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The existence of the cosmological particle horizon as the maximum measurable length lmax in
the universe leads to a generalization of the quantum uncertainty principle (GUP) to the form
∆x∆p ≥ ~

2
1

1−α∆x2
, where α ≡ l−2

max. The implication of this GUP and the corresponding gen-

eralized commutation relation [x, p] = i~ 1
1−αx2 on simple quantum mechanical systems has been

discussed recently [1] by one of the authors and shown to have extremely small (beyond current
measurements) effects of the energy spectra of these systems due to the extremely large scale of
the current particle horizon. This may not the case in the Early Universe during the quantum
generation of the inflationary primordial fluctuation spectrum. Here we estimate the effects of
such GUP on the primordial fluctuation spectrum and on the corresponding spectral index. In
particular motivated by the above GUP we generalize the field commutation (GFC) relation to
[ϕ(k), πϕ(k′)] = iδ(k − k′) 1

1−µϕ2(k)
, where µ ' α2 ≡ l−4

max is a GFC parameter, ϕ denotes a scalar

field and πϕ denotes its canonical conjugate momentum. In the context of this GFC we use stan-
dard methods to obtain the primordial scalar perturbations spectrum and show that it is of the form

PS(k) = P
(0)
S (k)

(
1 + µ̄

k

)
where µ̄ ≡ µV∗ '

√
α = l−1

max (here V∗ ' l3max is the volume corresponding

to the maximum measurable scale lmax) and P
(0)
S (k) is the standard primordial spectrum obtained

in the context of the Heisenberg uncertainty principle (HUP µ = 0). We show that the scalar spec-
tral index predicted by the model, defined from PS(k) = ASk

ns−1 is running and may be written
as ns = 1 − λ − µ̄

k
with λ = 6ε − 2η (where ε and η are the slow-roll parameters). Using observa-

tional constraints on the scale dependence of the spectral index ns a cosmological constraint may
be imposed on µ̄ as µ̄ = (0.9± 7.6) · 10−6h/Mpc. Using this result we estimate the GUP parameter
α . 10−54m−2 at 1σ and α . 10−52m−2 at 2σ. The 2σ range od α corresponds to lmax & 1026m
which is of the same order as the current particle horizon. Thus the assumption that a maximum
measurable length could emerge as a result of presence of the cosmological particle horizon remains
a viable assumption at the 2σ level.

I. INTRODUCTION

A central issue of fundamental research is the unifi-
cation of quantum theory (QT) and general relativity
(GR) in the framework of quantum gravity (QG). A crit-
ical scale in the context of this unification is the Planck

scale defined as lpl =
√

~G
c3 = 10−35m (see Ref.[2] for a

review) which has been shown to be the minimum mea-
surable scale if both QT and GR are applicable. Indeed
it may be shown [3] that the high energies required to
probe scales smaller than the Planck scale would lead to
the formation of a black hole through the gravitational
disturbances of spacetime structure which would prohibit
any measurement on smaller scales. The existence of such
a minimum measurable length would lead to a modifica-
tion of the Heisenberg Uncertainty Principle [4, 5](HUP)
to the so-called Generalized (Gravitational) Uncertainty
Principle (GUP)(see Ref.[6] for a review)

∆x∆p ≥ ~
2

(1 + β∆p2) (1.1)

where β is the GUP parameter defined as β =
β0/Mplc

2 = β0l
2
pl/~2, Mplc

2 = 1019GeV , lpl is the 4-
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dimensional fundamental Planck scale and β0 is a dimen-
sionless parameter expected to be of order unity. Such
a GUP is closely related to the concept of noncommuta-
tive geometry [7] and has been extensively investigated
in Refs. [8–27]. In particular interest in a minimum
measurable length or equivalently in a ultraviolet cutoff
has been motivated by studies of string theory [28–34],
loop quantum gravity [35–41], quantum geometry [42],
doubly special relativity (DSR)[43–48] and by black hole
physics [10, 49–51] or even Gedanken experiments [52]
and thermodynamic properties of gravity [53]. Several
phenomenological implications of minimal length theories
and quantum gravity phenomenology were investigated
and a number of researchers have studied phenomeno-
logical aspects of GUP effects in several contexts (e.g. in
Refs. [54, 55] atomic physics experiments such as Lamb’s
shift and Landau levels have been considered and con-
straints on the minimum length scale parameter β have
been estimated ). In Refs. [56–60] a model that is con-
sistent with string theory, black hole physics and DSR
is presented and discussed. This model of GUP predicts
both a minimal observable length and a maximal mo-
mentum simultaneously [57, 61].

