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We prove the stability of the critical hypersurfaces associated with the three-dimensional general
relativistic Poynting-Robertson effect. The equatorial ring configures to be as a stable attractor and the
whole critical hypersurface as a basin of attraction for this dynamical system. We introduce a new, simpler
(in terms of calculations), and more physical approach within the Lyapunov theory. We propose three
different Lyapunov functions, each one carrying important information and very useful for understanding
such phenomenon under different aspects.
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I. INTRODUCTION

In the study of radiation processes in high-energy
astrophysics around compact objects, like neutron stars
and black holes, it is of utmost importance to accurately
describe the motion of the surrounding matter to then test
the model in strong field regimes. In particular, when we
deal with relatively small-sized test particles, like dust
grains, plasma, or gas elements invested by an electromag-
netic radiation field, theirmotion can be considerably altered
by the general relativistic Poynting-Robertson (PR) effect
[1,2]. The radiation field exerts not only a force outward
with the compact object contrasting the gravitational
pull, but also a radiation drag force opposite to the
test particle orbital velocity. The PR effect configures thus
as a pure relativistic dissipative effect, which efficiently
removes energy and angular momentum from the affected
test particle.
The general relativistic treatments, from the two-

dimensional (2D) [3,4] until the three-dimensional (3D)
formulations [5–7], show the entire existence of a critical
hypersurface region where gravitational and radiation
forces balance. From selected test particle orbits, it graphi-
cally results that the critical hypersurfaces are stable,
namely, once the test particle reaches such a region and

moves on that, it will remain there forever. The test particle
can either spiral down towards the equatorial ring (latitu-
dinal drift) or move in suspended orbits (see Refs. [5,6], for
details). This implication must be formally proved, because
it contains fundamental information not only on the PR
effect, but also on the system under study.
We propose a new method to prove the stability of the

critical hypersurfaces within the Lyapunov theory. Such
approach carries important information on the physical
system under study and it substantially reduces the
calculations with respect to a previous method employed
in the literature [4]. The idea of a Lyapunov function has
been proposed in 1956 [8], and since then it has been
exploited in several and disparate contexts in physics
and in mathematics [9–12]. There is also a wealth of
applications in astrophysics and cosmology, such as the
following: in accretion, there is disc theory to control the
large- and small-scale in/stability of such continuouslike
structures (see, e.g., Refs. [13–16]); in celestial mechan-
ics there are applications to study the motion of bodies
under the influence of a gravitational (or other kinds of)
forces (see, e.g., Refs. [17–19]); in cosmology there
are applications to understand the stability of the
models, to analyze dark energy’s origin and implications,
and to investigate modified gravity scenarios (see, e.g.,
Refs [20,21]).
The paper is structured as follows: in Sec. II we introduce

the formal aspects of the 3D general relativistic PR effect
model, including a detailed description of the critical
hypersurfaces’ derivation and proprieties. In Sec. III we
review what has been done in the literature so far, under-
lying the limiting aspects, and then we present the power
and advantages of our new approach. Finally, in Sec. IV we
draw our conclusions.
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II. GENERAL RELATIVISTIC
3D PR EFFECT MODEL

We consider a central compact object, whose outside
spacetime is described by the Kerr metric with signature
ð−;þ;þ;þÞ. In geometrical units (c ¼ G ¼ 1), the line
element of the Kerr spacetime, ds2 ¼ gαβdxαdxβ, in Boyer-
Lindquist coordinates, parametrized by massM and spin a,
reads as

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 −

4Mra
Σ

sin2θ dt dφ

þ Σ
Δ
dr2 þ Σ dθ2 þ ρsin2θ dφ2; ð1Þ

where Σ≡ r2 þ a2 cos2 θ, Δ≡ r2 − 2Mrþ a2, and
ρ≡ r2 þ a2 þ 2Ma2r sin2 θ=Σ. The determinant of the
Kerr metric is g ¼ −Σ2 sin2 θ. We introduce the zero
angular momentum observers (ZAMOs), whose adapted
orthonormal frame is given by

et̂ ≡ n ¼ 1

N
ð∂t − Nφ∂φÞ; er̂ ¼

1ffiffiffiffiffiffi
grr

p ∂r;

eθ̂ ¼
1ffiffiffiffiffiffi
gθθ

p ∂θ; eφ̂ ¼ 1ffiffiffiffiffiffiffigφφ
p ∂φ; ð2Þ

where f∂t;∂r;∂θ;∂φg is the orthonormal frame adapted to
the static observer at infinity, N ¼ ð−gttÞ−1=2 is the time
lapse function, and Nφ ¼ gtφ=gφφ the spatial shift vector
field. All the vector and tensor indices (e.g., vα; Tαβ)
associated to the ZAMO frame will be labeled by a hat
(e.g., vα̂; T α̂ β̂), and all the scalar quantities measured in the
ZAMO frame (e.g., f) will be followed by ðnÞ [e.g., fðnÞ].
In the kinematical decomposition of the ZAMO congru-
ence, we have that the nonzero ZAMO kinematical
quantities are acceleration aðnÞ ¼ ∇nn, expansion tensor
along the φ̂ direction θφ̂ðnÞ, and the relative Lie curvature
vector kðLieÞðnÞ (see Table 1 in [5], for their explicit
expression).
The radiation field is constituted by a coherent flux of

photons traveling along null geodesics in the Kerr geom-
etry. The related stress-energy tensor is [5,6]

