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We investigate the effects of local vibrational excitations in the nonsymmetrized current noise S(w) of a
nanojunction. For this purpose, we analyze a simple model—the Holstein model—in which the junction is
described by a single electronic level that is coupled to two metallic leads and to a single vibrational mode. Using
the Keldysh Green’s function technique, we calculate the nonsymmetrized current noise to the leading order in
the charge-vibration interaction. For the noise associated to the latter, we identify distinct terms corresponding
to the mean-field noise and the vertex correction. The mean-field result can be further divided into an elastic
correction to the noise and in an inelastic correction, the second one being related to energy exchange with the
vibration. To illustrate the general behavior of the noise induced by the charge-vibration interaction, we consider
two limit cases. In the first case, we assume a strong coupling of the dot to the leads with an energy-independent
transmission, whereas in the second case we assume a weak tunneling coupling between the dot and the leads such
that the transport occurs through a sharp resonant level. We find that the noise associated to the vibration-charge
interaction shows a complex pattern as a function of the frequency w and of the transmission function or of
the dot’s energy level. Several transitions from enhancement to suppression of the noise occurs in different
regions, which are determined, in particular, by the vibrational frequency. Remarkably, in the regime of an
energy-independent transmission, the zero-order elastic noise vanishes at perfect transmission and at positive
frequency, whereas the noise related to the charge-vibration interaction remains finite, enabling the analysis of

the pure vibrational-induced current noise.
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I. INTRODUCTION

The measurement of fluctuations in macroscopic observ-
ables provides information about the microscopic dynamics
not accessible by the measurement of averaged quantities, such
as, for instance, the charge current [1-3].

In quantum devices, different sources contribute to these
fluctuations. At nonzero temperature, thermal noise causes the
fluctuations of the occupation number of energy levels forming
the spectrum. However, the thermal noise is directly related to
the conductance via the fluctuation-dissipation theorem, and
hence its measurement contains equivalent information related
to the conductance [4]. The situation changes when a voltage
is applied to the quantum device. Then the charge current
is in principle time-dependent due to the discreteness of the
charge [1,5] unavoidably appearing in nanoscale conductors.
For example, an interesting quantity is the zero-frequency
noise or shot noise, which has been useful for a wide range of
phenomena [1,6]. The shot noise has been employed to reveal
the transmission channels in molecular junctions [7-10] or the
unconventional quantum of charge in the fractional quantum
Hall phase [11-13].

More generally, the quantum nature of the charge cur-
rent constitutes a fundamental source of fluctuations. which
manifests in a finite-frequency current noise S(w). Radiation
(photons) is produced by charge fluctuations and, indeed,
the current noise can be related to the photon exchange. As
a quantum property, S(w) can be associated to the rate of
emission and absorption of photons at the frequency w [5].
The part of the noise at negative frequencies corresponds
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to the absorption rate of photons by the quantum device,
whereas at positive frequency, the noise is linked to the rate of
emitted photons. To measure this nonsymmetrized noise, e.g.,
to distinguish between photon absorption and emission, one
has to use a quantum detector [14—16]. Compared to thermal
noise, additional information is now contained beyond the one
encoded by the conductance.

Molecular-scale devices usually retain their microscopic
features, which are then observable in the transport measure-
ments. Apart from the purely electronic contributions, other
degrees of freedom, such as vibrational modes, can be accessed
by spectroscopy. In this context, the single-impurity Holstein
model [17-29] has become the paradigmatic model to discuss
the effects of charge-vibration interaction in such systems.
Here, one assumes a linear coupling between the electron occu-
pation on the dot and the oscillation’s amplitude of a harmonic
oscillator representing the local vibration. This model has been
theoretically investigated in different regimes in single [30-52]
and double quantum dots [53-59] and in particular using
diagrammatic techniques [60-67], a resummation approach
[68,69], and numerical and nonperturbative methods [70-74].

Most of the above-mentioned theoretical studies focused
on the current or nonequilibrium phonon occupation. The
finite-frequency current noise in quantum dots has been studied
in literature with various theoretical approaches and in different
kinds of contacts, in particular, normal contacts [75-82],
ferromagnetic contacts [83,84], and hybrid-superconducting
contacts [85]. Experimentally, both zero-frequency [86—
89] and finite-frequency measurements [90-93] have been
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FIG. 1. Sketch of a quantum dot coupled to a oscillator of
frequency wy. The dot’s energy level is gy. The quantum dot is in
contact with two normal contacts with the tunneling rates I'; and [,
respectively.