The existence of a minimum measurable length is
closely related to the existence of the black hole horizon
which tends to form if length scales below the Planck
scale are probed. Correspondingly, there is a maximum
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measurable length associated with the cosmological par-
ticle horizon [62, 63] which provides due to causality a
maximum measurable length scale in the Universe. The
particle horizon corresponds to the length scale of the
boundary between the observable and the unobservable
regions of the universe. This scale at any time defines the
size of the observable universe. The physical distance to
this maximum observable scale at the cosmic time t is
given by (see e.g [64, 65])

lmax(t) = a(t)

∫ t

0

c dt

a(t)
(1.2)

where a(t) is the cosmic scale factor. For the best fit
ΛCDM cosmic background at the present time t0 we have

lmax(t0) ' 14Gpc ' 1026m (1.3)

This existence of such a maximum measurable length
would lead to modified version of the GUP of the form 1

[1]

∆x∆p ≥ ~
2

1

1− α∆x2
(1.4)

As shown in Fig. 1, this GUP indicates the existence of
maximum position uncertainty (see Ref.[1])

lmax ≡ ∆xmax = α−1/2 (1.5)

due to the divergence of the RHS of eq. (1.4). As shown
in Fig. 1 the existence of a maximum length scale is
associated with the presence of a minimum momentum
scale ∆pmin.

The GUP (1.4) originates from a commutation relation
of the form

[x, p] = i~
1

1− αx2
(1.6)

It is straightforward to show (see in Appendix A) that
this commutation relation leads to the GUP (1.4) us-
ing the general uncertainty principle for the pair of non-
commuting observables x, p

∆x∆p ≥ ~
2
| 〈[x̂, p̂]〉 | (1.7)

with

∆x ≡
√〈

(x̂− 〈x̂〉)2
〉

(1.8)

1 A perturbative version of this GUP was introduced in [66] as

∆x∆p ≥ 1 + α∆x2

L2
∗

(where α is a constant of order unity and

L∗ is the characteristic, large length scale) and called extended
uncertainty principle (EUP) by many authors [53, 66–73]. Here
we keep the notation ‘GUP’ instead of ‘EUP’ for consistency with
Ref. [1].
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FIG. 1. The deformation of the HUP in accordance with eq.
(1.4) after rescaling to dimensionless form using a character-
istic length scale of the quantum system (from Ref. [1]).

∆p ≡
√〈

(p̂− 〈p̂〉)2
〉

(1.9)

where x̂, p̂ are the operator representations of the observ-
ables x, p .

The commutation relation (1.6) may be represented as
shown in Appendix A by position and momentum oper-
ators of the form

p =
1

1− αx2
0

p0 = (1 + αx2
0 + α2x4

0 + ...)p0 (1.10)

x = x0 (1.11)

where x0 and p0 are the usual position and momentum
operators satisfying the Heisenberg commutation relation
[x0, p0] = i~.

The representation (1.10), (1.11) may be used to solve
the Schrodinger equation for simple quantum systems to
find the dependence of the energy spectrum on the max-
imum measurable scale lmax. Such an analysis has in-
dicated [1] that the current cosmic particle horizon is
too large to lead to any observable effects in present day
quantum systems. This however is not necessarily the
case in the Early Universe when the particle horizon scale
is much smaller and could leave an observable signature
in the quantum generation of the primordial fluctuations
during inflation. Thus, in the present analysis we wish
to address the following questions

• What is the deformation of the scale invariant spec-
trum of perturbations produced during inflation
due to the Heisenberg algebra deformation (1.6)
corresponding to the existence of a maximum mea-
surable scale?
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• What constraints can be imposed on the fundamen-
tal parameter α = l−2

max from the observed power
spectrum of primordial fluctuations?