Tμν ¼ I2kμkν; kμkμ ¼ 0; kμ∇μkν ¼ 0; ð3Þ

where I is a parameter linked to the radiation field intensity
and k is the photon four-momentum field. Splitting k with
respect to the ZAMO frame, we obtain

k ¼ EðnÞ½nþ ν̂ðk; nÞ�; ð4Þ

ν̂ðk; nÞ ¼ sin ζ sin βer̂ þ cos ζeθ̂ þ sin ζ cos βeφ̂; ð5Þ

where ν̂ðk; nÞ is the photon spatial unit relative velocity
with respect to the ZAMOs, β and ζ are the two angles

measured in the ZAMO frame in the azimuthal and polar
direction, respectively. In addition, EðnÞ is the photon
energy measured in the ZAMO frame, which is [5,6]

EðnÞ ¼ Ep

N
ð1þ bNφÞ; ð6Þ

where Ep ¼ −kt is the conserved photon energy along its
trajectory. The radiation field is governed by the two
photon impact parameters ðb; qÞ, associated, respectively,
with the two emission angles ðβ; ζÞ.
The photons of the radiation field are emitted from a

spherical surface having a radius R⋆ centered at the origin
of the Boyer-Lindquist coordinates, and rigidly rotating
with angular velocity Ω⋆. The photon impact parameters
have the following expressions [6]:

b ¼ −
�
gtφ þ gφφΩ⋆
gtt þ gtφΩ⋆

�
r¼R⋆

; ð7Þ

q ¼ ½b2cot2θ − a2cos2θ�r¼R⋆ : ð8Þ

The related photon angles in the ZAMO frame are [6]

cos β ¼ bNffiffiffiffiffiffiffigφφ
p ð1þ bNφÞ ; ζ ¼ π=2: ð9Þ

The parameter I is given by [6]

I2 ¼ I2
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2 þ a2 − abÞ2 − Δ½qþ ðb − aÞ2�
p ; ð10Þ

where I0 is I evaluated at the emitting surface.
A test particle moves with a timelike four-velocity U and

a spatial three-velocity with respect to the ZAMOs,
νðU; nÞ, which both read as [5]

U ¼ γðU; nÞ½nþ νðU; nÞ�; ð11Þ

ν ¼ νðsinψ sin αer̂ þ cosψeθ̂ þ sinψ cos αeφ̂Þ; ð12Þ

where γðU; nÞ≡ γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kνðU; nÞk2

p
is the Lorentz

factor and ν ¼ kνðU; nÞk, γðU; nÞ ¼ γ. We have that ν
represents the magnitude of the test particle spatial velocity
νðU; nÞ, α is the azimuthal angle of the vector νðU; nÞ
measured clockwise from the positive φ̂ direction in the
r̂ − φ̂ tangent plane in the ZAMO frame, and ψ is the polar
angle of the vector νðU; nÞ measured from the axis
orthogonal to the r̂ − φ̂ tangent plane in the ZAMO frame.
We assume that the radiation test particle interaction

occurs through Thomson scattering, characterized by a
constant momentum-transfer cross section σ, independent
from the direction and frequency of the radiation field. The
radiation force is given by [5,6]
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F ðradÞðUÞα̂ ¼ σ½IEðUÞ�2V̂ðk;UÞα̂; ð13Þ

where the term σ̃½IEðUÞ�2 reads as [5,6]

σ̃½IEðUÞ�2¼Aγ2ð1þbNφÞ2½1−νsinψ cosðα−βÞ�2
N2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2þa2−abÞ2−Δ½qþðb−aÞ2�

p : ð14Þ

EðUÞ is the photon energy absorbed by the test particle,
which can be related to EðnÞ through [5,6]

EðUÞ ¼ γEðnÞ½1 − ν sinψ cosðα − βÞ�: ð15Þ

The term A ¼ σ̃½I0Ep�2 is the luminosity parameter,
which can be equivalently written A=M ¼ L=LEDD ∈ ½0; 1�
with L the emitted luminosity at infinity and LEDD the
Eddington luminosity. The terms V̂ðk;UÞα are the radiation
field components, which are [5,6]

V̂ r̂ ¼ sin β
γ½1 − ν sinψ cosðα − βÞ� − γν sinψ sin α; ð16Þ

V̂ θ̂ ¼ −γν cosψ ; ð17Þ

V̂φ̂ ¼ cos β
γ½1 − ν sinψ cosðα − βÞ� − γν sinψ cos α; ð18Þ

V̂ t̂ ¼ γν

�
sinψ cosðα − βÞ − ν

1 − ν sinψ cosðα − βÞ
�
: ð19Þ

Collecting all the information together, it is possible to
derive the resulting equations of motion for a test particle
moving in a 3D space, which are [5,6]

dν
dτ

¼ −
1

γ
fsin α sinψ ½aðnÞr̂ þ 2ν cos α sinψθðnÞr̂φ̂�

þ cosψ ½aðnÞθ̂ þ 2ν cos α sinψθðnÞθ̂ φ̂�g

þ σ̃½ΦEðUÞ�2
γ3ν

V̂ t̂; ð20Þ

dψ
dτ

¼ γ

ν
fsinψ ½aðnÞθ̂ þ kðLieÞðnÞθ̂ν2cos2α

þ 2ν cos αsin2ψθðnÞθ̂ φ̂� − sin α cosψ ½aðnÞr̂
þ kðLieÞðnÞr̂ν2 þ 2ν cos α sinψθðnÞr̂φ̂�g

þ σ̃½ΦEðUÞ�2
γν2 sinψ

½V̂ t̂ cosψ − V̂ θ̂ν�; ð21Þ

dα
dτ

¼ −
γ cos α
ν sinψ

½aðnÞr̂ þ 2θðnÞr̂φ̂ν cos α sinψ

þ kðLieÞðnÞr̂ν2 þ kðLieÞðnÞθ̂ν2cos2ψ sin α�

þ σ̃½ΦEðUÞ�2 cos α
γν sinψ

½V̂ r̂ − V̂φ̂ tan α�; ð22Þ

Ur ≡ dr
dτ

¼ γν sin α sinψffiffiffiffiffiffi
grr

p ; ð23Þ

Uθ ≡ dθ
dτ

¼ γν cosψffiffiffiffiffiffi
gθθ

p ; ð24Þ

Uφ ≡ dφ
dτ

¼ γν cos α sinψffiffiffiffiffiffiffigφφ
p −

γNφ

N
; ð25Þ

Ut ≡ dt
dτ

¼ γ

N
; ð26Þ

where τ is the affine (proper time) parameter along U.