HE &

reported. The case of shot noise of a quantum dot interacting
with a local vibration interacting, however, has been less
investigated, with few exceptions, such as, for instance, in the
experiment of Ref. [94] that reported evidences of shot noise
correction associated to the local vibration.

In this work, we discuss the nonsymmetrized finite-
frequency current noise S(w) of a quantum dot with charge-
vibration interaction, viz. the Holstein model, and with the dot
in contact with two normal leads; see Fig. 1. S(w) encodes the
information about the possibility to absorb or emit a photon
by the whole systems, formed by the mesoscopic conductor
(the quantum dot) and the local vibration. In our approach we
consider the weak coupling regime and perform a perturbative
expansion in the charge-vibration coupling A, viz. S(w) =
So(w) + S1(w) with S;(w) scaling as A2, Although we derive
a general formula for S;(w), we focus to two limit cases. In
the first case, we assume an energy-independent transmission
T, valid in the limit of strong tunneling coupling or open
dot regime. In the second case, we assume a weak tunneling
coupling between the dot and the leads such that the transport
occurs through a sharp resonant level with the dot’s energy
level e9. We analyze S;(w) as a function of T or of g, for the
two cases, and in different regimes of the vibrational frequency,
i.e., wg > eV or wy < eV, with eV the bias voltage.

For the first limit case, we find several transitions from
enhancement to suppression of the noise, occurring in different
frequency ranges. In particular, at fixed-frequency w, S;(®w)
shows a nonmonotonic behavior as a function of T, with
S1(w) > 0 at small or large transmission and negative values
S1(w) < 0 in the intermediate range. Remarkably, for w > 0,
the zero-order elastic noise Sy(w) vanishes at T =~ 1, whereas
S1(w) is finite, enabling the possibility to investigate the pure
vibrational-induced current noise. For the second limit case,
we find qualitatively similar behaviors, although the relevant
contribution of S;(w) is strongly localized in correspondence of
characteristic lines which are associated to the resonant trans-
port regime. Interestingly, at fixed-frequency w, vibrational
side bands appear as varying the dot’s level &.

The paper is organized as follows. In Sec. II, we introduce
the model and the Keldysh Green’s function technique. Then,
in Sec. III, we derive the nonsymmetrized current noise S;(w)
and analyze the different kind of corrections according the
technical diagrammatic approach. Section III contains the main
result of the manuscript, the general formula for S;(w) of the
Holstein model. In Secs. IV and V, we discuss the two limit
cases, the energy-independent transmission regime and the

resonant transport, respectively. Section VI contains the final
remarks.

II. MODEL

In this section, we discuss a model of a quantum dot between
conducting contacts (leads) as shown in Fig. 1.

We consider the electrons on the quantum dot occupying a
spinless state with energy & and the annihilation and creation
operators d and d' on the quantum dot. The occupation number
reads iy = d'd. A single harmonic mode of the oscillator
with frequency wy has the bosonic annihilation and creation
operators b and b'. We assume an interaction between the
charge and the amplitude of the oscillator with coupling
strength A. The full Hamiltonian is given by

H = H + H, + H, + sofig + ritg(b' + b) + hwob'b, (1)

with the last two terms describing the charge-vibration cou-
pling and the oscillator. The Hamiltonians of the lateral leads
are given by H = Y, &4éle and H, = Y, &4/ with the
energy &, 1 = & — o Witha = (I,r) referring to the chemical
potential. The annihilation operators are given by ¢ for the
left and 4y for the right lead. The tunneling Hamiltonian is
H = Zk(tlé,ic? + t,&ic? + H.c.) with the tunneling amplitudes
between the leads and the dot #; and 7,.. In the rest of our analysis,
we assume the wide-band approximation and consider the
tunnel rates between the quantum dot with the normal contacts
Iy = n|t>0 and T, = 7|t,|* p,, respectively, with p; and p,
the electron density of states at the Fermi level of the leads.

A. Electron Green’s functions without charge-vibration
interaction (A = 0)

In this subsection we recall the exact results for the electron
Green'’s functions on the dot without charge-vibration interac-
tion. These Green’s functions denoted by G(t,t’) constitute
the building blocks by which we can express the frequency-
dependent current noise in presence of the charge-vibration
interaction.