The structure of this paper is the following: In the
next section II we consider a simple harmonic oscillator
in the presence of a large maximum measurable scale
and find the variance of the position as a function of
the parameter α and the corresponding variance in the
context of the HUP (α = 0). In section III we generalize
this analysis to the case of systems with infinite degrees
of freedom (fields) and derive the spectrum and the spec-
tral index of tensor and scalar perturbations generated
during inflation as a function of the parameter α and of
the corresponding spectrum obtained in the context of
the HUP. In section IV we use the derived theoretical
expression for the (running) spectral index along with
the corresponding observationally allowed range of the
index as a function of the scale k to derive constraints
on the fundamental parameter α of the GUP. Finally
in section V we conclude, summarize and discuss the
implications and possible extensions of our analysis.

II. TOY MODEL: THE POSITION VARIANCE
OF THE HARMONIC OSCILLATOR UNDER

GUP

In order to quantize the simple harmonic oscillator un-
der the assumption of the GUP (1.4) we need to general-
ize the expressions of the creation and annihilation oper-
ators â† and â in terms of x, p so that the commutation
relation [74]

[â, â†] = 1 (2.1)

is retained while at the same time the GUP commutation
relation (1.6) is also respected. Thus, in order to satisfy
these conditions, we generalize the analysis of Refs. [75,
76] which applies to the GUP (1.1) and define

â =
1√
2~ω

(ω [x+ f(α, x)] + ip) (2.2)

â† =
1√
2~ω

(ω [x+ f(α, x)]− ip) (2.3)

where f(α, x) is a function chosen so that the commuta-
tion relations (2.1) and (1.6) are respected.

It is straightforward to show that the following func-
tion satisfies the aforementioned conditions simultane-
ously

f(α, x) =

∞∑
n=1

(−α)n

2n+ 1
x2n+1 (2.4)

while it reduces to 0 in the limit α→ 0 as it should.

Thus, we can rewrite eqs.(2.2) and (2.3) as

â =
1√
2~ω

(
ω

1√
α
arctan(

√
αx) + ip

)
(2.5)

â† =
1√
2~ω

(
ω

1√
α
arctan(

√
αx)− ip

)
(2.6)

and the p and x operators are

p = −i
√

~ω
2

(
â− â†

)
(2.7)

x =
1√
α
tan

(√
~α
2ω

(â+ â†)

)
(2.8)

Using tanx = x+ x3

3 + 2x5

15 + ... , we have

x = x0 +
αx3

0

3
+

2α2x5
0

15
+ ... (2.9)

where

x0 =

√
~

2ω
(â+ â†) (2.10)

is the position operator in the case of the HUP (α = 0).
Keeping the lower order terms in α (assuming α~

6ω � 1)
we obtain

x = x0 +
αx3

0

3
⇒ x =

√
~

2ω
(â+ â†)

[
1 +

α~
6ω

(â+ â†)2

]
(2.11)

For α = 0 we have

x0 = υ(ω, t)ã+ υ∗(ω, t)ã† (2.12)

where

υ(ω, t) =

√
~

2ω
e−iωt (2.13)

is the properly normalized solution of the classical evolu-

tion equation of the harmonic oscillator d2υ
dt2 + ω2υ = 0.

Therefore the position operator may be expressed as

x =
(
υã+ υ∗ã†

) [
1 +

α

3
(υã+ υ∗ã†)2

]
(2.14)

Thus the variance of the position in the ground state
takes the form

〈|x|2〉 ≡ 〈0|x†x|0〉 ⇒ 〈|x|2〉 = |υ(ω, t)|2
[
1 + 2α|υ(ω, t)|2

]
(2.15)
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which reduces to the familiar result for α = 0 (see e.g.
[77, 78]).

In the next section we generalize the above analysis to
the case of quantum field fluctuations involving infinite
degrees of freedom aiming to derive the perturbation
power spectrum generated during inflation in the context
of the GUP.

