue in more detail we then consider full Einstein-Maxwell theory, with

the background metric now also considered a dynamical field. Unlike Maxwell theory on

a non-dynamical background, Einstein-Maxwell theory is diffeomorphism covariant. Thus,

we can apply the general prescription of Wald and Zoupas [5] to define charges Q (on any

cross-section of null infinity) and their fluxes F (which are the change in charges Q through

any region of null infinity) associated with the BMS symmetries at null infinity.

We show that if one takes the Wald-Zoupas charges for the BMS symmetries to be

defined by the same expression as in vacuum general relativity (say QGR, Eq. 4.26), then

the additional contribution to their fluxes due to Maxwell fields is indeed given by the

stress-energy current. Consequently, the flux of charges associated with asymptotic Lorentz

symmetries, such as angular momentum, is not purely radiative but depends also on the

Coulombic parts of the Maxwell fields. However, applying the Wald-Zoupas prescription

to the full Einstein-Maxwell theory also gives an additional contribution to the charges

themselves due to the Maxwell fields (say QEM, Eq. 4.30). The full Wald-Zoupas charge for

Einstein-Maxwell theory is then given by Q = QGR +QEM. We show that the flux F of this

full Wald-Zoupas charge across any region of null infinity is completely determined by the

radiative degrees of freedom of both the gravitational and Maxwell fields at null infinity. The

contribution of the Maxwell fields to this Wald-Zoupas flux is, in fact, given by the Noether

current and not the stress-energy current. In addition, the Wald-Zoupas flux F through all

of null infinity defines a Hamiltonian generator associated with the BMS symmetries on the

radiative phase space of Einstein-Maxwell theory at null infinity.

We further show that the additional contribution QEM vanishes for supertranslations

and does not contribute to the supermomentum charges associated with supertranslation

symmetries. In particular, the supermomentum charge is given by the usual formula QGR

as in vacuum GR, and the supermomentum flux gets an additional (purely radiative) contri-

bution from the Maxwell fields which is equal to the flux determined by the stress-energy or

Noether current (as they are equal for supertranslations). If one considers the Kerr-Newman

solution, the additional contribution QEM vanishes for Lorentz symmetries as well. However,

for non-stationary solutions of Einstein-Maxwell theory, QEM is generically non-vanishing

for Lorentz symmetries. Thus, in general, the contribution due to Maxwell fields to the

Wald-Zoupas flux of Lorentz charges, e.g. angular momentum, is not given by the flux of

stress-energy but instead by the Noether current flux.

The rest of the paper is organized as follows. In Sec. 2 we review the natural currents

of Maxwell theory associated with vector fields in a non-dynamical spacetime which are

conserved for Killing vector fields. In Sec. 2.1 we consider the limits of these currents to null

infinity for BMS vector fields, which need not be exact Killing vector fields, and define the

corresponding fluxes associated with the BMS symmetries. In Sec. 3 we consider Einstein-
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Maxwell theory, analyze its symplectic current, and review the asymptotic conditions at

null infinity. In Sec. 4 we consider the Wald-Zoupas prescription to define charges and

fluxes associated with the BMS algebra in Einstein-Maxwell theory. We review the essential

ingredients of the Wald-Zoupas prescription in Sec. 4.1 and compute the charges and fluxes

for Einstein-Maxwell theory at null infinity in Sec. 4.2. We end with Sec. 5 by discussing

our main results and their implications.

Several proofs and explicit computations are relegated to appendices. In Appendix A

we derive useful properties of the asymptotic symmetries of Einstein-Maxwell theory. Some

properties of stationary solutions in Einstein-Maxwell theory at null infinity are presented

in Appendix B. In Appendix C we collect the computations of the Maxwell contribution to

the Wald-Zoupas charge in Kerr-Newman spacetime and for a charged spinning sphere in

Minkowski spacetime.

1. Notation and conventions

Our notations and conventions are as follows: lowercase Latin indices from the beginning

of the alphabet (a, b, etc.) refer to abstract indices. Differential forms, when appearing

without indices, are in bold face. We follow the conventions of Wald [6] for the metric gab,

Riemann tensor Rabc
d, and differential forms. Contraction of vectors into the first index of

a differential form is denoted by “·”, e.g. X · θ ≡ Xcθcab for a vector field Xa and a 3-form

θ ≡ θabc.

We use the usual conformal completion definition of null infinity I with conformal factor

Ω (for a review, see [7]). For definiteness we will consider future null infinity — depending

on the conventions some of our formulae will acquire an additional sign when using past

null infinity instead. Fields in the physical spacetime are denoted with hats while the

corresponding unphysical quantities are unhatted, e.g. ĝab is the physical spacetime metric

while gab is the metric in the unphysical (conformally-completed) spacetime. The conversion

between the metrics and volume elements in the physical and unphysical spacetimes is given

by

ĝab = Ω−2gab , ĝab = Ω2gab , ε̂abcd = Ω−4εabcd. (1.1)

Let na := ∇aΩ. It can be shown that the conformal factor Ω can always be chosen so that

the Bondi condition

∇anb =̂ 0 (1.2)

is satisfied, where “=̂” denotes equality on I . Furthermore, with this choice we also have

nana = O(Ω2). (1.3)

We will work with this choice of conformal factor throughout. Let qab denote the pullback

of the unphysical metric gab to I . From Eqs. 1.2 and 1.3 it follows that qabn
b =̂ 0 and
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£nqab =̂ 0. Thus, qab defines a degenerate metric on I and a Riemannian metric on the

space of null generators (diffeomorphic to S
2) of I .

For our computations it will be convenient to define some additional structure on I as

follows. Let u be a function on I such that na∇au =̂ 1, i.e. u is a coordinate along the null

generators of I , and na∂a =̂ ∂u. Consider the foliation of I by a family of cross-sections

given by u = constant. The pullback of qab to any such cross-section S defines a Riemannian

metric on S. For such a choice of foliation, there is a unique auxilliary normal vector field

la at I such that

lala =̂ 0 , lana =̂ −1 , qabl
b =̂ 0. (1.4)

Note that this choice of auxilliary normal is parallel-transported along na, i.e. nb∇bl
a =̂ 0.1

In terms of this auxilliary normal we also have

qab =̂ gab + 2n(alb) , qab =̂ gab + 2n(alb). (1.5)

where qab is the “inverse metric” on the chosen foliation relative to la. For any va satisfying

nava =̂ lava =̂ 0 on I , we define the derivative Da on the cross-sections by

Davb := qa
cqb

d∇cvd. (1.6)

It is easily verified that Daqbc =̂ 0, i.e., Da is the metric-compatible covariant derivative on

cross-sections of I .

Let ε3 ≡ εabc be the volume element on I and ε2 ≡ εab the area element on the cross-

sections of I in our choice of foliation which we define by

εabc := ldεdabc , εab := −ncεcab . (1.7)

These are the orientations of ε3 and ε2 that are used by [5]. In our choice of foliation we

also have ε3 = −du ∧ ε2.

We also use the following terminology for the charges and fluxes associated with the sym-

metry algebra at null infinity. Quantities associated with asymptotic symmetries evaluated

as integrals over cross-sections S ∼= S
2 of null infinity will be called “charges”, while those

evaluated as an integral over a portion ∆I of null infinity bounded by two cross-sections

will be called “fluxes”. In general, “fluxes” need not be the difference of any charges on the

two bounding cross-sections, but the Wald-Zoupas fluxes (defined in Sec. 4) are the change

of the Wald-Zoupas charges. When certain conditions are satisfied the fluxes given by the

Wald-Zoupas prescription can also be considered as Hamiltonian generators on the phase

space at null infinity (see the discussion below Eq. 4.12).

1All of our results can be obtained without choosing a foliation of I and the corresponding auxilliary normal
la, but some intermediate computations become more cumbersome, see [7, 8].
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2. MAXWELL FIELDS ON A NON-DYNAMICAL BACKGROUND SPACETIME

In this section, we discuss in detail three currents that occur in the theory of Maxwell

fields associated with vector fields on a fixed, non-dynamical background spacetime: the

canonical, stress-energy and Noether currents. We show that, when the vector field is a

Killing field of the background metric, each of these currents are conserved and they differ

by “boundary” terms. Next, we carefully analyze the fluxes through I defined by each of

these currents when the vector fields are asymptotic symmetries in the BMS algebra. This

serves as a primer for the remaining part of the paper where we analyze Einstein-Maxwell

theory at I and define charges and fluxes for its asymptotic symmetries.

The dynamical field of Maxwell electrodynamics is given by a vector potential. It is

most natural to treat the vector potential as a connection on a U(1)-principal bundle over

spacetime, and perform the analysis directly on the principal bundle [9]. Since this would

need considerable additional formalism, we will instead treat the vector potential as a 1-form

Âa on spacetime which is obtained from the connection by making an (arbitrary) choice of

gauge. The Maxwell field strength 2-form F̂ab is then

F̂ab := 2∇̂[aÂb]. (2.1)

To define our currents we will consider the transformations of the vector potential under both

Maxwell gauge transformations parametrized by a function λ̂ and diffeomorphisms generated

by a vector field X̂a, which we collectively denote by ξ̂ = (X̂a, λ̂). The infinitesimal change

in the vector potential under these transformations is given by

δξ̂Âa = £X̂Âa + ∇̂aλ̂ = X̂bF̂ba + ∇̂a

(
X̂bÂb + λ̂

)
. (2.2)

Note that the vector field X̂a and the function λ̂ are independent of any choice of gauge

for the Maxwell vector potential, since they are simply vector fields and functions on the

spacetime. However, for a fixed transformation parameterized by ξ̂, its representation in

terms of a vector field X̂a and a Maxwell gauge transformation λ̂ depends on the choice of

gauge for the vector potential Âa. Let Â′
a = Âa +∇̂aΛ̂ be another vector potential related to

Âa by a gauge transformation Λ̂. For a fixed ξ̂ = (X̂a, λ̂) let the new representatives under

the gauge transformation by Λ̂ be ξ̂ = (X̂ ′a, λ̂′). Since ξ̂ is fixed, its action on the vector

potentials must be independent of the choice of gauge; that is, δξ̂Â
′
a = δξ̂Âa. Evaluating

this, we have

£X̂′Âa + ∇̂aλ̂′ + ∇̂a£X̂′Λ̂ = £X̂Âa + ∇̂aλ̂ . (2.3)

This implies that, under a change of Maxwell gauge by Λ̂, the representation of a fixed
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transformation ξ̂ = (X̂a, λ̂) = (X̂ ′a, λ̂′) changes as

X̂ ′a = X̂a , λ̂′ = λ̂−£X̂Λ̂ . (2.4)

Consequently the notion of a pure Maxwell gauge transformation ξ̂ = (X̂a = 0, λ̂) is well-

defined independently of the choice of gauge Λ̂, but a “pure diffeomorphism” ξ̂ = (X̂a, λ̂ = 0)

is not. This is analogous to the structure of the BMS algebra noted in Appendix A. Note

also that

λ̂′ + X̂ ′aÂ′
a = λ̂ + X̂aÂa (2.5)

is invariant under changes of Maxwell gauge.2

The Lagrangian 4-form of Maxwell electrodynamics is given by

LEM := ε̂4

(
− 1

16π
F̂ 2
)

, (2.6)

where F̂ 2 := ĝacĝbdF̂abF̂cd and the metric is considered to be a non-dynamical field. One

can also consider the Maxwell field coupled to a charged source current of compact sup-

port. On Minkowski spacetime such source currents are necessary to have a non-vanishing

Coulombic part of the Maxwell field. Of course, there are asymptotically flat spacetimes

which are solutions of the source-free Maxwell equations and have a non-vanishing Coulom-

bic part without introducing external sources, e.g., the Kerr-Newman spacetimes. Since we

are mostly concerned with the behavior at null infinity, a source current of compact support

does not change our main analysis. However, we assume the presence of such sources to

enrich our class of solutions so that also on Minkowski spacetime there exist Maxwell field

configurations with non-zero total charge.