Since we are interested in the nonequilibrium properties, we
defined the contour-ordered Green’s functions on the quantum
dot as G(r,7) = —i(T.d(v)d!(r")) with the times 7 and 7’
on the Keldysh contour and the contour-ordering operator
T. [95,96]. We then transform the contour-ordered Green’s
functions to the real time and define the electron Green’s
function in Keldysh space as

R 11 /
6= (G

with the elements of the matrix defined as G!'(z,t') =
—i(Td®di (")), G*(t.t')=—i(Tdn)di(t")), G2@t,1)=
i(di(tHd(t)), and G*'(¢t,r') = —i(d(t)d!(t))). In the above
expression, the upper indexes 1 or 2 refer to the po-
sition of the times 7 and ¢ on the Keldysh contour
[95,96]. The real time-ordering and antitime ordering op-
erators are denoted by 7 and 7, respectively. In addi-
tion to the Green’s function in Eq. (2), we define the re-
tarded and advanced Green’s functions as G®(¢,t') = —i0(t —
NUd@),d@))), GAt,t") = i0(" — 1){{d(1),d(t)}), with the
anticommutator {, }. These Green’s functions are related to

Glz(l‘,[,)>, (2)

Gzz(l,l/)
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the ones in Eq. (2) by G'!(t,t') = GRA(t,t)) + G'>2(¢,t')
and G**(t,t") = G*"'2(t,t') — G®A(t,t") (see Appendix A for
further details).

From the contour-ordered Green’s function, one obtains the
Dyson equation

G(r,7) = g(r,7) + Z /dtldrzg(t,rl)

a=lr
X Zo(11,12)G(12,7"), 3

with g(z,7’) the unperturbed dot’s Green’s functions without
tunneling between the dot and the leads H, =0 and the
self-energies of the left and right leads ¥,(z,7") [@ = (I,r)],
with respect to the tunneling interaction. Similar to the Green’s
functions, the self-energy appearing in Eq. (3) in Keldsyh space

are defined as
. sy  —=x12(t,1)
Sty={ " ), “)
_Ea (t7t) Za (tat)
with a minus sign on the off-diagonal elements corresponding
to the different position of  and ¢’ on the Keldsyh contour. After
a Fourier transformation, we obtain for the Green’s functions

GRe)=[e —eo+i(Ty+T,)]7", S

GlZ,ZI(S) — GR(S)(EIIZQI(S) + 232,21(8))GA(8)’ (6)

with GR(e) = G(¢e)" and the self-energies of the leads
T,7(6) = 2iTq fule), ™

22 (e) = —2iTL[1 — fu(e)], )

and the Fermi function f,(¢) = {1 — exp[B(e — uy)]} ™", with
the chemical potential of the left and right lead p, and the
inverse of the temperature f.

B. Phonon Green’s functions without charge-vibration
interaction (A = 0)

In this subsection we recall the unperturbed phonon Green’s
function for a single harmonic oscillator, which will be useful
to derive the frequency-dependent current noise in the presence
of charge-vibration interaction. We introduce the symmetrized
bosonic operator A(t) = bT(t) + b(¢) and define the phonon
Green’s function as D(z,7') = —i (T.A(t)A'(¢")) with the
time variable 7,7” on the Keldysh contour. Then, we change
from the contour variable t to the real time ¢ and write the
phonon Green’s function in the Keldysh space as a matrix,

A o (D@t)  DRr)
D(t7t ) - (DZI(I,[/) D22(t,l,) s (9)
with the phonon Green’s functions D'(z,t') =

—i(TAWAIW), D?(1,1) = —i(TADAT()), DP@t,1") =
—i(AT(tHA@t)), and D?'(t,t') = —i(A(t)AT(¢")). The bare
phonon Green’s functions read

i)=Y |:—i7'r(2n3 + 1DS(e + swp) £ P

s :|
bl
—t &+ sy

Dii(e) = —2mi[(ng + 1)8(e £ wo) + npdle Fawp)l, (10)

with the Bose distribution function ng = ng(wy) =
[exp(Bwo) — 117! and the Cauchy principal value of the
integral denoted by P. For simplicity, we concentrate
hereafter, in the main text, to the case of zero temperature of
the vibration ng = 0.

III. NONSYMMETRIZED CURRENT NOISE

In this section, we summarize the perturbative expansion
of the nonsymmetrized current noise S(w), with respect to the
charge-vibration interaction.

We start with the definition of S(w) and then perform a
perturbative expansion in the charge-vibration coupling up to
the leading order S;(w) 22, All terms of this expansion are
shown in a diagrammatic representation. We obtain that the
S1(w) correction can be separated into a mean-field noise and
a vertex correction.