III. PRIMORDIAL SPECTRA OF
COSMOLOGICAL FLUCTUATIONS WITH GUP

According to the decomposition theorem [79] the per-
turbations of each type evolve independently (at the lin-
ear level) and we can treat tensor (T) and scalar (S)
perturbations of the metric separately. Therefore for
spatially flat Friedmann-Robertson-Walker (FRW) back-
ground plus the perturbations we can write

ds2
T = a2

[
−dτ2 + (δij +Hij)dx

idxj
]

(3.1)

and in conformal Newtonian gauge [80]

ds2
S = a2

[
−(1 + 2Ψ)dτ2 + δij(1 + 2Φ)dxidxj

]
(3.2)

where a is the scale factor, τ is the conformal time, Ψ
corresponds to the gravitational potential of the pertur-
bations, Φ is the perturbation of the spatial curvature2

and Hij is the tensor perturbation which has the form 3

[Hij ] =

 h+ h× 0
h× −h+ 0
0 0 0

 (3.3)

The classical evolution equations for the tensor mode
perturbations hT (where T = +,× for two polarization
states [82]) of the FRW metric during inflation in confor-
mal time are obtained from the linearized Einstein equa-
tions and may be written as [83]

h′′T + 2
a′

a
h′T + k2hT = 0 (3.4)

where primes denote derivatives with respect to τ . This
becomes a simple harmonic oscillator equation by defin-
ing

h̃T ≡
ahT√
16πG

(3.5)

and eq. (3.4) takes the form

h̃′′T + ω2h̃T = 0 (3.6)

where

ω2 = k2 − a′′

a
(3.7)

During slow roll inflation when the Hubble rate H is
nearly constant [84], the conformal time is [78, 85]

τ ' −1

aH
(3.8)

Thus we obtain

ω2 = k2 − 2

τ2
(3.9)

We now quantize the tensor field fluctuations by promot-
ing them to operators and imposing a generalized field
commutation (GFC) relation [86, 87] corresponding to
(1.6). This GFC takes the form (~ = 1)

[h̃T (k), πh̃T
(k′)] = iδ(k− k′)

1

1− µh̃2
T (k)

(3.10)

where πh̃T
is the conjugate momentum to h̃T which is

given by

πh̃T
= h̃′T −

a′

a
h̃T (3.11)

and µ is a GFC parameter

µ ' α2 = l−4
max (3.12)

where α is the parameter of the GUP (1.4). Thus we
have an infinite number of decoupled harmonic oscillators
corresponding to eq. (3.6) which may be quantized in
accordance with the GFC (3.10). Using the results of the
previous section we connect the field normal modes with
the creation and annihilation operators which satisfy the

commutation relation [âk, â
†
k′ ] = δ3(k− k′), as

h̃T (k) =
1
√
µ
tan

(√
µ

2ω
(âk + â†k)

)
(3.13)

πh̃T
(k) = −i

√
ω

2

(
âk − â†k

)
(3.14)

and obtain the variance of the perturbations as

2 In the absence of anisotropic stress (Π = 0) we have Ψ = −Φ
[81]

3 It has this form in a coordinate system where wavevector k points
along the z-axis.
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〈h†T (k, τ)hT (k′, τ)〉 =
16πG

a2
|υ(k, τ)|2

[
1 + 2µ̄|υ(k, τ)|2

]
(2π)3δ3(k− k′) ≡ (2π)3Ph(k)δ3(k− k′) (3.15)

where Ph is the power spectrum of the primordial tensor
perturbations of the metric, the Dirac delta function en-
forces the independence of the different modes (h(k, τ) is
uncorrelated with h(k′, τ) if k 6= k′ ) and

µ̄ = µV∗ (3.16)

Here the volume scale V∗ = δ3(0) ' l3max is an in-
frared regulator [88] while υ satisfies the Mukhanov-
Sasaki equation [89–91]

υ′′(k, τ) + (k2 − a′′

a
)υ(k, τ) = 0 (3.17)

During slow-roll inflation with initial condition υ(k, τ) =
1√
2k
e−ikτ and by virtue of eq. (3.8) (as in spatially flat de

Sitter background) we obtain the Bunch-Davies solution
of eq. (3.17) [78, 92–94]

υ(k, τ) =
e−ikτ√

2k

(
1− i

kτ

)
(3.18)

Using eq. (3.15) we can write the primordial power spec-
trum for tensor modes as

Ph(k) = P
(0)
h (k)

[
1 +

µ̄a2

8πG
P

(0)
h (k)

]
(3.19)

where

P
(0)
h (k) =

16πG

a2
|υ(k, τ)|2 (3.20)

Once k|τ | < 1 , the mode leaves the horizon, after which
h remains constant. Thus, using eqs. (3.18) and (3.20)
we obtain

P
(0)
h (k) =

16πG

a2

1

2k3τ2
=

8πGH2

k3
(3.21)

where the equality on the second line holds because we
have assumed that H is constant and τ = − 1

aH .4

In a similar manner we may investigate scalar pertur-
bations induced by quantum fluctuations of the inflaton
scalar field φ [78, 95, 96] of the form

φ(x, t) = φ(0)(t) + δφ(x, t) (3.22)

where φ(0) is the zero-order part and δφ is the first-order
perturbation.