Varying the Lagrangian with respect to the dynamical field Âa gives

δLEM = ε̂4

[
1

4π

(
∇̂bF̂

ba
)

δÂa −
1

4π
∇̂b

(
F̂ baδÂa

)]
, (2.7)

which yields the Maxwell equations

∇̂bF̂
ba = 0, (2.8)

2On a principal bundle, ξ̂ = (X̂a, λ̂) is a vector field on the bundle and Eq. 2.2 is the Lie derivative of the
connection with respect to ξ̂. The Lie algebra of such vector fields also has the structure of a semi-direct
sum of diffeomorphisms with the Lie ideal of Maxwell gauge transformations [9]. The invariant in Eq. 2.5 is
then the vertical part of ξ̂ on the bundle.
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as well as a “boundary term” corresponding to the symplectic potential 3-form

θEM(δÂ) ≡ − 1

4π
ε̂dabcF̂

deδÂe. (2.9)

The symplectic current 3-form is then defined as

ωEM := δ1θEM(δ2Â)− δ2θEM(δ1Â) ≡ − 1

4π
ε̂dabc

[
δ1F̂ deδ2Âe − (1↔ 2)

]
. (2.10)

From this symplectic current, we construct the canonical current for a transformation of

the vector potential (Eq. 2.2) generated by ξ̂ = (X̂a, λ̂). A priori, one may naively expect

the canonical current to involve two variations of the vector potential. However, since the

Maxwell equations are linear, the situation simplifies: Consider a one-parameter family of

vector potentials Âa(ǫ) := (1 + ǫ)Âa. This entire family satisfies the Maxwell equations

if Âa satisfies the Maxwell equations, and the variation of this family of solutions δÂa :=
d
dǫ

Âa(ǫ)|ǫ=0 is equal to the vector potential Âa. Therefore, for a given symmetry ξ̂ := (X̂a, λ̂),

where X̂a is any vector field and λ̂ is gauge, we define the canonical current as

JC[ξ̂] := ωEM(Â, δξ̂Â) ≡ ε̂dabĉ
d
C

with ̂a
C = − 1

4π

[
F̂ ab

(
£X̂Âb + ∇̂bλ̂

)
− ĝacĝbdÂb£X̂F̂cd

]
.

(2.11)

To define the stress-energy and Noether currents, we also need to vary the Maxwell

Lagrangian with respect to the metric ĝab.3 In particular, by varying the Lagrangian with

respect to the non-dynamical metric ĝab we find the Maxwell stress-energy tensor T̂ ab:

δĝLEM = ε̂4
1
2
T̂ abδĝab, (2.12)

where

T̂ ab :=
1

4π

(
F̂ acF̂ b

c − 1
4
ĝabF̂ 2

)
. (2.13)

The associated current, the stress-energy current for some vector field X̂a, is given by

JT ≡ ε̂dabĉ
d
T,

with ̂a
T(X̂) := T̂ abX̂b =

1

4π

(
F̂ acF̂bcX̂

b − 1
4
X̂aF̂ 2

)
.

(2.14)

3 Note that varying the Lagrangian with respect to ĝab is not in contradiction with our assumption of ĝab

being non-dynamical in this section — ĝab does not satisfy any equation of motion obtained by varying the
purely Maxwell Lagrangian.
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Given that its divergence is

∇̂âa
T(X̂) = T̂ ab∇̂(aX̂b), (2.15)

it is clear that ̂a
T(X̂) is conserved when X̂a is Killing.

We finally turn to the Noether current. To obtain its expression, we consider the variation

of the Maxwell Lagrangian under the transformation generated by ξ̂ = (X̂a, λ̂), where the

vector potential transforms as in Eq. 2.2 and the variation of the metric under diffeomor-

phisms is δξ̂ĝab = £X̂ ĝab (see appendix of [10]). This yields4

δξ̂LEM = £X̂LEM = dη[ξ̂], (2.16)

where the 3-form η[ξ̂] is given by

η[ξ̂] = X̂ ·LEM = − 1
16π

ε̂dabcF̂
2X̂d. (2.17)

The Noether current is then defined by (see the appendix of [10])

JN[ξ̂] := θEM(δξ̂Âa)− η[ξ̂] ≡ ε̂dabĉ
d
N,

with ̂a
N = − 1

4π
F̂ ab

[
£X̂Âb + ∇̂bλ̂

]
+

1

16π
X̂aF̂ 2.

(2.18)

Despite the fact that these three currents are clearly different, in the case where the vector

field X̂a is Killing, all these currents only differ by total derivatives and constant factors.

It can be shown quite generally that the Noether and stress-energy currents are related by

a total derivative, see the appendix of [10]. For Maxwell fields, we find by comparing the

Noether and stress-energy current that

JN[ξ̂] = −JT[X̂] + dQN[ξ̂], (2.19)

where

QN[ξ̂] ≡ − 1
8π

ε̂cdabF̂
cd
(
X̂eÂe + λ̂

)
. (2.20)

Comparing the canonical with the Noether current, one instead finds (after a lengthy but

straightforward calculation starting with Eq. 2.11) that

JC[ξ̂] = 2JN[ξ̂] + dQC[ξ̂] + KC, (2.21)

4Note that when the vector field X̂a is non-vanishing it is essential that the non-dynamical metric in the
Maxwell Lagrangian is also varied so that δ

ξ̂
LEM is a total derivative.
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where

QC[ξ̂] := − 1
8π

ε̂cdab

(
2X̂cF̂ deÂe − λ̂F̂ cd

)
(2.22)

KC := 1
2π

ε̂dabc

(
2ĝf [dF̂ e]g − 1

2
F̂ deĝfg

)
Âe∇̂(fX̂g). (2.23)

When X̂a is a Killing vector field of the background spacetime, the Noether and canonical

current differ only by a total derivative of QC[ξ̂] (up to a constant factor of two).

For any Killing vector field X̂a, these currents are all related by total derivatives, and

the fact that the stress-energy current is conserved in this case directly shows that the other

two currents are also conserved. From the discussion under Eq. 2.2, it follows that both the

stress-energy and Noether current are invariant under Maxwell gauge transformations while

the canonical current is invariant only up to boundary terms. Thus we can use any of these

currents to define a conserved quantity for Maxwell fields associated with a Killing vector

field of the background spacetime.5 For example, if the background spacetime is stationary

with a timelike Killing field t̂a, then any of the above defined currents with X̂a = t̂a integrated

over a Cauchy surface define a notion of “energy”. Similarly, for an axisymmetric background

with an axial Killing field X̂a = φ̂a, each of these currents define an “angular momentum”.

The conserved quantities defined using these currents will then differ by boundary terms on

the Cauchy surface, either at a boundary at infinity or some interior boundary like a black

hole horizon.

The most appropriate current to use depends on the problem at hand. The Noether

current is the most natural one associated with a symmetry through Noether’s theorem

(and, as we will show, is also the contribution due to the Maxwell fields to the Wald-Zoupas

flux). On the other hand, the stress-energy current is typically used for calculations of

energy and angular momentum flux, both in standard textbooks for Maxwell theory in

flat spacetimes [11, 12] and on fixed backgrounds [6] (in fact, problem 9.8 of [12] notes

that the angular momentum flux depends on more than just the radiative electromagnetic

fields!). Furthermore, for computations of “self-force” effects on charged sources due to

electromagnetic radiation the useful quantity to use is the stress-energy current, see for

instance [3, 13].

The canonical currents are associated directly to the Hamiltonian formulation where the

symplectic current provides a natural symplectic form on the phase space. These currents

also arise in the formulation of the first law of black hole mechanics [9, 10]. By general

arguments, the positivity of the canonical energy (relative to a timelike Killing field of

the background) is also directly related to the stability of the background black hole to

5Of course, one is free to define other conserved currents by simply adding exact 2-forms (i.e boundary terms)
to the three currents we have defined.
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perturbations [14, 15]. For axisymmetric Maxwell fields on a stationary (but not static) and

axisymmetric black hole spacetime in GR, it was shown in [16] that the energy evaluated

on a Cauchy surface defined by the canonical current (which, in this case, also equals the

one defined by Noether current) is in fact positive whereas the energy given by the stress-

energy tensor can be made negative. Thus, the canonical energy is the more useful quantity

in the analysis of stability of black hole spacetimes to electromagnetic perturbations. The

canonical energy is also useful to account for the “second-order” self-force effects of small test

bodies in black hole spacetimes [17]. Similarly, the symplectic current is useful for deriving

conserved currents associated with symmetries of the equations of motion which need not

arise from the action of a diffeomorphism or gauge transformation [18, 19].

1. Maxwell currents and fluxes at I

We now turn to comparing the fluxes through I constructed from the various currents

in the previous section. Hereafter we will not require that the vector field X̂a is a Killing

field, but instead require it to be an element of the asymptotic BMS symmetry algebra at

I . In order to make this comparison, we first list the asymptotic properties of the relevant

fields at null infinity.

As usual, we perform this calculation in the unphysical spacetime. The unphysical

Maxwell field tensor is given by Fab = F̂ab, and we assume that Fab extends smoothly

to I . For the vector potential, this implies that there exists a gauge in which Aa = Âa is

also smooth at I .6 Moreover, without loss of generality — that is, for all solutions of the

Maxwell equations where Fab is smooth at I — we can further restrict the gauge freedom

to the outgoing radiation gauge

naAa =̂ 0 . (2.24)

The argument is similar to the one used for imposing the Bondi condition (see for instance,

Sec. 11.1 of [6]): Let Aa be a vector potential so that naAa 6=̂ 0, and consider another vector

potential A′
a related to it by a Maxwell gauge transformation A′

a = Aa +∇aλ. Now choose

λ to be a solution of

£nλ =̂ −naAa . (2.25)

Since this is an ordinary differential equation along the generators of I , solutions to this

equation always exist. With this choice of λ we have naA′
a =̂ 0. Henceforth, we will assume

that this choice has been made for the vector potential.

6Generically, if we impose some gauge condition on Âa in the physical spacetime, e.g. Lorenz gauge, then
Aa = Âa is not guaranteed to be smooth at I in the chosen gauge, see for example the case of Kerr-Newman
spacetime in Appendix C.
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Now consider a diffeomorphism X̂a and a Maxwell gauge transformation λ̂. We show in

Appendix A that to preserve the asymptotic-flatness conditions on the spacetime, Xa = X̂a

must be smooth at I and correspond to an element of the BMS Lie algebra. The essential

conditions on Xa at I are collected in Eqs. A.9–A.11. Similarly, for the transformation of

the vector potential (Eq. 2.2) to preserve our conditions on the Maxwell field we must have

that λ = λ̂ is smooth at I and satisfies £nλ =̂ 0.

In summary, we have that

Âa = Aa , F̂ab = Fab , X̂a = Xa , λ̂ = λ. (2.26)

are all smooth at I along with the condition Eq. 2.24.