A. Diagrammatic approach for the noise

By using the Hamiltonian Eq. (1) we derive the current
operator which is given, in the Heisenberg picture, by the
expression

N dei ~ ”
i === Y ulelndn) - d'oawl. an
k

We define the nonsymmetrized—frequency-dependent—
current noise on the left lead as

[o¢]

S(w) = / d(t = )e LML), (12)
—0oQ0

The nonsymmetrized current correlator on the left lead can be

defined in terms of the Keldysh Green’s functions as

(L) = S (¢t t>t, (13)

with the real times ¢ and ¢’. In Eq. (13), we have introduced the
Green’s functions defined on the Keldysh contour and which
is expressed, generally, in terms of the times t and 7’ on the
Keldysh coutour

S(t,v") = (TL(D)i(T)). (14)

Then, we calculate the current-current correlation function in
Eq. (14).

Without the charge-vibration coupling, the correlation func-
tion S(t,7’) can be calculated exactly. However, to include the
interaction to the oscillator, we use a perturbation expansion in
the charge-vibration coupling A, which allows us to use Wick’s
theorem and to decompose the final expression in terms of
single-particle Green’s functions. As a result, we obtain that
the correlator can be written in terms of the zero-order term
So(t,7’) o< A0 and the leading order correction S;(t,7’) o A2,
namely,

S(t,7)) = So(z,7") + Si(z,7)). (15)

Using the diagrammatic representation, the leading order
correction can be additionally decomposed into a mean-field
contribution Sy¢(7,7’) and a vertex correction, Sy.(7,7’),

S1(7,7') = Smi(7,7) + Sve(z, 7). (16)
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FIG. 2. Elements of Feynman diagrams depending on the Keldysh
contour times t and t’. The solid and dashed line represent the Green’s
function of the dot G(z,7") and the self-energy of the leftlead X, (7, t’).
The phonon propagator D(z,7’) is denoted by the wiggled line.

Furthermore, the mean-field correction can be divided into an
elastic and an inelastic contribution with the latter associated
to the absorption of a quantum energy wy by the oscillator,

Smt(7,7') = Sec(7,7') + Sin(7,7). a7

In the following, we discuss in detail the different contribu-
tions: the zero-order term Sy(z,7’), the two components of the
mean-field correction Sec(7,7’) and Si,(7,7’), and the vertex
correction Sy.(7,7’).

Before proceeding, we introduce the notation and the sym-
bol for the elemental block functions, defined in the previous
section, and appearing in the diagrammatic representation of
the noise; see Fig. 2. The contour-ordered Green’s function
of the dot G(z,t’) is denoted by a solid line, the self-energy
on the left lead X,;(7,t’) is denoted by a dashed line, whereas
the contour-ordered phonon propagator D(t,t’) is depicted as
a wiggled line.

B. Zero-order noise A = 0

The zero-order noise for a quantum dot has been studied
and well known in the literature. Here, we simply recall the
results using the diagrammatic approach.

The diagrammatic representation of the zero-order term
So(t,t’) is shown in Fig. 3 and corresponds to

4 2

So(t,7)) = %fdtldrzRe{G(r,t’)El(t’,r)
+G(r,7)Z(t, 11)G(11,72) Zi(12,7)
+G(1,)Z(11,7)G (T, 1) Zi(12, 7)), (18)

L
e <"T2 T ' Y.’lt ’E——‘ T

FIG. 3. Diagrammatic representation of Sy(z,7’) in Eq. (18). The
solid dot is for the tunneling between the left lead and the dot. The
other symbols are defined in the caption of Fig. 2.

with G(t,7") and X,(z,7’) defined in Sec. II A. The first line in
Eq. (18) corresponds to the diagram in Fig. 3(a), whereas the
second and third line correspond to the diagrams in Figs. 3(b)
and 3(c), respectively. From the expression in Eq. (18), we
transform from the contour time to the real time with the
definition of the matrices G(7,#') and £(z,¢') in Keldysh
space given by Eqgs. (2) and (4). After the calculations, we
obtain the frequency-dependent current noise,

2
So(w) = %/dS(fr(S)[l — fie—o) T (&)1 — T)y (e —w)]

+ fill — fr(e—w)Ti,(e—w)[1 — Ti,(e)]
+ £ = fr(e—o)T(e)Ti (e —w)
+ [T (&) T (e — ) + 4T} |GR (e — ) — GR ()]

x {fie)[1 — file—o)]}), (19)
with the transmission function defined as
Tup(e) = 4T, T4 GR(e)? (20)

and (o, 8) = (I,r).