The fluctuations δφ of the scalar field driving inflation
evolve in conformal time τ according to the equation (see
e.g. [64])

δφ′′ + 2
a′

a
δφ′ + k2δφ = 0 (3.23)

4 We evaluate H at the time when the mode leaves the horizon.

Using the definition

ϕ = aδφ (3.24)

eq. (3.23) becomes

ϕ′′ + ω2ϕ = 0 (3.25)

with ω2 = k2 − a′′

a .
In the context of the maximal measurable length GUP

as applied to the case of the inflaton fluctuations, the
field commutation relation gets generalized as

[ϕ(k), πϕ(k′)] = iδ(k− k′)
1

1− µϕ2(k)
(3.26)

where πϕ is the conjugate momentum to ϕ which is given
by

πϕ = ϕ′ − a′

a
ϕ (3.27)

Since eq. (3.23) is identical to eq. (3.4) we can use the
result of eq. (3.19) without the factor 16πG in order to
turn the dimensionless h into a field δφ with dimensions
of mass

Pδφ(k) = P
(0)
δφ (k)

[
1 + 2µ̄a2P

(0)
δφ (k)

]
(3.28)

where

P
(0)
δφ (k) =

H2

2k3
(3.29)

In the case µ̄ = 0 eqs. (3.19) and (3.28) reduce to the
familiar results of HUP [80].

The perturbation from the scalar field driving infla-
tion δφ gets transferred to the gravitational potential Φ.
The post inflation power spectrum of Φ is related to the
horizon-crossing power spectrum of δφ via [77]

PΦ =
16πG

9ε
Pδφ (3.30)

where ε is the Hubble slow-roll parameter, defined as

ε ≡ d

dt

(
1

H

)
(3.31)

We note that the Hubble slow-roll parameter ε is equal
to the first potential slow-roll parameter εV , to leading
order in the slow-roll approximation [78, 85, 97–99]

ε ' εV ≡
1

16πG
(
V ′

V
)2 (3.32)

where V ′ is defined as the derivative of the potential V
with respect to the field φ(0).
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In the case of single-field slow-roll models of inflation
for modes which are outside the horizon (k|τ | � 1) at
the end of inflation, the primordial spectra of scalar and
tensor perturbations do not depend on time5 and it is
conventional to write [85]

PS(k) ≡ k3PΦ(k) ≡ ASkns−1 (3.33)

PT (k) ≡ k3Ph(k) ≡ AT knT (3.34)

where AS(AT ) is the scalar (tensor) amplitude and
ns(nT ) is the scalar (tensor) spectral index. The special
case with ns = 1 (nT = 0) results in the scale-invariant
spectrum.

From eqs. (3.19) and (3.34) we obtain

PT (k) = P
(0)
T (k)

[
1 +

µ̄a2

8πGk3
P

(0)
T (k)

]
(3.35)

where (for k|τ | � 1 )

P
(0)
T (k) =

8πG

a2τ2
= 8πGH2 (3.36)

It is straightforward to show at the horizon crossing time
(k = aH)

PT (k) = P
(0)
T (k)

(
1 +

µ̄

k

)
(3.37)

In eq. (3.34) the tensor spectral index is defined as

nT ≡
d lnPT
d ln k

(3.38)

Also by virtue of eq. (3.31) we have that the logarithmic
derivative of Hubble rate at horizon crossing is

d lnH

d ln k
= −ε (3.39)

Therefore using eqs. (3.36), (3.37) and (3.38) we obtain
that the tensor spectral index runs as

nT = −2ε− µ̄

k
(3.40)

Similarly, from eq. (3.28) and using PS = k3 16πG
9ε Pδφ we

obtain at horizon crossing time (k = aH)

PS(k) = P
(0)
S (k)