Two important quantities can be derived from the “electric field” Fabn
b at I : the first is

Ea, defined by

Ea := Fabn
b

←−−− = qa
cFcbn

b = −£nAa←−, (2.27)

with the under arrow indicating the pullback to I . The radiative degrees of freedom in

the electromagnetic field are contained in Ea (or equivalently Aa←−). The other piece of Fabn
b,

which contains non-radiative (Coulombic) information at I , is given by Re[ϕ1], defined by7

Re[ϕ1] := 1
2
Fabl

anb. (2.28)

The Maxwell equations imply that on I these two fields are related in the following way:

2£nRe[ϕ1] =̂ qab
DaEb. (2.29)

With these asymptotic conditions we now evaluate the fluxes through null infinity defined

by the canonical, Noether, and stress-energy currents for any asymptotic symmetry ξ =

(Xa, λ) as described above. Note that in this context the vector field X̂a = Xa need not be

a Killing vector field inside the physical spactime, but is required to be a BMS vector field

on I .

With our convention in Sec. 1.1 for ε3, the pullback of a 3-form J is −Ω−4nâa ε3, where

7The notation “Re[ϕ1]” comes from Newman-Penrose notation [20]. Similarly the quantity Ea corresponds
to the real and imaginary parts of ϕ2 in Newman-Penrose notation.
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Jabc = ε̂abcd̂d. The flux of the canonical current is given by

FC[ξ; ∆I ] :=
∫

∆I

JC[ξ] = −
∫

∆I

ε3 Ω−4nâa
C[ξ]

= − 1

4π

∫

∆I

ε3 qab
[
Ea(£XAb + Dbλ)−Aa£XEb − 1

2
EaAbDcY

c
]

,
(2.30)

where Y a is the “pure Lorentz part” of Xa and we have used that £Xna =̂ −1
2
(DbY

b)na (see

Eq. A.9 and the text below Eq. A.12). The flux of the Noether current is given by

FN[ξ; ∆I ] :=
∫

∆I

JN[ξ] = −
∫

∆I

ε3 Ω−4nâa
N[ξ] = − 1

4π

∫

∆I

ε3 qabEa(£XAb + Dbλ), (2.31)

where we have used that £nλ =̂ 0 (see Eq. A.15). The term proportional to F 2 in Eq. 2.18

does not contribute to the flux through I because Xana =̂ 0. Finally, the flux of the

stress-energy current is given by

FT[ξ; ∆I ] :=
∫

∆I

JT[ξ] = −
∫

∆I

ε3 Tabn
aXb = − 1

4π

∫

∆I

ε3 Ea

(
qabFbcX

c + 2Re[ϕ1]Y
a
)

.

(2.32)

From the above expressions it is apparent that all of these fluxes vanish in the absence of

electromagnetic radiation, i.e., when Ea = 0. Further, the fluxes defined by the Noether and

canonical currents depend only on the radiative modes A←−a at null infinity. However, the

stress-energy current flux also depends on the Coulombic part Re[ϕ1], as emphasized before

in [1, 2]. For supertranslations Xa ∝ na, this Coulombic term does not contribute to the flux

since Y a = 0. However, the stress-energy current flux associated with asymptotic Lorentz

symmetries, e.g. angular momentum flux, cannot be computed from just the radiative

modes.

Note that, since any BMS vector field satisfies Ω2£X ĝab =̂ 0 (see the discussion in Ap-

pendix A), the 3-form term KC in Eq. 2.21 vanishes at null infinity. Thus, from Eq. 2.21

we have on I

JN[ξ] =̂ 1
2

[JC[ξ]− dQC[ξ]] , JT[ξ] =̂ −JN[ξ] + dQN[ξ]. (2.33)

That is, all three currents evaluated on I differ by exact 3-forms even when the vector field

Xa is not Killing but an element of the BMS algebra. Therefore, the fluxes of these currents

on I can be related to each other purely by boundary terms on the cross-sections S2 and

S1 bounding the region ∆I (with S2 in the future of S1).

Let us compare the fluxes on I in more detail. Consider, first, the relation between the

13



flux of the Noether and canonical current. This satisfies

FN[ξ; ∆I ] :=
∫

∆I

JN(ξ) =
1

2
FC[ξ; ∆I ] +

1

2



∫

S2

QC[ξ]−
∫

S1

QC[ξ]


 , (2.34)

with the boundary term

∫

S

QC[ξ] = − 1

4π

∫

S

ε2 (βEaAa − 2λ Re[ϕ1]) , (2.35)

where β is as given in Eq. A.11. This expression is rather strange on first inspection, since

both FC and FN only contain radiative information by Eqs. 2.30 and 2.31, respectively, and

yet their difference appears to be a boundary term that contains non-radiative information,

in the form of λ Re[ϕ1]. This is somewhat misleading since, using the Maxwell equation

Eq. 2.29 and £nλ =̂ 0, this Coulombic contribution can be rewritten in terms of purely

radiative degrees of freedom as

1

4π

∫

S2

ε2 2λRe[ϕ1]−
1

4π

∫

S1

ε2 2λRe[ϕ1] =
1

4π

∫

∆I

ε3 qabEaDbλ . (2.36)

Next, consider the relation between the flux of the stress-energy and Noether current:

FT[ξ; ∆I ] = −FN[ξ; ∆I ]−



∫

S2

QN[ξ]−
∫

S1

QN[ξ]


 , (2.37)

with ∫

S

QN[ξ] = − 1

2π

∫

S

ε2Re[ϕ1] (Y aAa + λ) . (2.38)

Unsurprisingly, as there is non-radiative information in FT but not in FN, the boundary

term contains non-radiative information.

Finally, let us consider the fluxes through all of I . The natural boundary conditions for

the electromagnetic field in the limit u→ ±∞ are

Ea = O(1/|u|1+ǫ) , Aa←− = O(1) . (2.39)

These conditions ensure that the symplectic form obtained by integrating the symplectic

current over all of I is finite. Given that β grows at most linearly in u and Y a and λ are

independent of u (see Appendix A), we find that the fluxes differ by

FN[ξ; I ] = 1
2
FC[ξ; I ] + 1

2
[QC(S∞)−QC(S−∞)] , (2.40)

FT[ξ; I ] = −FN[ξ; I ]− [QN(S∞)−QN(S−∞)] , (2.41)
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where S∞ and S−∞ are the spheres at u = ±∞, respectively, and

QC(S) :=
1

2π

∫

S

ε2 λRe[ϕ1], (2.42)

QN(S) := − 1

2π

∫

S

ε2 Re[ϕ1](Y
aAa + λ). (2.43)

As discussed below Eq. 2.35, the difference between the canonical and Noether fluxes can also

be expressed purely in terms of the radiative degrees of freedom. However, the difference

between the Noether and stress-energy fluxes does depend on the Coulombic degrees of

freedom even when computed over all of I , except when Y a = 0 and λ = 0 (a pure

supertranslation).

We stress once more that none of these fluxes can be written as the difference of charges

evaluated on cross-sections of null infinity. Thus, on a non-dynamical background spacetime,

none of these fluxes can be considered as the change of energy or angular momentum at a

particular “time” (a cross-section of null infinity), and there is no obvious criterion to decide

which of these currents defines the flux of energy or angular momentum.

3. EINSTEIN-MAXWELL THEORY

In this section, we review the symplectic structure at I as well as the asymptotic behavior

of asymptotically flat spacetimes in Einstein-Maxwell theory. The reader familiar with this

can safely skip to the next section.

1. Symplectic current for Einstein-Maxwell theory

Following [21], the Lagrangian for Einstein-Maxwell theory is given by

L =
1

16π

(
R̂− F̂ 2

)
ε̂4. (3.1)

As in the case of Maxwell theory, our analysis is unaffected by adding additional matter

sources of compact support or sufficiently fast falloff at null infinity.

A variation of this Lagrangian with respect to the dynamical fields Φ̂ = (ĝab, Âa) gives

(raising and lowering with the background physical metric)

δL =
[
− 1

16π
(Ĝab − 8πT̂ ab)δĝab +

1

4π
∇̂bF̂

baδÂa

]
ε̂4 + dθ(δΦ̂), (3.2)

where Ĝab is the Einstein tensor of ĝab and the stress-energy tensor T̂ab is the same as in

Eq. 2.13, except that the spacetime metric is now also dynamical. The variations with

respect to the dynamical fields Φ̂ = (δĝab, δÂa) give the Einstein equations and Maxwell
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equations, respectively:

Ĝab = 8πT̂ab , ∇̂bF̂
ba = 0. (3.3)

The symplectic potential θ is given by

θ(Φ̂; δΦ̂) ≡ ε̂dabcv̂
d,

with v̂a =
1

8π

(
ĝa[bĝc]d∇̂cδĝbd − 2F̂ abδÂb

)
,

(3.4)

where the second term is the symplectic potential of electromagnetism from Eq. 2.9. The

symplectic current ω := δ1θ(δ2Φ̂)−δ2θ(δ1Φ̂) is given by the sum of three terms (see Eq. 3.12

of [21])8

ω(δ1Φ̂; δ2Φ̂) ≡ ε̂dabc

[
ŵd

GR(δ1ĝ, δ2ĝ) + ŵd
EM(δ1Â, δ2Â) + ŵd

×(δ1Φ̂, δ2Φ̂)
]
. (3.5)

The first term on the right-hand side of Eq. 3.5 is the same as the symplectic current for

general relativity in vacuum (see Eqs. 41 and 42 of [5]):

ŵa
GR(δ1ĝ, δ2ĝ) =

1

16π
P̂ abcdef

[
δ2ĝbc∇̂dδ1ĝef − (1↔ 2)

]
, (3.6)

with

P̂ abcdef = ĝaeĝfbĝcd − 1
2
ĝadĝbeĝfc − 1

2
ĝabĝcdĝef − 1

2
ĝbcĝaeĝfd + 1

2
ĝbcĝadĝef . (3.7)

Similarly, the second term is the symplectic current of electromagnetism from Eq. 2.10:

ŵa
EM(δ1Â, δ2Â) = − 1

4π
ĝacĝbd

[
δ1F̂cdδ2Âb − (1↔ 2)

]
, (3.8)

while the third “cross-term” is given by

ŵa
×(δ1Φ̂, δ2Φ̂) = − 1

4π

(
2ĝc[aF̂ b]d + 1

2
F̂ abĝcd

)
δ2Âbδ1ĝcd − (1↔ 2). (3.9)

This cross-term is unimportant for our analysis as it vanishes in the limit to I for asymp-

totically flat perturbations.

2. Asymptotic conditions and field equations at I

We now review the asymptotic behaviour of Einstein-Maxwell theory near I . We use

the standard definition of asymptotic flatness (see for instance [7]). The addition of elec-

8Note that our expressions Eqs. 3.8 and 3.9 only differ in appearance from the ones in Eq. 3.12 of [21] because
[21] use the perturbed quantity δF̂ ab while we prefer to use δF̂ab.
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tromagnetic fields does not spoil this definition, since Fab = F̂ab has a smooth extension to

I .

Using the conformal transformation relating the unphysical Ricci tensor Rab to the phys-

ical Ricci tensor R̂ab (see Appendix D of [6]), the Einstein equation Ĝab = 8πT̂ab can be

written as

Sab = −2Ω−1∇anb + Ω−2ncncgab + 8πΩ2
(
Tab − 1

3
gabg

cdTcd

)
, (3.10)

where Sab and Tab are given by

Sab := Rab − 1
6
Rgab , Tab := Ω−2T̂ab . (3.11)

For Maxwell fields we have, by Eq. 2.13 and the asymptotic conditions in Eq. 2.26,

Tab =
1

4π

(
FacFb

c − 1
4
gabF

cdFcd

)
. (3.12)

This quantity is smooth at I by the smoothness of Fab and gab.