A. Critical hypersurfaces

The dynamical system defined by Eqs. (20)–(25) exhib-
its an axially symmetric hypersurface outside around the
compact object, where there exists a balance among
gravitational and radiation forces. We impose that on such
a region the test particle must move in purely circular orbits
with constant velocity (ν ¼ const) with respect to the
ZAMO frame (α ¼ 0; π), and the polar axis orthogonal
to the critical hypersurface (ψ ¼ �π=2). These require-
ments entail dν=dτ ¼ dα=dτ ¼ 0, from which we deter-
mine the following conditions [5,6]:

ν ¼ cos β; ð27Þ

aðnÞr̂ þ 2θðnÞr̂φ̂νþ kðLieÞðnÞr̂ν2

¼ Að1þ bNφÞ2sin3β
N2γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ a2 − abÞ2 − Δ½qþ ðb − aÞ2�

p ; ð28Þ

where Eq. (27) means that the test particle moves on the
critical hypersurface with constant velocity equal to the
azimuthal photon velocity; whereas Eq. (28) determines
the critical radius rcrit as a function of the polar angle θ
through an implicit equation, once the radiation field
proprieties are assigned (i.e., the radius R⋆ and the angular
velocity Ω⋆ of the emitting surface together with the
luminosity parameter A, see Ref. [6]). It is important to
note that Eq. (28) might admit three different solutions with
precise locations: one inside the emitting surface (consid-
ered to be nonphysical), one close to the emitting surface
(the solution we actually study and plot), and another one
very far from the emitting surface (that we do not take into
account) [4,6].
In general we have dψ=dτ ≠ 0, because the ψ angle

changes during the test particle motion on the critical
hypersurface, having what we termed latitudinal drift. This
effect, occurring for the interplay of gravitational and
radiation actions in the polar direction, brings definitively
the test particle on the equatorial plane [5,6]. For
ψ ¼ θ ¼ π=2, we have dψ=dτ ¼ 0, corresponding to the
equatorial ring. However, we can have dψ=dτ ¼ 0, also for
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θ ¼ θ̄ ≠ π=2, having what we termed as suspended orbits.
The condition for this last configuration in the case of b ≠ 0
can be expressed as [6]

aðnÞθ̂þkðLieÞðnÞθ̂ν2þ2νsin2ψθðnÞθ̂ φ̂
þ Að1þbNφÞ2ð1−cos2βsinψÞcosβ
γN2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2þa2−abÞ2−Δ½qþðb−aÞ2�

p
tanψ

¼0; ð29Þ

which permits it to be solved in terms of ψ . Instead, in the
case of b ¼ 0 we obtain ψ ¼ �π=2 [5,6]. The critical
points are either the suspended orbits or the equatorial ring,
where the test particle ends its motion. In the Schwarzschild
case, Eq. (29) is an identity, because the test particle either
stops on a point (for b ¼ 0) or moves on a purely circular
orbit in the equatorial ring (for b ≠ 0) of the critical
hypersurface (see Refs. [3–6], for details).
The test particle comoves with the local corotating

observer frames in bound quasicircular orbits and in the
equatorial plane in circular orbits [4,5]. In the Kerr case,
the critical hypersurface assumes a quasiellipsoid shape,
depending on the radiation emitting source parameters
ðR⋆;Ω⋆; AÞ. Therefore, the critical radius is a function of
rcrit ¼ rcritðθ;A;R⋆;Ω⋆Þ. In the Schwarzschild case instead,
the critical hypersurface becomes a sphere, where such a
radius can be easily computed at the equator through
Eq. (2.33) of Ref. [4]. However, it is important to note
that the nonvanishing angular velocity of the emitting
surface Ω⋆ ≠ 0 breaks the spherical symmetry of the
Schwarzschild metric [6], so the 2D model is not anymore
valid, and only the 3D case must be employed.

In addition, there are also the conditions dr=dτ ¼
dθ=dτ ¼ 0 (based on the critical hypersurface definition).
This means that at fixed radius r, the polar angle θ is
constant (dθ=dτ ¼ 0), while at fixed polar angle θ the
radius r is constant (dr=dτ ¼ 0). In other words, such
conditions require that each parallel section to the equa-
torial plane intersecting the critical hypersurface gives a
circular ring. For the azimuthally rotational symmetry, the
critical hypersurfaces are surfaces of revolution symmetric
with respect to the polar axis (see Fig. 1).