[
1 +

9µ̄ε

8πGH2k
P

(0)
S (k)

]
(3.41)

where

P
(0)
S (k) =

8πGH2

9ε
(3.42)

5 We assume that non-adiabatic pressure terms are negligible.

It is straightforward to show that the

PS(k) = P
(0)
S (k)

(
1 +

µ̄

k

)
(3.43)

Notice that Eqs. (3.41) and (3.42) have a generic form
which could have been guessed even on the basis of di-
mensional analysis. However, here we have demonstrated
in detail that these equations are not simply well mo-
tivated parametrizations based on dimensional analysis.
Instead they constitute the unique and generic prediction
of the inflationary power spectrum of fluctuations gener-
ated in the context of the GUP eq. (3.26) as derived
in the context of our analysis. Thus there is no room to
modify eq. (3.41) without violating the physical principle
corresponding to the GUP (3.26).

In eq. (3.33) the scalar spectal index is defined as

ns − 1 ≡ d lnPΦ

d ln k
(3.44)

Now using the eq. (3.32) and the Hubble slow-roll pa-
rameter [99]

δ ≡ 1

H

d2φ(0)/dt2

dφ(0)/dt
(3.45)

we have that the logarithmic derivative of the slow-roll
parameter ε is

d ln ε

d ln k
= 2(ε+ δ) (3.46)

Therefore using eqs. (3.42), (3.43) and (3.44) we obtain
that the scalar spectral index runs as

ns = 1− 4ε− 2δ − µ̄

k
(3.47)

Alternatively using the the second potential slow-roll

parameter η ≡ 1
8πG

V ′′

V and the relation δ = ε − η6 [85],
we obtain

ns = 1− 6ε+ 2η − µ̄

k
(3.48)

In the next subsection we use observational scalar spec-
tral index data to obtain bounds on µ̄.

IV. OBSERVATIONAL CONSTRAINTS

The predicted form of the running spectral index eq.
(3.48) reduces to the standard form [84, 85] for the HUP

6 The second slow-roll parameter δ and the second potential slow-
roll parameter η are sometimes defined as η and ηV respectively,
so that the relation has the form η = εV − ηV
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HUP vs GUP best fit on the observed data

μ=0

μ=0.9×10-6

μ=-5×10-5

-1 σ: μ=-6.7×10-6

+1 σ: μ=8.5×10-6

μ=5×10-5

ns=1-λ-
μ

k

Heisenberg Uncertainty Principle best fit

Generalized Uncertainty Principle best fit

10-4 0.001 0.010 0.100 1
0.7

0.8

0.9

1.0

1.1

k [h/Mpc]

n
s

FIG. 2. The best fit forms of the scalar spectral index eq. (4.2) (blue curve for HUP and red curve for GFC eq. (3.26)) on the
observed data (thick dots). The green and brown continuous curves correspond to −1σ and +1σ deviation of the parameter µ̄
respectively. The light green and the orange dashed curves correspond to observationally allowed range for the spectral index
nS at approximatelly 2σ level.

(µ̄ = 0) and may be used along with observational con-
straints of the spectral index to impose constraints on
the GFC parameter µ̄.

The parameters that can lead to deviations from scale
invariance of the spectral index are the GFC parameter
µ and the slow-roll parameter λ defined as

λ = 6ε− 2η (4.1)

Thus using eq. (3.48), the scalar spectral index takes
the form

ns = 1− λ− µ̄

k
(4.2)

In order to impose constraints on the parameters λ, µ̄
we use constraints on the scalar spectral index of Ref.
[100] which are based on the angular power spectrum
data of the 5 year Wilkinson Microwave Anisotropy
Probe (WMAP5) Cosmic Microwave Background (CMB)
temperature and polarization, the Large Scale Structure
(LSS) data of the Sloan Digital Sky Survey (SDSS) data
release 7 (DR7) Luminous Red Galaxy (LRG) power
spectrum, and the Lyman-alpha forest (Lya) power spec-
trum constraints. The allowed range on ns is shown in
Fig. 2.