As before, we assume that the conformal factor is chosen to satisfy the Bondi condition

Eqs. 1.2 and 1.3

∇anb =̂ 0 , nana = O(Ω2). (3.13)

Further, without any loss of generality the conformal factor Ω in a neighbourhood of I

and the unphysical metric gab|I at I may be assumed to be universal, i.e., independent of

the choice of physical metric ĝab [5, 22] (see Appendix A of [23] for details of the argument).

Now consider a physical metric perturbation δĝab. Since the conformal factor can be chosen

universally, we have

δgab = Ω2δĝab . (3.14)

Given that the unphysical metric gab|I at I is universal δgab =̂ 0, and thus there exists a

smooth tensor field τab such that

δgab = Ωτab . (3.15)

Further, imposing the Bondi condition on the perturbations, i.e. δ(∇anb) =̂ 0 we also find

(see Eqs. 51–53 of [5])

τabn
b = Ωτa (3.16)

for some smooth τa. Thus our asymptotic conditions on the metric perturbations imply that

τab := Ω−1δgab , τa := Ω−1τabn
b (3.17)

are smooth on I .

For the Maxwell field we will use the same conditions as in Sec. 2.1, that is, Aa = Âa is

smooth at I and satisfies naAa =̂ 0 (Eq. 2.24).
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4. WALD-ZOUPAS CHARGES AND FLUXES

In this section we derive the charges and fluxes associated with asymptotic symmetries in

Einstein-Maxwell theory at null infinity using the Wald-Zoupas prescription. We first review

the Wald-Zoupas procedure for obtaining charges and fluxes corresponding to asymptotic

symmetries for a general diffeomorphism covariant theory in Sec. 4.1, and then apply this

prescription to the Einstein-Maxwell case in Sec. 4.2. We show that the contribution of the

Maxwell fields to the Wald-Zoupas flux is given by the Noether current and not the stress-

energy current. Further, this flux can be determined entirely from the radiative degrees of

freedom, and the total flux over all of I acts as a Hamiltonian generator on the radiative

phase space.

1. Summary of the Wald-Zoupas prescription

The prescription of Wald and Zoupas can be applied to any local and covariant theory. We

review below the essential ingredients, emphasizing the subsequent application to Einstein-

Maxwell theory.

When the dynamical fields Φ̂ satisfy the equations of motion, and δΦ̂ satisfy the linearized

equations of motion, one can show that (see [9, 10, 24])

ω(Φ̂; δΦ̂, δξ̂Φ̂) = d
[
δQ[ξ̂]− X̂ · θ(δΦ̂)

]
(4.1)

for all symmetries ξ̂, where the 2-form Q[ξ̂] is the Noether charge associated with the sym-

metry ξ̂. In Einstein-Maxwell theory, Q[ξ̂] is given by

Q[ξ̂] ≡ − 1

16π
ε̂cdab∇̂cX̂d − 1

8π
ε̂cdabF̂

cd(X̂eÂe + λ̂) . (4.2)

The first term above is the Noether charge associated with the vector field X̂a in vacuum

general relativity (Eq. 44 [5]) and the second term is the Noether charge for electromagnetism

given in Eq. 2.20.

Now we consider Eq. 4.1 at I , rewritten in terms of the unphysical fields which are

smooth at I . Using Eqs. 2.26 and 3.17, it can be verified that the symplectic current

ω (Eq. 3.5) has a limit to I . Thus, from this point onwards, we work with the fields

and symmetries in the unphysical spacetime. Now, consider a spacelike surface Σ which

intersects I at some cross-section S. Integrating Eq. 4.1 over Σ, we then find

∫

Σ

ω(Φ; δΦ, δξΦ) =
∫

S

(
δQ[ξ]−X · θ(δΦ)

)
. (4.3)
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Since ω admits a limit to I , the integral on the left-hand side of Eq. 4.3 is always finite.

However, the 2-form integrand on the right-hand side need not have a finite limit to I in

general. Thus, the integral on the right-hand side of Eq. 4.3 should be understood as being

defined by first integrating over some 2-sphere in Σ and then taking the limit of this 2-sphere

to S [5]. This final limiting integral is independent of the way in which the limits are taken

since dω(Φ; δΦ, δξΦ) = 0.

From the above identity it would be natural to define a charge associated with the asymp-

totic symmetry ξ at S as a function Q[ξ; S] in the phase space of theory such that

δQ[ξ; S] =
∫

S

(
δQ[ξ]−X · θ(δΦ)

)
(4.4)

for all perturbations δΦ. However, in general no such charge exists since the right-hand side is

not integrable in phase space, i.e., cannot be written as δ(something) for all perturbations.

To see this suppose that the charge defined in Eq. 4.4 does exist. Then, one must have

(δ1δ2− δ2δ1)Q[ξ; S] = 0 for all backgrounds Φ and all perturbations δ1Φ, δ2Φ (satisfying the

corresponding equations of motion). However, it is straightforward to compute that

(δ1δ2 − δ2δ1)Q[ξ; S] = −
∫

S

X · ω(Φ; δ1Φ, δ2Φ) . (4.5)

Thus, a charge defined by Eq. 4.4 will exist if the right-hand side of the above equation

vanishes. This is the case in Einstein-Maxwell theory if Xa =̂ 0, i.e., for a pure asymptotic

Maxwell gauge symmetry, or if Xa is tangent to S. However in general, the right-hand side

is non-vanishing and one cannot define any charge Q[ξ; S] using Eq. 4.4.

This obstruction is resolved by the rather general prescription of Wald and Zoupas [5].

Their procedure for defining integrable charges associated with asymptotic symmetries can

be summarized as follows: let Θ(δΦ) be a symplectic potential for the pullback of ω to I ,

i.e.,

ω←−(δ1Φ, δ2Φ) = δ1Θ(δ2Φ)− δ2Θ(δ1Φ) (4.6)

for all backgrounds and all perturbations (with suitable asymptotic conditions and equations

of motion imposed). Following [5], we require that

(1) Θ be locally and covariantly constructed out of the dynamical fields Φ, δΦ, and finitely

many of their derivatives, along with any fields in the “universal background structure”

present at I .

(2) Θ be independent of any arbitrary choices made in specifying the background structure,

i.e., Θ is conformally invariant as well as invariant under Maxwell gauge transforma-

tions on I for Einstein-Maxwell theory. We also require that Θ be independent of the

choice of the auxilliary normal la and the corresponding qab used in our computations.

(3) Θ(δΦ) = 0 for any stationary background solution Φ and for all (not necessarily
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stationary) perturbations δΦ.

If such a symplectic potential Θ can be found, define Q[ξ; S] to be a function on the

phase space at I by9

δQ[ξ; S] :=
∫

S

(
δQ[ξ]−X · θ(δΦ)

)
+
∫

S

X ·Θ(δΦ) . (4.7)

It is easily checked (using Eqs. 4.4–4.6) that this expression is integrable in phase space,

i.e., (δ1δ2 − δ2δ1)Q[ξ; S] = 0. Together with some choice of reference solution Φ0 on which

Q[ξ; S] = 0 for all asymptotic symmetries ξ and all cross-sections S, Eq. 4.7 defines the

Wald-Zoupas charge Q[ξ; S] associated with the asymptotic symmetry ξ at S.

The flux of the perturbed Wald-Zoupas charge is given by (see also Eqs. 28 and 29 of [5])

δF [ξ; ∆I ] := δQ[ξ; S2]− δQ[ξ; S1] = −
∫

∆I

[
ω←−(δΦ, δξΦ) + d[X ·Θ(δΦ)]

]
. (4.8)

The last term of this equation can also be written as

d[X ·Θ(δΦ)] = £XΘ(δΦ)

= δξΘ(δΦ)

= −ω←−(δΦ, δξΦ) + δΘ(δξΦ) ,

(4.9)

where in the second line we have used the criteria that Θ is a local and covariant functional

on I and that it is invariant under Maxwell gauge transformations,10 while the third line

follows from the definition of Θ as a symplectic potential for ω←− (Eq. 4.6). Thus, the flux of

the perturbed Wald-Zoupas charge is

δF [ξ; ∆I ] = −
∫

∆I

δΘ(δξΦ). (4.10)

To get the unperturbed charge and flux from the perturbed ones we have to choose

a reference solution Φ0 on which the charges are required to vanish. Since the Θ(δΦ) is

required to vanish on stationary backgrounds we choose the reference solution Φ0 to also

be stationary. For our concrete case of Einstein-Maxwell theory, we will pick Φ0 to be

9Note that the first of these two integrals is defined by the limiting procedure described below Eq. 4.3, whereas
the second is an ordinary integral, as Θ is defined directly on I .

10In the principal bundle language, this means Θ is a gauge-invariant and horizontal 3-form on the bundle.
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Minkowski spacetime. Then, the flux of the Wald-Zoupas charge is simply

F [ξ; ∆I ] = Q[ξ; S2]−Q[ξ; S1] = −
∫

∆I

Θ(δξΦ). (4.11)

Note that from Eq. 4.8 we also have

δF [ξ; ∆I ] = −
∫

∆I

ω←−(δΦ, δξΦ) +
∫

S2

X ·Θ(δΦ)−
∫

S1

X ·Θ(δΦ). (4.12)

If the boundary terms on S2 and S1 vanish for all backgrounds Φ and all perturbations δΦ

then F [ξ; ∆I ] also defines a Hamiltonian generator (relative to the symplectic current ω←−)

on the radiative phase space on ∆I corresponding to the symmetry ξ. For general field

configurations these boundary terms do not vanish on finite cross-sections of I . However

we will show below in Einstein-Maxwell theory that when ∆I is taken to be all of null

infinity, appropriate boundary conditions at timelike and spacelike infinity (i.e, as |u| → ∞)

ensure that these boundary terms indeed vanish for our choice of Θ. Thus, our fluxes define

the Hamiltonian generators for Einstein-Maxwell theory on the phase space on all of I .

Remark 4.1 (Ambiguities in the Wald-Zoupas prescription). For a given theory, the Wald-

Zoupas prescription is not unambiguously defined. For a given Lagrangian L, the symplectic

potential θ is ambiguous up to the redefinition

θ(δΦ̂) 7→ θ(δΦ̂) + dY (δΦ̂) (4.13)

where Y (δΦ̂) is a local and covariant 2-form which is a linear functional of the perturbations

δΦ̂ and finitely many of its derivatives. This changes the symplectic current by

ω(δ1Φ̂, δ2Φ̂) 7→ ω(δ1Φ̂, δ2Φ̂) + d
[
δ1Y (δ2Φ̂)− δ2Y (δ1Φ̂)

]
. (4.14)

Note that the addition of a boundary term to the Lagrangian does not affect the symplectic

form. Even with a fixed choice of the symplectic current, the symplectic potential Θ(δΦ)

defined on null infinity (Eq. 4.6) is ambiguous up to

Θ(δΦ) 7→ Θ(δΦ) + δW (Φ) (4.15)

where W is a local and covariant 3-form on I . These ambiguities then also lead to ambigui-

ties in the Wald-Zoupas prescription for the charges and fluxes on null infinity. It was argued

by Wald and Zoupas that these ambiguities do not affect their prescription in vacuum GR

(see footnote 18 and the arguments below Eq. 73 in [5]). We hope that similar arguments

can also be made for Einstein-Maxwell theory but we do not analyze these ambiguities in

detail.
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2. Computation of the Wald-Zoupas charges and fluxes at null infinity for Einstein-

Maxwell theory

We now apply the above described prescription of Wald and Zoupas to Einstein-Maxwell

theory and compute the charges and fluxes at I . Since our main focus is on the contribution

of the Maxwell fields to the charges and fluxes, we will borrow the analysis of Wald and

Zoupas [5] for the contribution of the gravitational field.