III. STABILITY OF THE CRITICAL
HYPERSURFACES

For performing our proof, we set before our notations.
The dynamical system (20)–(24) is represented by1

_x ¼ f ðxÞ; ð30Þ
where _x ¼ dx=dτ is defined in D, representing the spatial
region outside the compact object together with the
admissible velocity field field of the test particle, namely,

D ¼ fν ∈ ½0; 1�;ψ ∈ ½0; π�;α ∈ ½0; 2π�;
r ∈�2M;∞½; θ ∈ ½0; π�g: ð31Þ

6 4 2 0 2 4 6
4

2

0

2

4

rcrit sin M

r c
rit

co
s

M

FIG. 1. Critical hypersurface around a neutron star of massM ¼ 1.5M⊙, rotating with frequency 600 Hz (corresponding to an angular
frequency of Ω⋆ ¼ 0.031 and spin of a ¼ 0.41), emitting spherical source of radius R⋆ ¼ 6M, and luminosity parameter A ¼ 0.7. Left
panel: 3D plot of the critical hypersurface intersected by the planes of equations x ¼ 0 and z ¼ 2. The red arrow is the polar z axis, the
blue and red curves are the intersections between the planes x ¼ 0 and z ¼ 2 and the critical hypersurface, respectively. The polar
intersection angle is θint ¼ 71.3°, the corresponding critical radius is rcritðθintÞ ¼ 6.23M, and the radius of the red ring is
rcritðθintÞ sin θint ¼ 5.9M. Right panel: 2D plot of the blue curve, where it is possible to note the symmetry with respect to the
equatorial and polar planes (azimuthal rotational symmetry).

1We do not include Eq. (25) because it is not vanishing at the
critical hypersurface. In addition, being the dynamical system
symmetric with respect to φ rotations, it is possible to remove
such equation without any lost of generality. Equation (26) is also
not added, because it expresses only the conversion between
proper time τ and coordinate time t.
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A point x0 ¼ ðν0;ψ0; α0; r0; θ0Þ is called critical, if it
vanishes Eq. (30), i.e., f ðx0Þ ¼ 0. The set of all critical
points of Eq. (30) is called critical hypersurface, namely,

H ¼ fx0 ∈ Dj f ðx0Þ ¼ 0g ⊆ D: ð32Þ

The function Φ∶ D ×R ⟶ D is called the flow associ-
ated to the dynamical system (30). Called xi, the initial
conditions, we have that the solution at time τ̄, indicated by
xðτ̄Þ, can be also written as xðτ̄Þ ¼ Φτ̄ðxiÞ≡Φðτ̄; xiÞ.
We consider only those initial configurations, where the

test particle ends its motion on the critical hypersurface
without escaping at infinity. Unfortunately, it is not simple
to mathematically characterize such a class of solutions,
because the dynamical system under study is too complex.
In addition, there is a strong dependence not only on the
input parameters determining the radiation field, but also on
the test particle initial data. Indeed, this dynamical system
shows a sensitive dependence on the initial conditions,
whose propriety is to exhibit extremely different behaviors
with only tiny changes in the initial conditions2 (see Fig. 2,
as an example).
Once the stability has been proven, it immediately

follows that the critical equatorial ring is a stable attractor,
i.e., a region toward which the test particle tends to be
attracted and to end its motion. More formally, a setA is an
attractor for the dynamical system (30) if [11,22]
(1) A is forward invariant under Φτ, namely, if x0 ∈ A

then also Φτðx0Þ ∈ A for all τ > 0;

(2) there exists a neighborhood ofA, called the basin of
attraction forA, denoted by BðAÞ, which consists of
all points x that enter A in the limit τ → ∞. More
formally, BðAÞ is the set of all points x in the phase
space with the following property: for any open
neighborhood U of A, there is a positive constant T
such that fðt; xÞ ∈ U for all real τ > T ;

(3) there is no proper (nonempty) subset ofA having the
first two properties. In other words,A¼∩τ≥0ΦτðUÞ,
where U is a basin of attraction.

The first and second propriety are basically linked to the
proof of the stability of the critical hypersurface, while the
third shows that the critical hypersurface H ¼ A, because
once the test particle moves on H, it will not leave such a
region, configuring thus as the smallest basin of attraction
for the dynamical system (30).3 Another important propri-
ety of the critical hypersurfaces is they are compact sets
[see Eq. (B5) for more details].
In the next sections, we show how to formally prove the

stability of the critical hypersurfaces by recalling what has
been done in the literature (see Sec. III A) and then by
introducing our new contributions (see Sec. III B).

A. Linear stability theory

Bini and collaborators [3,4] have previously presented
the proof of the stability by performing calculations within

−300 −200 −100 0

−
10

0
0

10
0

r 
si

n
 (

M
)

r cos  (M)
−400 −300 −100 0

−
10

0
0

10
0

r 
si

n
 (

M
)

−200 
r cos  (M)

FIG. 2. Motions of test particles in the equatorial plane of a Kerr black hole of spin a ¼ 0.4 and luminosity parameter A ¼ 0.1. The test
particles in both panels have initial positions ðr0;φ0Þ ¼ ð20M; 0Þ and initial velocities ðν0; α0Þ ¼ ð0.3; 0Þ for black orbits, and ðν0; α0Þ ¼
ð0.31; 0Þ for red orbits. The photon impact parameters are b ¼ 0 (left panel) and b ¼ 2 (right panel).

2In Ref. [5], it is explicitly stated that the 3D case is more
sensitive from the initial conditions with respect to the 2D case.
Indeed, to solve such issue there are more controls on the
integration process reaching thus an average relative accuracy
of ∼10−14.