Expressing this range as a set of N = 60 datapoints
leads to constraints on the parameters λ, µ̄ through the
maximum likelihood method [101]. As a first step for the
construction of χ2, we consider the vector [102]

V i(ki, λ, µ̄) ≡ nobss,i (ki)− nths,i(ki, λ, µ̄) (4.3)

where nobss,i (ki) and nths,i(ki, λ, µ̄) are the observational
and the theoretical spectral index at wavenumber ki re-
spectively ( i = 1, ..., N with N corresponds to the num-
ber of datapoints). Then we obtain χ2 as

χ2 = V iFijV
j (4.4)

where Fij is the Fisher matrix [103] (the inverse of the
covariance matrix Cij of the data).

The N ×N covariance matrix is assumed to be of the
form

[Cij ] =

 σ2
1 0 0 · · ·

0 σ2
2 0 · · ·

0 0 · · · σ2
N

 (4.5)

where σi denotes the 1σ error of data point i.
The 68.3% (1σ), 95.4% (2σ) and 99.7% (3σ) confidence

contours in the λ and µ̄ parametric space are shown in
Fig. 3. The contours correspond to confidence regions
obtained from the full data set (left panel), the large
scales (k < 0.015 h/Mpc) data (middle panel), and the
small scales (k > 0.015 h/Mpc) data (right panel). The
1σ-3σ contours for parameters λ and µ̄ correspond to the
curves χ2(λ, µ̄) = χ2

min+2.3, χ2(λ, µ̄) = χ2
min+6.17 and

χ2(λ, µ̄) = χ2
min + 9.21 respectively. Notice (in Fig. 3)

that the large scales are most efficient in constraining the
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FIG. 3. The 1σ − 3σ contours in the (λ, µ̄) parametric space. The contours describe the corresponding confidence regions
obtained from the full data set (left panel), large scales (k < 0.015 h/Mpc) data (middle panel), and small scales (k > 0.015
h/Mpc) data (right panel). The red and green points correspond to the HUP and GUP best fits respectively.

GFC parameter µ̄. The largest scales that correspond to
small k give the largest value for the correction µ̄/k of the

power spectrum and the spectral index eq. (4.2). Thus
it is these scales that are more sensitive to the correction
and lead to the strongest constraints as shown in Fig. 3.

GFC

Parameter Full Large Scales Small Scales
Data (1σ) Data (1σ) Data (1σ)

µ̄ 0.9± 7.6 2.1± 8.1 −149± 535
[×10−6h/Mpc] [×10−6h/Mpc] [×10−6h/Mpc]

λ 0.042± 0.0067 0.039± 0.0095 0.048± 0.0146

TABLE I. The best fit values of parameters λ and µ̄ with the
corresponding 1σ standard deviations for the fitted spectral
index on the observed data [100].

In Table I we show the best fit values of parameters λ and
µ̄ with the corresponding 1σ standard deviations. In the
case of HUP (µ̄ = 0) the result agrees with the current
best fit values of the scalar spectral index from Planck
which indicate that λ ' 0.04 [104] .

Using eq. (3.12) and the 1σ constraint on the GFC pa-
rameter µ̄ . 10−5h/Mpc we can obtain the single GUP
free parameter as

α = µ̄2 . 10−54m−2 (4.6)

and the corresponding maximum measurable scale as

lmax = µ̄−1 & 1027m (4.7)

This result is one order of magnitude larger than the
present day particle horizon (lmax(t0) ' 1026m) given in
eq. (1.3). However, at about 2σ level the physically antic-
ipated maximum measurable scale (the particle horizon
scale) is included in the observationally allowed range of
the maximum measurable scales. Thus, the emergence of
the parameter µ in (3.10) and (3.26) as a consequence of a
maximum measurable length associated with the cosmo-
logical particle horizon remains an observationally viable
hypothesis. The parameter µ̄ is a fundamental parame-
ter connected to the GUP (3.26) and it is not necessarily
connected with the detailed physics of inflation. Thus our
analysis can not directly impose constraints on models of
inflation even though there may be an indirect connec-
tion of the present day value of lmax with the scale of
inflation. Such a connection would require a time depen-
dent form fo lmax and is beyond the scope of the present
analysis.