First, we compute the pullback ω←− to I of the symplectic current in Eq. 3.5. Using the

asymptotic conditions Eqs. 2.26 and 3.17, it can be checked that the contribution from the

cross-term given by −Ω−4naŵa
× (Eq. 3.9) vanishes in the limit to I . The contribution from

the Maxwell fields is easily computed to be

ωEM←−−(δ1A, δ2A) =̂ −Ω−4naŵa
EM ε3 = − 1

4π
[δ1Eaδ2Aa − δ2Eaδ1Aa] ε3. (4.16)

The contribution from the metric perturbations is the most tedious to compute. However,

since the Tab for Maxwell fields is smooth on I , the terms proportional to the stress-energy

tensor in Eq. 3.10 vanish at I , and the computation of [5] carries over unchanged. We

therefore find (see Eq. 72 of [5])11

ωGR←−−(δ1g, δ2g) =̂ −Ω−4naŵa
GR ε3 = − 1

32π

[
δ1Nabτ

ab
2 − δ2Nabτ

ab
1

]
ε3. (4.17)

Here Nab is the News tensor on I defined by

Nab := Sab←−− ρab, (4.18)

where Sab←− is the pullback to I of Sab and ρab is the unique symmetric tensor field on I

constructed from the universal structure at I in Theorem 5 of [7]. The News tensor also

satisfies the properties

Nabn
b =̂ 0 , Nabq

ab =̂ 0. (4.19)

Thus, the pullback to I of the symplectic current of Einstein-Maxwell theory is given by

ω←− = − 1

32π

[
δ1Nabτ

ab
2 − δ2Nabτ

ab
1

]
ε3 −

1

4π
[δ1Eaδ2Aa − δ2Eaδ1Aa] ε3 . (4.20)

Note that ω←− is determined completely by the (perturbed) radiative degress of freedom.

For the Maxwell fields, it is clear that only the perturbations of Aa←− and Ea = −£nAa←− con-

tribute. For the gravitational fields, the argument is more involved. Consider the asymptotic

11As mentioned before, one can consider additional sources with compact support or sufficient falloff at I

without affecting this analysis.
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shear of the cross-sections of I defined by

σab := (qa
cqb

d − 1
2
qabq

cd)∇cld , (4.21)

which is related to the News tensor through

Nab = 2£nσab . (4.22)

Using the asymptotic conditions Eq. 3.17, the perturbation of the shear generated by the

metric perturbation δgab (with fixed la, since la can be chosen independently of the space-

time) can computed to be

δσab =̂ −1
2
(qa

cqb
d − 1

2
qabq

cd)τcd, (4.23)

that is, δσab is given by the tracefree part of τab on the cross-sections. Due to the conditions

Eq. 4.19 and that τabn
b =̂ 0 from Eq. 3.17, it is clear that only this tracefree part of τab —

equivalently, δσab — contributes to the pullback of the symplectic current. Further, from

the analysis of Ashtekar and Streubel [8], δσab is equivalent to the perturbation in the equiv-

alence class of derivatives {Da} defined on I , which are the radiative degrees of freedom

in vacuum GR. Thus, ω←− is completely determined by the perturbed radiative degrees of

freedom in Einstein-Maxwell theory. The integral of this symplectic current over all of I

(when appropriate falloff conditions are satisfied towards i0 and i+, see Eq. 4.33) reproduces

the symplectic form on the radiative phase space at null infinity used by Ashtekar and

Streubel [8].

To apply the Wald-Zoupas prescription we need to find a 3-form symplectic potential

Θ(δΦ) for ω←− given in Eq. 4.20. We choose the following (see Remark 4.1 for the ambiguities

in the choice of Θ)

Θ(δΦ) = ΘGR(δg) + ΘEM(δA),

where ΘGR(δg) = − 1

32π
Nabτ

ab ε3

ΘEM(δA) = − 1

4π
EaδAa ε3.

(4.24)

Note that ΘGR(δg) is the symplectic potential for vacuum GR given in Eq. 73 of [5]. The

above choice of Θ satisfies all the requirements listed below Eq. 4.6:

(1) The Θ in Eq. 4.24 is indeed a local and covariant functional of the background fields

Φ and the perturbed fields δΦ (see also footnote 20 of [5] for an explanation of the

locality of the News tensor).

(2) It is also invariant under conformal transformations and Maxwell gauge transforma-
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tions,12 and the choice of the auxilliary null normal la and the “inverse metric” qab.

(3) As we show in Appendix B, for stationary solutions of Einstein-Maxwell theory we

have Ea = 0 and Nab = 0 on I , and thus Θ(Φ; δΦ), as defined above, vanishes for all

perturbations δΦ whenever the background Φ is a stationary solution of the Einstein-

Maxwell equations.

Having chosen a Θ as in Eq. 4.24 the Wald-Zoupas flux F [ξ; ∆I ] associated with an

asymptotic symmetry ξ is determined by Eq. 4.11. We now want to find the corresponding

Wald-Zoupas charge Q[ξ; S] on any cross-section S of I . Note that the Wald-Zoupas charge

is determined by Eq. 4.7, along with the requirement that it vanish on some stationary

reference solution Φ0 which we take to be Minkowski spacetime. Although the right-hand

side of Eq. 4.7 can be directly computed, it is not very useful to find an expression forQ[ξ; S].

We instead proceed in the following manner: let the Wald-Zoupas charge be given by

Q[ξ; S] = QGR[X; S] +QEM[ξ; S], (4.25)

where QGR[X; S] is the expression for the charge in vacuum GR (see Eq. 4.26) and QEM[ξ; S]

is the (as yet undetermined) contribution due to the Maxwell fields. As we will show below,

in the presence of Maxwell fields, QGR[X; S] by itself does not satisfy Eq. 4.11 with Θ as in

Eq. 4.24; that is, QGR[X; S] is not the full Wald-Zoupas charge for Einstein-Maxwell theory.

Then, we will define the Maxwell contribution QEM[ξ; S] so that the total charge Eq. 4.25

does satisfy Eqs. 4.11 and 4.24, and QEM[ξ; S] vanishes in the absence of the electromagnetic

field.

In vacuum GR, the Wald-Zoupas charge for a BMS vector field Xa can be written as

follows. With our assumptions on the asymptotic conditions on the fields it follows that

Cabcd =̂ 0 (see Theorem 11 of [7]), and thus Ω−1Cabcd is smooth at I . Then QGR is given

by

QGR[ξ; S] =
1

8π

∫

S

ε2

[
−Xa(Ω−1Cabcd)lblcnd + 1

2
βσabNab + Y aσabDcσ

bc − 1
4
σabσ

ab
DcY

c
]

,

(4.26)

where we have decomposed Xa =̂ βna + Y a, with Y a tangent to the cross-sections of the

chosen foliation (see Eq. A.11). The tensor σab is the asymptotic shear of the cross-sections

defined in Eq. 4.21.

For vacuum GR, the charge expression Eq. 4.26 coincides with the charges defined by

Wald and Zoupas [5]. Showing this explicitly is a long and tedious computation, but we

argue as follows. For supertranslations, Eq. 4.26 is the same as the supermomentum defined

by Geroch [7], which is equal to the Wald-Zoupas charge (see Eq. 98 of [5]). For asymp-

totic Lorentz symmetries, it was shown in [5] that the Wald-Zoupas charge is given by the

12Note that δAa is gauge invariant since the gauge transformations are independent of the dynamical fields.

24



“linkage” charge13 found by Geroch and Winicour [22], which in turn coincides with the

above expression as shown by Winicour [26]. The expression Eq. 4.26 is also equal to the

charge found in [27], when the conformal factor is additionally chosen away from I to make

the vector field la expansion-free. It is also equal to the expression computed using Bondi

coordinates (see for instance Eq. 35 of [28]).

In vacuum GR, the flux of the charge Eq. 4.26 is given by Eq. 4.11, with ΘGR(£Xg)

on the right-hand side. However, in the presence of Maxwell fields one gets an additional

contribution to the flux of this charge through the asymptotic stress-energy tensor Tab. This

additional contribution arises through the £n of the Weyl tensor term, and using the Bianchi

identity at I we get14

QGR[X; S2]−QGR[X; S1] = −
∫

∆I

[
ΘGR(£Xg) + Tabn

aXbε3

]
. (4.27)

If one takes QGR as the definition of the charges associated with the BMS symmetries, then

the Maxwell fields only contribute to the flux through the asymptotic stress-energy tensor Tab

(see also Appendix C of [28]). As argued in Sec. 2.1 and in [1, 2], for Lorentz symmetries this

contribution to the flux is not purely radiative and depends on the Coulombic part Re[ϕ1]

of the Maxwell field. However, in the presence of Maxwell fields at I , the usual expression

Eq. 4.26 cannot be the full Wald-Zoupas charge of the theory, as it does not satisfy Eq. 4.11

with the full Θ in Eq. 4.24, which includes the Maxwell contribution ΘEM(δξA).

Our goal now is to define the Maxwell contribution QEM to the Wald-Zoupas charge such

that QGR +QEM satisfies Eq. 4.11 with the full Θ in Eq. 4.24. From Eq. 4.24 we have for

ΘEM(δξA) ∫

∆I

ΘEM(δξA) = − 1

4π

∫

∆I

ε3 qabEa(£XAb + Dbλ). (4.28)

This is precisely the flux FN[ξ; ∆I ] of the Noether current of Maxwell theory Eq. 2.31. This

relation arises because, due to our asymptotic conditions, ΘEM(δA) =̂ θ←−EM(δA), where the

right-hand side is the pullback of the symplectic potential of electromagnetism on a non-

dynamical background given in Eq. 2.9. It also follows that η[ξ]←−− =̂ 0 (see Eq. 2.17), and thus

ΘEM(δξA) is simply the pullback of the Noether current JN[ξ] for Maxwell theory. Thus,

the contribution of the Maxwell field to the flux of the Wald-Zoupas charge is in fact the

Noether current and not the stress-energy current. This flux contribution is the same as

the one obtained by Ashtekar and Streubel in Eq. 2.18 of [8]. However, there the boundary

13Note that for general supertranslations the “linkage” charges and fluxes do not equal the ones obtained from
Hamiltonian methods [8] or from the Wald-Zoupas prescription, see [25].

14In the Newman-Penrose notation, the Weyl tensor terms appearing in Eq. 4.26 are Re[ψ2] and ψ1. Their
derivatives on I along na are determined by the Bianchi identities given in Eqs. 9.10.5 and 9.10.6 of [29].
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term containing the Coulombic contribution Re[ϕ1] was dropped when converting to the

stress-energy expression in Eq. 2.19 of [8]. This is valid in their context as they considered

only source-free solutions on Minkowski spacetime (so that Re[ϕ1] necessarily vanishes);

for the more general scenario we are interested in, this boundary term is important and

differentiates the Noether and stress-energy current.