3It must be distinguished that two cases depend on the initial
conditions of the test particle position [4,5]. If the test particle is
set outside the compact object and reaches the critical hypersur-
face, it will stay over there forever. Instead, if the test particle
starts inside the critical hypersurface it could cross the critical
hypersurface once, because the test particle has sufficient energy
to be not attracted. Then, if it does not escape at infinity, it will fall
on the critical hypersurface and will stay over there forever, as it
started its motion outside. Therefore for such reason, the test
particle cannot cross the critical hypersurface more than once.
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the linear stability theory [11]. This method consists in
linearizing the nonlinear dynamical system towards the
critical points of the critical hypersurface, i.e.,

_x ≈ A · ðx − x0Þ; ð33Þ

where A ¼ ð∂x f Þðx0Þ is a linear operator.
Then, after having diagonalized the matrix A, one looks

at its eigenvalues and check whether they are negative or
have real parts that are negative for inferring the stability of
the critical points. Such a procedure holds whenever the
critical points are not hyperbolic, meaning that the matrix A
has no eigenvalues with real parts equal to zero. Indeed, the
Hartman-Grobman theorem (or also known in the literature
as linearization theorem) states that [23,24] there exists a
neighborhood U of x0 and a homeomorphism h≡ A · ðx −
x0Þ∶U → Rn with hðx0Þ ¼ 0 such that in the neighborhood
U the dynamical system (30) is topologically homeomor-
phic to the dynamical system (33) through the map h.
For the difficulty of calculations Bini and collaborators

have only shown the stability of the 2D critical hypersurfaces
in the Schwarzschild case (see Appendix in Ref. [4]). This
method, albeit simple in its theoretical explanation, practi-
cally requires us to develop several calculations (especially in
the Kerr case); therefore, we are looking for a new, simpler,
and more physical approach.

B. Lyapunov function

We propose a new method framed within the Lyapunov
theory [11], which is easier both in terms of calculations
and gives more physical insight into the problem under
investigation. Let Λ ¼ Λðν;ψ ; α; r; θÞ be a real valued
function of the test particle position and velocity fields,
continuously differentiable in all points outside of the
compact object. Then Λ is a Lyapunov function for the
set H, if it fulfills the following conditions:

ðIÞ ΛðxÞ > 0; ∀ x ∈ DgH; ð34Þ

ðIIÞ Λðx0Þ ¼ 0; ∀ x0 ∈ H; ð35Þ

ðIIIÞ _ΛðxÞ≡∇ΛðxÞ · f ðxÞ ≤ 0; ∀ x ∈ D: ð36Þ

Once the Lyapunov functionΛ has been found for all points
belonging to the critical hypersurface H, a theorem due to
Lyapunov assures thatH is stable [11,25]. In addition, if the
third condition (34) is replaced by

ðIII0Þ _ΛðxÞ < 0; ∀ x ∈ D; ð37Þ

then H is asymptotically stable [11,25].
The great advantage of such a method relies on the fact

that it can be applied without solving the differential
equations (30). It is important to note that the Lyapunov
function is not unique at all. Indeed there could be the cases

where it is possible to find just one, more than one, or even
anything. Unfortunately, there is not a mathematical recipe
for determining a Lyapunov function, because it is usually a
matter of ingenuity, trials, or luck in each case. However,
sometimes there are natural functions to try, like, for
example, the associated first integrals (see Ref. [11], for
examples). In our case we were able to determine three
different Lyapunov functions, having all important physical
meanings.

1. Energy

We propose as a first Lyapunov function the test particle
relative energy, where both kinetic and potential energies
related to the radiation pressure and the gravitational force
are all measured in the ZAMO frame, i.e.,

K ¼ m
2
jν2 − ν2critj þ ðA −MÞ

�
1

r
−

1

rcrit

�
; ð38Þ

where m is the test particle mass and νcritðθÞ ¼
½cos β�r¼rcritðθÞ, which includes as a particular case the
velocity in the equatorial ring νeq ¼ ½cos β�r¼rcritðπ=2Þ.
By definition it is defined positive outside the critical

hypersurface, because the second term is the product of two
negative terms (since A=M ∈ ½0; 1� and r ≥ rcrit), satisfying
thus condition (I), and it is identically zero on the critical
hypersurface, as requested by condition (II). Regarding the
condition (III) we need to calculate the τ derivative of K,
which is given by

_K ¼ msgnðν2 − cos2βÞ
�
ν
dν
dτ

− cos β
dðcos βÞ

dτ

�

−
A −M
r2

_r; ð39Þ

where sgnðxÞ is the signum function. In Appendix C we
prove that _K is definite nonpositive. In Fig. 3 we show an
example of test particle trajectory and the related mechani-
cal energy, together with its τ derivative (see upper right
panel). As we can graphically see, K fulfills all the
conditions to be a Lyapunov function.

2. Angular momentum

Now, we consider as second Lyapunov function the
relative angular momentum of the test particle measured in
the ZAMO frame, i.e.,

L ¼ mðrν sinψ cos α − rcritνcritÞ: ð40Þ

By definition, it is defined positive outside the critical
hypersurface, satisfying thus condition (I), and it is iden-
tically zero on the critical hypersurface, as requested by
condition (II). Regarding condition (III) we need to
calculate the τ derivative of L, which is given by
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_L¼m

�
−_rcritνcrit− rcrit

dðνcritÞ
dτ

þ r
dν
dτ

cosαsinψ

×νð_rcosαsinψ − rsinαsinψ _αþ rsinαcosψ _ψÞ
�
: ð41Þ

In Appendix D, we prove that _L is definite nonpositive. In
Fig. 3 we show the angular momentum and its τ-derivative
behaviors (see lower left panel). Therefore, graphically we
see that also the function L fully respects the conditions to
be a Lyapunov function.