V. CONCLUSIONS-DISCUSSION

We have derived the generalized form of the primor-
dial power spectrum of cosmological perturbations gen-
erated during inflation due to the quantum fluctuations
of scalar and tensor degrees of freedom in the context
of a generalization of quantum mechanics involving a
maximum measurable length scale. The existence of
such a scale is motivated by the existence of the par-
ticle horizon in cosmology and would lead to a gener-
alization of the uncertainty principle (GUP) to the form
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∆x∆p ≥ ~
2

1
1−α∆x2 , which implies the existence of a max-

imum position and a minimum momentum uncertainty
(infrared cutoff)[1]. The GUP implies a generalization of
the commutation relation between conjugate operators
including fields and their conjugate momenta. For ex-
ample we showed that the generalized field commutation
(GFC) relation between a scalar field and its conjugate
momentum [ϕ(k), πϕ(k′)] = iδ(k − k′) 1

1−µϕ2(k) which is

implied by the GUP leads to a modified primordial spec-

trum of scalar perturbation are PS(k) = P
(0)
S (k)

(
1 + µ̄

k

)
with a running spectral index of the form ns = 1−λ− µ̄

k
with λ = 6ε− 2η.

Using cosmological constraints of the scalar perturba-
tions spectral index as a function of the scale k [102]
we imposed constraints on the parameter of the GFC
µ̄ ' l−1

max. We found that µ̄ = (0.9 ± 7.6) · 10−6h/Mpc
at the 1σ level which corresponds to an upper bound
scale lmax larger than the present horizon scale. At
2σ level we find that the observationally allowed range
of lmax includes the current cosmological horizon scale
lmax ' 1026m. Thus at 2σ level, the derived observa-
tional constraints on lmax are consistent with the physi-
cally anticipated maximum measurable scale which is the
current cosmological particle horizon and are much more
powerful than the corresponding constraints obtained us-
ing laboratory data measuring the energy spectrum of
simple quantum systems obtained in Ref. [1].

An interesting extension of our analysis would be the
consideration of other types of GUP (e.g. the UV cut-
off GUP of eq. (1.1)) and the derivation of constraints
on the corresponding fundamental parameters using cos-
mological data and constraints on the power spectrum
index.

An alternative approach in deriving the effects of a
GUP on the primordial perturbation spectrum involves
the generalization of the position and momentum
operators as described in the Introduction, but with an
ultraviolet rather than infrared cutoff, while keeping
the field theoretical commutation relations unchanged

[105, 106]. According to [105, 106], this approach would
also lead to a modification of the evolution of the field
perturbation modes eq. (3.23) even though this equation
is derived before quantization at the classical level. This
approach is questionable as it is implemented at the
classical level. Nevertheless, it would be of interest to
extend our analysis to include such effects of modifica-
tion of the classical evolution of field perturbations due
to a generalization of position and momentum operators.

Supplemental Material: The Mathematica file
used for the numerical analysis and for construction of
the figures can be found in [107].
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Appendix A: From generalized commutator to
generalized uncertainty

We assume the commutation relation of the form

[x, p] = i~
1

1− αx2
' i~(1 + αx2) (A1)

where the last approximate equality is applicable under
the condition αx2 � 1. The commutation relation (A1)
may be represented by position and momentum operators
of the form

p =
1

1− αx2
0

p0 = (1 + αx2
0 + α2x4

0 + ...)p0 (A2)

x = x0 (A3)

where x0 and p0 are the usual position and momentum
operators satisfying the Heisenberg commutation relation
[x0, p0] = i~.

The proof that the commutation relation (A1) may be represented by position and momentum operators of the
form (A2) and (A3) is

[x, p] = [x0, (1 + αx2
0 + α2x4

0 + ...)p0] = [x0, p0] + αx2
0[x0, p0] + α2x4

0[x0, p0] + ... = [x0, p0]
1

1− αx2
0

= i~
1

1− αx2
(A4)

Also, the proof that the commutation relation (A1) leads to a GUP of the form (1.4) is

∆x∆p ≥ ~
2 <

1
1−αx2 >= ~

2 (1 + α < x2 > +α2 < x4 > +...) ≥ ~
2 (1 + α < x2 > +α2 < x2 >2 +...) =

~
2 (1 + α(∆x2+ < x >2) + α2(∆x2+ < x >2)2 + ...) = ~

2
1

1−α(∆x2+<x>2)
≥ ~

2
1

1−α∆x2 ⇒

∆x∆p ≥ ~
2

1
1−α∆x2

(A5)
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