From the previous computations, we can relate this Maxwell contribution to the Wald-

Zoupas flux to the stress-energy tensor using Eqs. 2.37 and 2.38 to get

QEM[ξ; S2]−QEM[ξ; S1] = −
∫

∆I

[
ΘEM(δξA)− Tabn

aXbε3

]
, (4.29)

where we have defined

QEM[ξ; S] :=
1

2π

∫

S

ε2Re[ϕ1](λ + XaAa), (4.30)

which is essentially Eq. 2.38 and the integral of the Maxwell Noether charge Eq. 2.20 on

the cross-section S. Consequently, from Eqs. 4.27 and 4.29 it follows that Q = QGR +QEM

satisfies

F [ξ; ∆I ] = −
∫

∆I

Θ(δξΦ) = Q[ξ; S2]−Q[ξ; S1] . (4.31)

The Maxwell contribution QEM[ξ; S] = 0 when the Maxwell field Fab vanishes, and since

QGR[ξ; S] = 0 in Minkowski spacetime, the full Wald-Zoupas charge Q[ξ; S] also vanishes in

Minkowski spacetime.

In sum, the Wald-Zoupas charge for Einstein-Maxwell theory is

Q[ξ; S] = QGR[X; S] +QEM[ξ; S] (4.32)

with the individual terms given by Eqs. 4.26 and 4.30, respectively. The fluxes of the individ-

ual terms QGR and QEM depend on the stress-energy and cannot be determined purely from

the radiative modes at null infinity. However, from Eqs. 4.27 and 4.29, these contributions

cancel exactly, and so the flux of the full Wald-Zoupas charge Q can be determined from

the radiative modes alone.

As mentioned above, the flux F [ξ; I ] is a Hamiltonian generator on the full radiative

phase space of I , corresponding to the symmetry ξ. Along I , as u→ ±∞, we have

Nab = O(1/|u|1+ǫ) , Ea = O(1/|u|1+ǫ) (4.33)

for some ǫ > 0, while τab and δAa have finite limits as u→ ±∞. Note that these conditions

are preserved by the asymptotic symmetries. Further, they also ensure that the integral

over all of I of the pullback of the symplectic current (Eq. 4.20) is finite so that we have

26



a well-defined symplectic form on the radiative phase space on I . Since Xa grows at most

linearly in u, from Eq. 4.24 we have that

lim
u→±∞

X ·Θ(δΦ) = 0, (4.34)

and from Eq. 4.12

δF [ξ; I ] = −
∫

I

ω←−(δΦ, δξΦ), (4.35)

for all perturbations δΦ and all backgrounds Φ. Thus, the Wald-Zoupas flux acts as a

Hamiltonian generator of the corresponding symmetry on the radiative phase space of

Einstein-Maxwell theory on all of I .15

There are several interesting consequences of this result.

First, let us consider the behaviour of the Wald-Zoupas charges under a Maxwell gauge

transformation Aa 7→ Aa+∇aΛ with £nΛ =̂ 0, so that naAa =̂ 0 (Eq. 2.24) is preserved. The

gravitational contribution QGR is of course unaffected by this transformation. Similarly, the

electromagnetic contribution QEM (Eq. 4.30) is invariant whenever the asymptotic symmetry

ξ is either a pure Maxwell symmetry ξ = (Xa = 0, λ) or a pure supertranslation ξ =

(Xa = fna, λ). However, the charge contribution QEM[Y ; S] for a “pure Lorentz symmetry”

transforms non-trivially:

QEM[Y ; S] 7→ QEM[Y ; S] +
1

2π

∫

S

ε2 Re[ϕ1]£Y Λ . (4.36)

The second term on the right-hand side is the charge QEM[£Y Λ; S] of a pure Maxwell

symmetry £Y Λ. Thus, under a change of Maxwell gauge the electromagnetic contribution

to the charge of a Lorentz symmetry shifts by the charge of a pure Maxwell symmetry. This

is due to the fact that the action of a “pure Lorentz symmetry” ξ = (Xa = Y a, λ = 0)

is not well-defined independently of the choice of gauge for Aa. This is similar to the

transformation of the Lorentz charges under a supertranslation, and essentially arises due

to the fact that the asymptotic symmetry algebra is a semi-direct sum of the BMS algebra

with the Lie ideal of Maxwell transformations. In the usual BMS algebra for vacuum GR

there is no unique Lorentz subalgebra but instead infinitely many Lorentz subalgebras which

are related to each other by supertranslations. Similarly, in Einstein-Maxwell theory, there

is no unique action of the Lorentz algebra on the vector potential Aa at I but infinitely

many such actions of the Lorentz algebra which are all related by the asymptotic Maxwell

symmetries. Note, however, that taking into account the change of the representation of ξ in

15 If one instead defines the flux associated with a BMS symmetry by the right-hand side of Eq. 4.26, then
such a flux is not a Hamiltonian generator in Einstein-Maxwell theory.
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terms of Xa and λ, the charge QEM is invariant under gauge transformations as follows from

Eq. A.18. Essentially, under Aa 7→ Aa +∇aΛ, a “pure Lorentz symmetry” is not invariant

but transforms as

(Y a, λ = 0) 7→ (Y a,−£Y Λ). (4.37)

The transformation of the “pure Lorentz” charge Eq. 4.36 is exactly compensated by the

transformation of the “pure Lorentz” symmetry used to compute the charge.

The gravitational fields do not contribute to the Wald-Zoupas charge of a pure Maxwell

symmetry ξ = (Xa = 0, λ), which is given by

Q[λ; ∆I ] = QEM[λ; S] :=
1

2π

∫

S

ε2Re[ϕ1] λ, (4.38)

with the flux

F [λ; ∆I ] =
1

4π

∫

∆I

ε3 qabEaDbλ. (4.39)

For λ = constant the flux vanishes across any region ∆I , and the charge is proportional

to the total conserved Coulomb charge. For a general λ (that is, λ is a function on S
2) this

charge is the “soft charge” of the Maxwell fields (see [1, 30], for example).

Next, consider the charge associated with a supertranslation ξ = (Xa =̂ fna, λ = 0).

Then, the electromagnetic contribution QEM[fn; S] to the charge vanishes since naAa =̂ 0

and the supermomentum charge is given by the same expression as in vacuum GR. Similarly,

from Eq. 4.29 the Maxwell contribution to the flux of supermomentum is also

−
∫

∆I

ΘEM(δξA) = −
∫

∆I

ε3 fTabn
anb = − 1

4π

∫

∆I

ε3 fEaEa. (4.40)

Thus, the electromagnetic fields do not contribute to the supermomentum charge and con-

tribute to the supermomentum flux only through the asymptotic stress-energy tensor, which

is purely radiative for supertranslations.

However, the situation is different for charges associated with a Lorentz symmetry ξ =

(Xa =̂ Y a, λ = 0). In this case, the Maxwell fields contribute an additional term to the

Wald-Zoupas charge given by

QEM[Y ; S] :=
1

2π

∫

S

ε2 Re[ϕ1]Y
aAa. (4.41)

We show in Appendix C that this term vanishes for a Kerr-Newman black hole and thus does

not affect the usual formula for its angular momentum. However, for general non-stationary

Maxwell fields we expect that this term is non-vanishing. To illustrate this, we also consider

a spinning charged sphere in Minkowski spacetime [3]. The time-dependent dipole moment
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of such a charge distribution contributes non-trivially to QEM, and thus to the angular

momentum charge. A similar contribution to the angular momentum due to Maxwell fields

is also present at spatial infinity in stationary-axisymmetric spacetimes [9, 31, 32]. Thus, the

Maxwell contribution in Eq. 4.41 would also be relevant to show that the Lorentz charges

defined on future null infinity coincide with those defined at spatial infinity and at past null

infinity, as conjectured in [33].

5. DISCUSSION

We analyzed the fluxes of Maxwell fields associated with the asymptotic symmetries at

null infinity in any asymptotically flat spacetime. We first considered Maxwell theory in a

non-dynamical background, defining three different currents which are naturally associated

with vector fields on the background spacetime. When the vector field is a Killing vector

field of the background spacetime, each of these currents are conserved and differ only by

boundary terms. A similar situation occurs at null infinity when the vector field need not

be a Killing vector field but an asymptotic symmetry element of the BMS algebra. In

this case, each of the three currents can be used to construct fluxes associated with the

asymptotic symmetry algebra through a given region of null infinity. While the Noether and

canonical current fluxes are completely determined by the radiative degrees of freedom of the

Maxwell fields, the flux associated with the asymptotic Lorentz symmetries defined by the

stress-energy current also depends on the Coulombic part of the Maxwell field. Thus, if the

stress-energy flux for a rotational symmetry is interpreted as the flux of angular momentum

through null infinity, then it cannot be determined from the radiative degrees of freedom

alone [1, 2]. Further, none of these fluxes can be considered as the difference of charges

evaluated on cross-sections of null infinity, as on a non-dynamical background spacetime,

there is, in general, no notion of an energy or angular momentum of the Maxwell fields at

a particular “time” defined by a cross-section of null infinity. Therefore, there is no obvious

way to decide which of these currents defines the flux of energy or angular momentum.

To clarify this, we coupled electromagnetism to general relativity and considered the

full Einstein-Maxwell theory at null infinity. Now the theory is diffeomorphism invariant

and there exists charges whose differences are given by fluxes. Specifically, the general

prescription of Wald and Zoupas [5] defines, for a given asymptotic symmetry, both the

charge on a cross-section of I and the flux, which represents the change in this charge.

If one assumes the charge expression for vacuum GR to be the definition of the charge

in Einstein-Maxwell theory as well (see Eq. 4.26), then the additional term that Maxwell

fields contribute to its flux is the stress-energy flux (Eq. 4.27). As in the case with a non-

dynamical metric, this contribution depends on the Coulombic part of the Maxwell field for

asymptotic Lorentz symmetries. However, the full Wald-Zoupas charge for Einstein-Maxwell
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theory contains an additional contribution to the charge due to the Maxwell fields (Eq. 4.30).

This additional contribution vanishes for asymptotic supertranslations. It also vanishes for

Lorentz symmetries in the Kerr-Newman spacetime. In general, however, for non-stationary

Maxwell fields, this additional contribution is non-zero. The flux of the full Wald-Zoupas

charge in Einstein-Maxwell theory with this additional contribution from Maxwell fields is

determined by the radiative fields alone. The full Wald-Zoupas charge naturally absorbs

the Coulombic information contained in the stress-energy flux, and so the contribution of

the Maxwell fields to the Wald-Zoupas flux is determined by the Noether current flux and

depends only on the radiative fields on I .

In addition, we showed, using the standard fall-off conditions for the electromagnetic and

gravitational fields near i0 and i+, that the Wald-Zoupas flux also defines a Hamiltonian

generator associated with the asymptotic symmetries on all of null infinity.

A similar analysis can also be carried out for other matter fields. For GR minimally

coupled to a massless Klein-Gordon field or a conformally-coupled scalar field, the essential

points have already been discussed by Wald and Zoupas in Sec. VI of [5]. For such fields,

the Wald-Zoupas charge is given by the same expression as in vacuum GR (Eq. 4.26) and

the scalar fields only contribute to the flux through the stress-energy tensor. However, for

Einstein-Yang-Mills theory we expect that there is an additional contribution to the Wald-

Zoupas charge similar to the case of Maxwell fields considered here. For general theories, it

should not be expected that the matter contribution to the charge is the Noether charge or

that the contribution to the flux is the Noether current. For instance, this expectation is

already false in vacuum GR, where the Wald-Zoupas charge is, in general, not given by the

Noether charge (i.e., the Komar formula); see the discussion in [22, 25].

As noted before, a similar additional contribution to the angular momentum due to

Maxwell fields is also present at spatial infinity in stationary, axisymmetric spacetimes

[9, 31, 32]. Thus, we expect that the Maxwell contribution in Eq. 4.41 would also be rel-

evant to show that the Lorentz charges defined on future null infinity coincide with those

defined at spatial infinity and at past null infinity, as conjectured in [33].