3. Rayleigh potential

In the study of the general relativistic PR effect, it has
been proved that it admits a Lagrangian formulation, albeit
it is a highly nonlinear dissipative system in general
relativity (GR) [26]. This can be realized through the help
of an integrating factor μ ¼ E2

p=E2 [27,28], where Ep is the
photon energy and E≡ EðUÞ ¼ −kαUα, see Eq. (15).
Using the energy formalism [27] it was possible to

determine the explicit formula for the Rayleigh potential F
related to the radiation force μF ðradÞðUÞα [see Eq. (13)].
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FIG. 3. We show a test particle orbit and the related three Lyapunov functions, which graphically prove the stability of the critical
hypersurface. Upper left panel: test particle moving around a rotating compact object with mass M ¼ 1, spin a ¼ 0.3, luminosity
parameter A ¼ 0.2, and photon impact parameter b ¼ 0. The test particle starts its motion at the position ðr0;φ0Þ ¼ ð30M; 0Þ with
velocity ðν0; α0Þ ¼ ð ffiffiffiffiffiffiffiffiffiffiffi

M=r0
p

; 0Þ. The critical hypersurface is a circle with radius rcrit ¼ 2.07M. The energy [see Eqs. (38) and (39), and
the upper right panel], the angular momentum [see Eqs. (40) and (41), and the lower left panel], and the Rayleigh potential
[see Eqs. (42) and (44), and the lower right panel] together with their τ derivatives are all expressed in terms of the proper time τ.
The dashed blue lines in all plots represent the proper time T touch at which the test particle reaches the critical hypersurface and it
amounts to T touch ¼ 2915M.
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Therefore, the third Lyapunov function is the relative
Rayleigh potential,4 i.e.,

F ¼ σ̃I2

�
lg

�
Ecrit

Ep

�
− lg

�
E
Ep

��
; ð42Þ

where Ecrit is the energy E evaluated on the critical
hypersurface, and it is simply given by

Ecrit ¼ ½E�r¼R⋆;α¼0;π;ψ¼�π=2;ν¼νcrit

¼ Epjðsin βÞcritj
Ncrit

ð1þ bNφ
critÞ; ð43Þ

where the subscript “crit” means to evaluate a quantity at
the critical hypersurface.
The energy absorbed by the test particle E is always

minor than the photon energy Ep, and its maximum is
attained at Ep only when the test particle is in rest [27].
Therefore, it is everywhere positive, satisfying thus the
condition (I), and the condition (II) on the critical hyper-
surface. The τ derivative of F is

_F ¼ σ̃ _ðI2Þ
�
lg

�
Ecrit

Ep

�
− lg

�
E
Ep

��
þ σ̃I2

�
_Ecrit

Ecrit
−
_E
E

�
: ð44Þ

In Appendix E we prove that _F is definite nonpositive,
verifying thus condition (III). In Fig. 3 we show how the
profile of the Rayleigh potential respects the conditions to
be a Lyapunov function (see lower right panel).

IV. CONCLUSIONS

In this paper, we have shown how to formally prove the
stability of the critical hypersurfaces for the general
relativistic (both 2D and 3D) PR effect models. We have
proposed a new approach based on the Lyapunov functions,
which is more elegant, easier in terms of calculations, and
also contains important physical information on the system
under study. Previously in the literature, it has been
exploited by the linearized theory around the critical points,
but it was revealed to be not so powerful, because it requires
strong computational efforts in linearizing the dynamical
system and then in finding the eigenvalues and studying the
sign, especially for the 3D case. For such reasons, only the
Schwarzschild (2D) case has been completely proved, since
in the Kerr spacetime everything becomes extremely more
difficult to handle [4].
Our method is able to fully prove the stability issue,

without recurring to any symbolic program or dedicated
software to carry out our analysis. All the estimations and

calculations reported in this paper can be relatively easily
handled. The Lyapunov theory applied to our problem is
revealed to be very ingenious, clear in the calculation
process, and more powerful than a numerical-programming
approach. In addition, we understand the contribution
played by each single term present in the dynamical
equations (see Appendices C, D, and E).
In addition, we were able to find and propose three

different Lyapunov functions with a precise meaning,
proving thus the stability in different ways. Since the PR
effect removes energy and angular momentum from the test
particle, those were the inspiring ideas, which led us to
build up the first two Lyapunov functions (see Secs. III B 1
and III B 2). They represent the classical version and not
the general relativistic expression. Even if we did not use
the proper definition, they permit us to easily carry out the
calculations and achieve the stability results. There are no
contradictions with the definition of the Lyapunov function
and its application. We note that even a mathematical
function, with no physical meaning connected with the
system under study but verifying the Lyapunov conditions,
would be a good candidate for proving the stability of the
critical hypersurfaces.
The third Lyapunov function is less intuitive than the

previous cases, because it stems out from the Lagrangian
approach to the general relativistic PR effect [26–28].
Indeed, employing the energy formalism, it is possible to
analytically derive the general relativistic Rayleigh poten-
tial, which contains the radiation field absorption processes
affecting the test particle motion (see Sec. III B 3). Such a
function involves the logarithm of the test particle absorbed
energy. We thought about this function by looking at the
plots and physical meaning reported in Ref. [28]. Through
these valuable results, we have understood that the critical
hypersurfaces are a basin of attraction and the equatorial
ring is a stable attractor.
This approach shows also another great potentiality,

because it can be exploited to prove the stability of the
critical hypersurfaces in further possible extensions of the
general relativistic PR effect model, naturally with the due
modifications, and still keeping its good performances. In a
future work, we would like to deeply investigate the
proprieties of this effect under the dynamical system point
of view. This kind of research, which has never been
studied or proposed so far in the literature, will shed new
light on the PR effect. The difficulties of such an approach
rely on mathematically formalizing some notions used
intuitively so far. These efforts will permit us to develop
new methods and techniques that are likely to infer not only
new interesting results on the PR effect, but more in general
on dissipative systems in GR.
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APPENDIX A: GENERAL REMARKS

Before starting with our analysis, it is useful to estimate
the order of magnitude of all metric and ZAMO kinemati-
cal quantities. Since we consider test particle orbits ending
their motions on the critical hypersurface, it is reasonable to
assume that the test particle is confined in a box during its
evolution, which means to impose the following reasonable
limits on the test particle position and velocity parameters5:

r ∈ ½R⋆; R̄�; φ ∈ ½0; 2π�; θ ∈
�
0;
π

2

�
;

ν ∈ ½0; 1�; α ∈ ½0;−π�; ψ ∈
�
0;
π

2

�
; ðA1Þ

where R̄ < ∞ is the maximum radial extension the test
particle can reach, changing for each initial configuration.
In addition, we note that R⋆ ≥ rcrit > RH > M ≥ 1, where
RH is the event horizon radius. Considering M ≥ 1 is not a
restrictive condition at all, because we can set the unity
measure mass equal to one.
Therefore, we have the following estimations (see

Table 1 in Ref. [5], for the full explicit expressions):

b ∼ R2⋆Ωsin2θ; N ∼ 1; Nφ ∼ −
2Ma
r3

;

Δ ∼ r2; ρ ∼ r2; Σ ∼ r2;ffiffiffiffiffiffi
grr

p
∼ 1;

ffiffiffiffiffiffi
gθθ

p
∼ r;

ffiffiffiffiffiffiffi
gφφ

p ∼ rj sin θj;

aðnÞr̂ ∼M
r2

; θðnÞr̂φ̂ ∼ −
aM sin θ

r3
;

aðnÞθ̂ ∼ −
a2M sin θ

r4
; θðnÞθ̂ φ̂ ∼ −

a2M sin θ sin 2θ
r5

;

kðLieÞðnÞr̂ ∼ −
1

r
; kðLieÞðnÞθ̂ ∼ −

cot θ
r

: ðA2Þ

We estimate also the dynamical equations (20)–(24)

dν
dτ

∼
M
r2

�
−
sin α sinψ

γ

þ A
M

½1 − ν sinψ cosðα − βÞ�½sinψ cosðα − βÞ − ν�
�

dψ
dτ

∼
γν

r
ðsin α cosψ − cot θcos2α sinψÞ;

dα
dτ

∼
γν cos α
r sinψ

½1þ cot θcos2ψ sin α�;
dr
dτ

∼ γν sin α sinψ ;

dθ
dτ

∼
γν cosψ

r
: ðA3Þ

APPENDIX B: ANALYSIS OF THE
CRITICAL HYPERSURFACE

We consider the implicit equation for the critical hyper-
surface (28) and using Eq. (A2), we can determine an
estimation of the critical radius rcrit, i.e.,

M − A
r2crit

−
2aM sin θνcrit

r3crit
−
ν2crit
rcrit

≈ 0; ðB1Þ

which turns out in solving the following quadratic algebraic
equation, since νcrit ¼ ½cos β�r¼rcrit , i.e.,

ðM − AÞ sin2 θr2crit − b2rcrit − 2aM sin2 θb ¼ 0: ðB2Þ

The solution is given by

rcrit ∼
b2

ðM − AÞsin2θ ∼
R4⋆Ω2⋆

ðM − AÞ sin
2θ; ðB3Þ

while the derivative ∂θrcrit is given by

∂θrcrit ∼
R4⋆Ω2⋆

ðM − AÞ sinð2θÞ: ðB4Þ

In addition, through Eq. (B3) we easily prove that the
critical radius is finite, because

rcrit ≤
R4⋆Ω2

max

ðM − AÞ < ∞; ðB5Þ

choosing Ω⋆ ≥ Ωmax, where Ωmax is the maximum value
thatΩ⋆ can assume (see Ref. [6], for more details), R⋆ ≤ R̄,
and A=M ≠ 1. Indeed, for A=M ¼ 1we have that L ¼ LEdd
and the test particle is pushed at infinity, having any critical
hypersurface.

5We prove the stability for test particle set outside the critical
hypersurface. The proof can be easily extended also to a test
particle set inside the critical hypersurface (but outside the
emitting surface); see also the argument of footnote 3.
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APPENDIX C: ANALYSIS OF
MECHANICAL ENERGY

To prove _K ≤ 0, we need to analyze the sign of each
single component appearing in Eq. (39). First, we note
that −ðA−MÞ_r=r2 ≤ 0, because −ðA−MÞ=r2≥0, while
_r ∼ sin α ≤ 0.
The term dðνcritÞ=dτ is given by

d
dτ

νcrit ¼
∂νcrit
∂θ _θ: ðC1Þ

The function νcrit can be so estimated [see Eq. (9)] as

νcrit ∼
b

rcritj sin θj
: ðC2Þ

The partial derivative term ∂νcrit=∂θ is

∂νcrit
∂θ ¼

�∂θðbNÞ ffiffiffiffiffiffiffigφφ
p ð1þ bNφÞ

gφφð1þ bNφÞ2

−
bN∂θð ffiffiffiffiffiffiffigφφ

p ð1þ bNφÞÞ
gφφð1þ bNφÞ2

�
r¼rcrit

: ðC3Þ

We consider the estimations of all derivatives appearing in
Eq. (C3), where we have

∂θΔ ∼ ∂θρ ∼ 2rcrit∂θrcrit; ∂θN ∼ −
Ma2∂θrcrit

r4crit
;