Since the Wald-Zoupas flux is purely radiative and also the Hamiltonian generator on the

radiative phase space of Einstein-Maxwell theory, it can also be quantized using the asymp-

totic quantization methods in [30].

The Wald-Zoupas prescription can also be applied to finite null surfaces in vacuum GR

[34]. For Einstein-Maxwell theory at finite null surfaces, we expect that there is a similar

contribution to the charges and fluxes associated with finite null boundary symmetries con-

sidered in [34] that arises from the Maxwell fields. Such an analysis could also be useful in

deriving conservation laws in Einstein-Maxwell theory through local regions bounded by a

causal diamond similar to those in vacuum GR [35].
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Appendix A: Asymptotic symmetries of Einstein-Maxwell theory at null infinity

In this appendix, we show how the asymptotic symmetries of Einstein-Maxwell theory

can be derived from the asymptotic conditions on the gravitational and Maxwell fields at

null infinity. We first focus on the asymptotic symmetries of the gravitational field, before we

include the symmetry transformations of the Maxwell vector potential. Similar arguments

for vacuum general relativity were also presented in [23].

Given a vector field X̂a = Xa generating an infinitesimal diffeomorphism £X ĝab in the

physical spacetime, what are the conditions on Xa for it to be an asymptotic symmetry

vector field? The vector field Xa needs to extend smoothly to I to preserve the smooth

differential structure there, and the infinitesimal diffeomorphisms generated by Xa need

to preserve the asymptotic flatness conditions on the unphysical metric perturbations. To

make this concrete, consider any physical metric perturbation δX ĝab = £X̂ ĝab generated by

a diffeomorphism. The corresponding unphysical metric perturbation is given by

δXgab = Ω2£X ĝab = £Xgab − 2Ω−1ncX
cgab . (A.1)

Since δXgab has to be smooth at I , we can immediately conclude that naXa =̂ 0. In other

words, Xa is tangent to I . Defining the function α(X) := Ω−1naXa, which extends smoothly

to I , we can write the above equation as

δXgab = £Xgab − 2α(X)gab . (A.2)

For the perturbation δXgab to preserve the asymptotic flatness conditions in Eq. 3.17 and

the Bondi condition in Eq. 1.2, we require that

δXgab =̂ 0 and nanbδXgab = O(Ω2) . (A.3)

The first condition yields

£Xgab =̂ 2α(X)gab . (A.4)
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Further, contracting Eq. A.2 with nb gives

nbδXgab = nb∇bXa −Xb∇bna − α(X)na + Ω∇aα(X) , (A.5)

where we have used that the twist of na vanishes, since na is the gradient of the conformal

factor Ω. Since the left-hand side must vanish at I , we have

nbδXgab =̂ 0 =⇒ £Xna =̂ −α(X)n
a . (A.6)

Contracting Eq. A.5 once more with na, we find that

nanbδXgab = O(Ω2) =⇒ £nα(X) =̂ 0 , (A.7)

where we used nana = O(Ω2) (see Eq. 1.3, which followed directly from the Bondi condition

in Eq. 1.2). Finally, taking the pullback of Eq. A.4 to I , we find

£Xqab =̂ 2α(X)qab . (A.8)

Hence, the asymptotic symmetries on I are generated by vector fields Xa tangent to I

satisfying

£Xna =̂ −α(X)n
a , (A.9a)

£Xqab =̂ 2α(X)qab , (A.9b)

where the function α(X) is smooth and £nα(X) =̂ 0 on I . These conditions are the standard

ones defining the BMS algebra b [7, 8]. When working solely on I , the function α(X) can

be interpreted as the infinitesimal conformal transformation of qab induced by Xa|I . If Xa

is given in a neighborhood of I , α(X) can also be computed using

α(X) =̂ Ω−1naXa =̂ 1
4
∇aXa , (A.10)

where the second equality follows from gabδXgab =̂ 0.

To make these conditions more concrete, let u be an affine parameter along the null

geodesics of na on I such that na∇au =̂ 1. Then any BMS vector field can be written as

Xa =̂ βna + Y a, with β =̂ f + 1
2
(u− u0)DaY a, (A.11)

and

£nf =̂ £nY a =̂ 0 , 2D(aYb) =̂ qabDcY
c , (A.12)

where Y a is tangent to the u = constant cross-sections of I , Da is the covariant derivative
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on these cross-sections compatible with qab, and u = u0 is some choice of an “origin” cross-

section. The function α(X) in Eq. A.9 is then given by 1
2
DaY a in this representation. Thus,

any BMS vector field is characterized by a smooth function f and a smooth conformal

Killing field Y a on S
2. The function f represents the infinite-dimensional subalgebra of

supertranslations while the conformal Killing field Y a represents a Lorentz subalgebra of the

full BMS Lie algebra.

Given a fixed BMS vector field Xa, its representation in terms of a supertranslation f

and a Lorentz vector field Y a depends on the choice of foliation given by u = constant. Let

u′ = u + F with £nF =̂ 0 be another choice of affine parameter along na, and let f ′ and

Y ′a be representatives of Xa in the new choice of foliation given by u′ = constant. Then it

is straightforward to verify that

f ′ =̂ f + £Y F , Y ′a =̂ Y a . (A.13)

Therefore, the notion of a pure supertranslation (Y a =̂ 0) is well-defined independently of

the choice of foliation, but a “pure Lorentz” transformation (f = 0) is not. This is ultimately

related to the fact that the BMS algebra is a semi-direct sum of the Lorentz algebra with

the Lie ideal of supertranslations.

Now consider a similar analysis of the transformations of the Maxwell vector potential

under a symmetry ξ = (Xa, λ), where Xa is a BMS vector field and λ = λ̂. The perturbation

of the Maxwell vector potential generated by an infinitesimal transformation ξ is

δξAa = £XAa +∇aλ . (A.14)

This transformation needs to preserve the asymptotic conditions of the Maxwell vector

potential. Since Aa is smooth at I , λ extends smoothly to I as well. To preserve the

outgoing gauge condition imposed on the vector potential (Eq. 2.24) requires that naδξAa =̂ 0

which gives

0 =̂ na£XAa + £nλ

=̂ £X(naAa) + α(X)n
aAa + £nλ

=⇒ £nλ =̂ 0 ,

(A.15)

where the second equality in the first line uses Eq. A.9a and the last line follows from

naAa =̂ 0. Thus, the asymptotic symmetries of Einstein-Maxwell theory at I are given by

ξ = (Xa, λ), where Xa is a BMS vector field and λ is any smooth function on S
2, the space

of null generators of I .

Similar to the case of a BMS vector field, the representation of a fixed ξ in terms of a

BMS vector field Xa and a Maxwell gauge transformation λ depends on the choice of gauge

for the background vector potential Aa. Let A′
a = Aa + ∇aΛ be another vector potential

related to Aa by a gauge transformation Λ with £nΛ =̂ 0. For a fixed symmetry ξ = (Xa, λ)
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let the new representatives under the gauge transformation by Λ be ξ = (X ′a, λ′). Since the

symmetry ξ is fixed, its action on the vector potentials must be independent of the choice

of gauge, that is, δξA
′
a = δξAa. Evaluating this, we have

£X′Aa +∇aλ′ +∇a£X′Λ = £XAa +∇aλ . (A.16)

This implies that under a change of Maxwell gauge by Λ the representation of a fixed

symmetry ξ = (Xa, λ) = (X ′a, λ′) changes as

X ′a = Xa , λ′ = λ−£XΛ . (A.17)

Consequently the notion of a pure Maxwell gauge transformation ξ = (Xa = 0, λ) is well-

defined independently of the choice of gauge Λ, but a “pure BMS transformation” ξ =

(Xa, λ = 0) is not. This is analogous to the structure of the BMS algebra noted above. Note

also that

λ′ + X ′aA′
a = λ + XaAa (A.18)

is invariant under changes of Maxwell gauge.16

Appendix B: Stationary solutions in Einstein-Maxwell theory at null infinity

In this appendix we show that for any stationary solution (ĝab, Âa) of Einstein-Maxwell

theory, which is asymptotically flat, the radiative field Ea and the News tensor Nab vanish

at I . To do so we will first show that any nonzero timelike Killing vector field t̂a in the

unphysical spacetime is necessarily a nonzero supertranslation on I .17 Then, we show that

this implies that Ea = 0 on I for any solution of the Maxwell equation which is stationary

i.e. £t̂F̂ab = 0. Finally, using the proof by Geroch [7], this also implies that Nab = 0.

On I , a supertranslation vector field takes the form Xa =̂ fna with £nf =̂ 0. For

our purposes we will also need the “subleading” form of this vector field away from I , see

for instance Eq. 21 of [22] and Eq. 93 of [5]. For completeness we collect the proof in the

following lemma.

16In the principal bundle picture where ξ = (Xa, λ) is a vector field on the bundle, the Lie algebra of such
vector fields also has the structure of a semi-direct sum of diffeomorphisms with the Lie ideal of Maxwell
gauge transformations [9]. The invariant in Eq. A.18 is then the vertical part of ξ on the bundle.

17It can further be shown that the timelike Killing field is a BMS translation (see Lemma 1.4 of [36] and also
pp. 54 of [7]) but we will not need this stronger result.
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Lemma B.1. Any vector field Xa in M such that Xa|I is a BMS supertranslation is of the

form

Xa = fna − Ω∇af + O(Ω2) (B.1)

for some f smooth in M and £nf =̂ 0.

Proof. Since Xa|I is a BMS supertranslation we have Xa =̂ fna for some f on I satisfying

£nf =̂ 0. Now extend the function f arbitrarily but smoothly into M , and thus Xa takes

the form

Xa = fna + ΩZa (B.2)

for some smooth Za. Then, using Eqs. 1.3 and A.10, α(X) =̂ naZa. Using the Bondi

condition (Eq. 1.2), Eq. A.4 for such a vector field becomes

∇(afnb) + n(aZb) =̂ ncZ
cgab . (B.3)

Taking the trace on both sides gives naZa =̂ 0 and consequently Za = −∇af .

Note that we extended the function f away from I in an arbitrary manner. It is easy

to check from Eq. B.1 that the freedom in this extension only affects the O(Ω2) part of the

vector field. One can choose to fix the O(Ω2) part by choosing some convenient choice of

conformal factor and coordinates (such as Bondi coordinates) away from I , but we will not

need to do so.

Now we turn to timelike Killing fields of the physical spacetime (M̂, ĝab), and show that

they correspond to nontrivial supertranslations on null infinity.

Lemma B.2. Let t̂a be a nonzero timelike Killing vector field in the physical spacetime

(M̂, ĝab). Then ta = t̂a is a nonzero supertranslation on I .

Proof. Since £t̂ĝab = 0, from Eq. A.1 it follows that ta = t̂a is a BMS vector field on I . Since

t̂a is timelike in the physical spacetime, we have ĝabt̂
at̂b < 0. In the unphysical spacetime

away from null infinity (i.e. on M −I ) this gives Ω−2gabt
atb < 0. Now Ω > 0 on M −I ,

Ω =̂ 0, and gab and ta extend smoothly to I , and thus

gabt
atb ≤ 0 (B.4)

in M , with the equality possibly holding on I . Writing ta =̂ βna + Y a (from Eq. A.11), we

get that qabY
aY b ≤ 0 on I . Since qab is a Riemannian metric on the cross-sections of I

and Y a is tangent to these cross-sections, this means Y a =̂ 0. Thus the “Lorentz part” of ta

vanishes and ta is a BMS supertranslation.

Next, we show that this supertranslation is necessarily nonzero on I (see also [36]).

We will proceed by assuming that ta =̂ 0 and show that this implies that t̂a vanishes
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everywhere, contradicting the assumption that it is a nonzero Killing vector field. Since ta

is a supertranslation on I , if ta =̂ 0 then from Lemma B.1 we have that

ta = Ω2W a, (B.5)

for some smooth W a. Since t̂a is a Killing vector field in the physical spacetime (M̂, ĝab), ta

is a conformal Killing field in the unphysical spacetime (M, gab) with

£tgab = 2α(t)gab , α(t) = Ω−1nata . (B.6)

Any conformal Killing field is completely determined by its conformal Killing data specified

at any point p ∈M [37]: (
ta,∇[atb], α(t),∇aα(t)

) ∣∣∣
p

. (B.7)

Further, if the conformal Killing data vanishes at any point p then the conformal Killing field

ta vanishes everywhere. We now show that the conformal Killing data of Eq. B.5 vanishes on

I . It is easy to see by a direct computation that ta, ∇[atb] and α(t) vanish on I . Computing

the remaining last piece of the conformal Killing data we have

∇aα(t) =̂ na(nbW
b) . (B.8)

To show that this vanishes at I we evaluate £tgab = 2α(t)gab with Eq. B.5 to get

4Ωn(aWb) + 2Ω2∇(aWb) = 2ΩncW
cgab . (B.9)

Note that this holds in a neighborhood of I and not just on I , as a consequence of t̂a

being Killing in the physical spacetime. Multiplying the above equation by Ω−1, taking the

trace, and then taking the limit to I , we get naW a =̂ 0, and so ∇aα(t) =̂ 0. Hence, all the

conformal Killing data for the conformal Killing field of the form Eq. B.5 vanishes on I , and

thus ta = 0 everywhere in M . This implies that t̂a = 0 in M̂ , which contradicts the assump-

tion that t̂a is a nonzero Killing field in the physical spacetime. Thus, any nonzero timelike

Killing vector field in the physical spacetime is necessarily a nonzero supertranslation on

I .

Finally, we show that for a stationary solution of Einstein-Maxwell theory, the radiative

fields Nab and Ea vanish on null infinity.18

Theorem 1. Let (ĝab, Âa) be a stationary solution of Einstein-Maxwell theory, that is, there

exists a timelike vector field t̂a in the physical spacetime M̂ such that

£t̂ĝab = 0 and £t̂F̂ab = 0 . (B.10)

18Note that for this result to hold it is essential that the space of generators of I is topologically S
2.
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Then, the radiative fields vanish on I : Nab =̂ 0 and Ea =̂ 0.

Proof. Consider first the stationary electromagnetic field F̂ab, for which in the unphysical

spacetime we have £tFab = 0, where as before ta = t̂a. From Lemmas B.1 and B.2, we have

that

ta = fna − Ω∇af + O(Ω2) (B.11)

for some f 6= 0 and £nf =̂ 0. Evaluating the pullback of £tFabn
b = 0 to I and using

£tn
a =̂ 0 and £nf =̂ 0 (as ta is a supertranslation) gives

£n(fEa) =̂ 0. (B.12)

Similarly, evaluating the pullback of £tFab = 0 to I , we have

D[a(fEb]) =̂ 0. (B.13)

Note that only the derivative along the cross-sections Da occurs in this equation due to

Eq. B.12 and the Bondi condition (Eq. 1.2). Next, evaluating lanb£tFab =̂ 0 we have

0 =̂ lanb£tFab =̂ £t(Fabl
anb)− Fab£tl

anb

=̂ f£n(Fabl
anb) + Fab(n

a£lf +∇af)nb

=̂ fqab
DaEb + qabEaDbf

=̂ qab
Da(fEb),

(B.14)

where the first line uses £tn
a =̂ 0 for a supertranslation, the second line is a straightforward

computation using Eq. B.11, and the third line uses the Maxwell equation Eq. 2.29. From

Eqs. B.12–B.14 it follows that fEa is a covector field on the space of generators of I with

vanishing curl and divergence. Since the space of generators of I is topologically S
2 and

f 6= 0, this implies that Ea = 0 for any stationary solution.

Now, from Eq. 3.12 we have that Tabn
anb =̂ 1

4π
EaEa, and thus for any stationary solution

Tabn
anb =̂ 0. With this condition and the Einstein equation it can be shown that Nab =̂ 0

for any stationary spacetime (see pp. 53–54 of [7]). Thus, for any stationary solution of the

Einstein-Maxwell equations we have Nab =̂ 0 =̂ Ea, as we wished to show.

Appendix C: Computation of QEM in some examples

In this appendix we give two examples of the Maxwell contribution to the Wald-Zoupas

charge QEM[Y ; S] of an asymptotic Lorentz symmetry Y a. This contribution vanishes for

the first example of Kerr-Newman spacetimes, while for the second example of a spinning

charged sphere with variable angular velocity it is non-zero.
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1. Kerr-Newman spacetime

The line-element of the (physical) Kerr-Newman metric in Boyer-Lindquist coordinates

(t, r, θ, φ) is given by (see Appendix D.1 of [38])

ds2 = −
(

1− 2Mr −Q2

Σ

)
dt2 − 2a sin2 θ(2Mr −Q2)

Σ
dtdφ +

Σ

∆
dr2 + Σ dθ2

+
(
(r2 + a2)2 − a2 sin2 θ ∆

) sin2 θ

Σ
dφ2, (C.1)

with

Σ := r2 + a2 cos2 θ and ∆ := r2 − 2Mr + a2 + Q2. (C.2)

Since we wish consider the limit to I it is more convenient to introduce the outgoing null

coordinates xµ = (u, r, θ, φ), with u defined by

du = dt− r2 + a2

∆
dr . (C.3)

The (physical) Kinnersley tetrad — normalized such that l̂µn̂µ = −1 and m̂µm̂µ = 1 — in

these coordinates is

l̂µ∂µ = ∂r +
a

∆
∂φ, (C.4a)

n̂µ∂µ =
r2 + a2

Σ
∂u −

∆

2Σ
∂r +

a

2Σ
∂φ, (C.4b)

m̂µ∂µ =
ia sin θ√

2(r + ia cos θ)
∂r +

1√
2(r + ia cos θ)

(
∂θ +

i

sin θ
∂φ

)
. (C.4c)

The Maxwell vector potential in these null coordinates is:

Âµdxµ = −rQ

Σ

(
du +

r2 + a2

∆
dr − a sin2 θdφ

)
. (C.5)

which satisfies the Lorenz gauge condition ĝµν∇̂µÂν = 0.

To take the limit to I , we use the conformal factor Ω = r−1 and use Ω as the new

coordinate instead of r. It can be verified that the unphysical metric gµν = Ω2ĝµν is smooth

in the limit to I (that is, as Ω→ 0 with fixed u, θ, φ). The unphysical tetrad (lµ, nµ, mµ, mµ)
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defined by

lµ∂µ := Ω−2 l̂µ∂µ = ∂Ω + O(Ω), (C.6a)

nµ∂µ := n̂µ∂µ = ∂u + O(Ω), (C.6b)

mµ∂µ := Ω−1m̂µ∂µ = 1√
2

(
∂θ + i

sin θ
∂φ

)
+ O(Ω) , (C.6c)

is also smooth at I . The unphysical nµ defined above coincides with the normal na =

gab∇bΩ at I to leading order, but not at O(Ω) as this nµ does not satisfy the Bondi

condition.

The vector potential Aµ = Âµ in Eq. C.5 is not smooth at I since lµAµ diverges as

Ω → 0. However instead, consider the vector potential A′
µ related to Eq. C.5 by a gauge

transformation

A′
µ = Aµ −∇µ(Q ln Ω). (C.7)

This new vector potential A′
µ is no longer in Lorenz gauge (in the physical spacetime) but

is smooth at I , and it also satisfies the outgoing radiation gauge condition nµA′
µ =̂ 0.

Henceforth, we use this smooth vector potential on I and drop the “prime” from the

notation.

On I , the Lorentz vector fields Y a are spanned by the tetrads mµ and mµ. A di-

rect computation using Eqs. C.5–C.7 gives mµAµ =̂ 0 and consequently Y aAa =̂ 0 for all

Lorentz vector fields. Thus, in the Kerr-Newman spacetime the Maxwell contribution to the

Lorentz charges vanishes, i.e., QEM[Y ; S] = 0. In particular the angular momentum of the

Kerr-Newman black hole computed using the Wald-Zoupas charge (with Y a ≡ ∂φ) gets no

additional contribution from QEM and is thus given by the standard result (see, for example,

[39]).19

2. Spinning charged sphere in Minkowski spacetime

The above computation of the Lorentz charges in Kerr-Newman spacetimes does not mean

that the electromagnetic contribution to the Wald-Zoupas charge for angular momentum will

always vanish. An explicit example for which QEM is non-zero is considered in [3]: a thin

spherical shell in Minkowski spacetime, with radius R and charge Q, spinning on a central

axis with a time-dependent angular velocity ω(t). The time-dependent dipole moment of the

spherical shell is given by d(t) = 1
3
QR2ω(t). Further, [3] also assumes that the characteristic

timescale of variation of the magnetic dipole moment is much greater that the light-travel

19To calculate the Wald-Zoupas charge using Eq. 4.26, one needs to be careful to use a tetrad where the na

satisfies the Bondi condition Eqs. 1.2 and 1.3 and the corresponding la, and not the tetrad in Eq. C.6.
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time τ = R across (half) the sphere, that is,

∂

∂t
d(t)≪ d(t)

τ
. (C.8)

This is clearly not a solution to the source-free Maxwell equations due to the presence of

a source current. However, given that the source current is compact, our analysis in the

main body of the paper still applies. We do not attempt to solve the full Einstein-Maxwell

equations for this system. Thus, the Maxwell field in this section should be thought of as a

perturbation generated by the charged sphere on the background Minkowski spacetime.

The relevant null tetrads at I in Minkowski spacetime can be constructed in the same

manner as in the Kerr-Newman spacetime by taking M = a = Q = 0. To get a smooth

vector potential at I , one again needs to perform a gauge transformation as in Eq. C.7

which takes us out of the Lorenz gauge used in [3]. Then, from the explicit computations in

[3] it can be shown that

Re[ϕ1] =̂
1

2
Q , maAa =̂

i√
2

Γ(0)(u) sin θ , (C.9)

where u = t− r is the retarded time coordinate and we have taken the rotation axis for the

sphere to be along the z-axis. With the assumption Eq. C.8, the function Γ(0)(u) is given by

Γ(0)(u) :=
∂

∂u
d(u) +

1

10
τ 2 ∂3

∂u3
d(u) +

1

280
τ 4 ∂5

∂u5
d(u) + . . . , (C.10)

where . . . denotes higher order terms.

Now, a rotational Killing vector field along the z-axis is given by Ra
(z) = − i

2
sin θ (ma−ma).

Thus, using Eqs. C.9 and C.10, we can compute the Maxwell contribution to the charge of

Ra
(z) (Eq. 4.30) — the angular momentum in the z-direction — on a u = constant cross-

section Su to be

QEM[R(z); Su] =

√
2

3
Q Γ(0)(u) . (C.11)

Thus, we expect that generic non-stationary Maxwell fields will contribute a non-

vanishing QEM to the Wald-Zoupas charge for asymptotic Lorentz symmetries.
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