∂θ
ffiffiffiffiffiffiffi
gφφ

p ∼
a2 cos θ
rcrit

; ∂θNφ ∼ −
2Ma∂θrcrit

r4crit
;

b ∼ R2⋆Ωsin2θ; ∂θb ∼ R2⋆Ω sin 2θ: ðC4Þ

Therefore, we obtain

∂θνcrit ∼
1

rcritsin2θ

�
rcrit sin θ∂θb −

ba2 cos θ
rcrit

�

∼
∂θb

rcrit sin θ
≥ 0: ðC5Þ

Since _θ ≥ 0, we obtain − cos βdðcos βÞ=dτ ∼ −b2 ≤ 0.
We have to study only the termA¼dν=dτ−ðA−MÞ_r=r2,

which, after we defined x ¼ sinψ cosðα − βÞ, reads explic-
itly as

A ¼ νA
M

�
sin α sinψ

�
γ −

1

γ

�

þ A
M

½γ sin α sinψ þ ð1 − νxÞðx − νÞ�
�
: ðC6Þ

The terms γ sin α sinψ and sin α sinψðγ − 1
γÞ are both

nonpositive. We distinguish two cases:

(i) if ν > x, it is obvious that A is nonpositive, because
it is the sum of three negative terms;

(ii) if ν ≤ x, it is not evident, but we need to perform
some calculations, where we have

ð1−νxÞðx−νÞ¼ xð1þν2Þ−νð1þx2Þ
≤ xð1þν2Þ−νð1þx2Þ≤ 0: ðC7Þ

It is important to note that the sign function sgnðν2 −
cos2 βÞ does not change the final sign of _K, because the
former multiplies only the kinetic term, while the negative
dominant contribution from the gravitational and radiation
potential persists with its own sign. Therefore, we have
finally proved that _K ≤ 0, both on the critical hypersurface
and at the equatorial ring.

APPENDIX D: ANALYSIS OF
ANGULAR MOMENTUM

This case relies on the results found in Sec. C.
Considering Eq. (41), we define _L ∼ C2 − C1, where

C1 ¼ _rcritνcrit þ rcrit
dðνcritÞ
dτ

; ðD1Þ

C2 ¼ r
dν
dτ

cos α sinψ þ νð_r cos α sinψ
− r sin α sinψ _αþ r sin α cosψ _ψÞ: ðD2Þ

We start by analyzing C1, where we obtain

C1 ≥ ∂θrcrit _θ
�

b
rcrit sin θ

þ rcrit

�
≥ rcrit∂θrcrit _θ ≥ 0: ðD3Þ

Therefore, we have −C1 ≤ 0.
Now, it is important to analyze the sign of C2. Employing

Eqs. (A2)–(A3), we have

C2 ≤ −γν2cos3α cot θðsinψ cosψ þ sin2αÞ ≤ 0:

ðD4Þ

Therefore, we finally have that _L ≤ 0, both on the critical
hypersurface and at the equatorial ring.

APPENDIX E: ANALYSIS OF
RAYLEIGH POTENTIAL

This case is partially based on previous calculations and
new estimations. Equation (44) is estimated by the follow-
ing derivatives:

_I2 ¼ ∂I2

∂r _rþ ∂I2

∂θ _θ; ðE1Þ
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_E ¼ ∂E
∂ν _νþ ∂E

∂ψ _ψ þ ∂E
∂α _αþ ∂E

∂r _rþ ∂E
∂θ _θ; ðE2Þ

_Ecrit ¼
∂Ecrit

∂θ _θ: ðE3Þ

First, we consider Eq. (E1), where we perform the
following estimations:

∂I2

∂r ∼ −
I2
0ð2r2 − b2

sin2θÞ
r2ðr2 − b2

sin2θÞ3=2
; ðE4Þ

∂I2

∂θ ∼
I2
0

rðr2 − b2

sin2θÞ3=2
R4⋆Ω2⋆ sinð2θÞ

2
: ðE5Þ

It is important to note that since the square root function
appearing at the denominator of Eq. (10) it is well defined,
when its argument is positive, we conclude that
r2 − b2= sin2 θ > 0. Therefore, we have

_I2 ∼
I2
0

rðr2 − b2

sin2θÞ3=2
R4⋆Ω2⋆ sinð2θÞ

2
≥ 0: ðE6Þ

Then, we pass to analyze Eq. (E2), estimating the
following partial derivatives, i.e.,

∂E
∂ν ∼ γ3Ep½ν − sinψ cosðα − βÞ�; ðE7Þ

∂E
∂ψ ∼ −γEpν cosψ cosðα − βÞ; ðE8Þ

∂E
∂α ∼ γEpν sinψ sinðα − βÞ; ðE9Þ

∂E
∂r ∼ −

MγEp

r2
; ðE10Þ

∂E
∂θ ∼

MaγEp sinð2θÞ
r3

ða − 2R2⋆ΩÞ: ðE11Þ

Combining such results, together with Eqs. (A2)–(A3), we
obtain

_E ∼
γ2Epν

2

r
fcos2ψ sin α½cosðα − βÞ − sin α cos α cot θ�

− cosψ sinψ cosðα − βÞcos2α cot θ
− sinðα − βÞ cos αg ≥ 0: ðE12Þ

Since E ≥ 0 (because it is an energy, always defined non-
negative), we infer that − _E=E ≤ 0.
Finally, it remains only to estimate Eq. (E3). It is useful

to perform the following estimation:

∂θ sin β ∼ − cot β∂θ cos β: ðE13Þ

We need to calculate and estimate the partial derivative
∂θEcrit. Using such estimations together with Eqs. (A2)–
(A3) and Eqs. (C4), we obtain

∂θEcrit ∼ −Ep
ðcos βÞcrit
jðsin βÞcritj

∂θb
rcrit sin θ

≤ 0: ðE14Þ

Since _θ ≥ 0 and Ecrit ≥ 0, we have _Ecrit=Ecrit ≤ 0.
We note that _E=E ∼ 1=r, dominates over _I2 ∼ 1=r3.

Therefore, we conclude that _F ≤ 0, both on the critical
hypersurface and at the equatorial ring.
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