As discussed in Ref. [79], one can identify to each term
of Eq. (19) single processes with an absorption or emission
of an energy quantum w, although such processes occur on
the left lead since we calculated the current-current correlator
for I,(r). Indeed, in Eq. (19), all terms are proportional to
products of Fermi functions such as f,(e)[1 — fg(e — w)],
with («,8) = (I,r). As an example, the first line in Eq. (19)
describes a process in which an electron from the right
lead is transmitted to the left lead with the emission of a
photon. Similar processes can be attributed to the second
term and to the third term of the sum inside the integral in
Eq. (19). Whereas the first three terms are proportional to the
transmission amplitude ~T7;,, the last term also contains an
additional function ~|G®(s — w) — G¥(w)|* that represents
an interference effect (see Ref. [79]).

C. Mean-field correction

The corrections proportional to A? in the perturbation
expansion are more involved. To gain some insight into the
finite-frequency current noise, we decompose it in several
terms according the diagrammatic language.

To discuss the mean-field correction Sy¢(t,7’), it is useful
to introduce two building block diagrams corresponding to the
rainbow (tb) and tapole (tp) diagram of the self-energy defined
with respect the charge-vibration interaction. In time-domain,
these objects can be written as

E0(t1, 1) =iX*D(11,0)G(11, 1), 1)

it 1) =—iA’D(11,1)G (12, 2), (22)

and their diagrammatic representation is shown in Figs. 4(a)
and 4(b), respectively.

With the use of the diagrams in Fig. 4, we can easily write
down the contour-time Feynman diagrams contributing to the
mean-field noise depicted in Fig. 5. The rectangular box in
Fig. 5 represents either the rainbow or the tadpole diagram
of Fig. 4. The diagrams can be divided into two kinds. The
first kind of diagrams, shown in Fig. 5(a), contain a single

205408-4



FINITE FREQUENCY CURRENT NOISE IN THE ...

PHYSICAL REVIEW B 97, 205408 (2018)

(a) (b)

=
1 2

FIG. 4. Diagrammatic representation of Eq. (21) and (22) for the
rainbow (a) and tadpole (b) diagrams. The cross represents the vertex
due to the charge-vibration interaction. The other symbols are defined
in the caption of Fig. 2.

L)
] =

T

self-energy of the left lead, two electron Green’s functions and
the rectangular box. The second kind of diagrams [Fig. 5(b)]
contain two self-energies of the left lead, three electron Green’s
functions, and the self-energies due to the electron-vibration
interaction. There are four different diagrams of the second
kind differing by the time labels.

We can write the mean-field current noise as

4 2
smf(r,r’)z% 3 {Re[Eir.t)A%(T 0]
a=rb,tp

+ / dT3dT4RC[G(T,T3)El(f3v7:/)

x Ape(t',14) 5 (14,7)

+ Age(1,13)2)(13,T)G (', 14) 214, 7)

— G(1,7)5(t',13) A} (13, 74) (14, T)

— AL (1, T E(r, 1) G (13, 1) Ti(14,7)] ). (23)

with the definitions
AP (1,7) = /dTIdT2 G(t,1)E0 (11, 1)G(12,T)),  (24)

AP (7,7)) = f dnidt G(t1,1)2F(11,1)G(11,T),  (25)

~- Tl -
T4 T4
T 6 ; T 7 ‘\ ) T
Yo <0< <0
Tyq T3 Ty T3

FIG. 5. Diagrammatic representation of Sy¢(7,7") Eq. (23). The
rectangular box represents either the diagram of Fig. 4(a) or 4(b). The
time arguments 73 and 4 are internal indexes and the diagrams can be
separated into contribution without (a) and with (b) internal indexes.
The solid dot is for the tunneling between the left lead and the dot.
The other symbols are defined in the caption of Fig. 2.

The first term in Eq. (23) corresponds to the diagrams shown
in Fig. 5(a), and the following four terms to the diagrams in
Fig. 5(b).

Equation (23) is the first main result of the paper and
corresponds to the mean-field noise in the presence of charge-
vibration interaction to the leading order in A. For this contri-
bution, similar to the current, we can separate the mean-field
correction into an elastic term and an inelastic term, i.e.,
S (7,7) = See(T, ) + Sin(7, 7).

1. Elastic term of the mean-field correction

It turns out that the elastic term of the mean-field correction
Sec(7,7') has the same structure of the zero-order current
noise in Eq. (19) with a renormalization of the transmission
functions. Indeed, it reads

262 -
Sec(w) = —T[db“ {f:@[1 = file — )T} (e)

— T ()T (e — ®) — T ()T (6 — )]

+ £l = fr(e — )[Ti(e — )

— T ()T (e — ®) — T ()T} (e — )]

+ £l = fr(e — [T ()T (e — w)

+ T (e)Ti (e — w)]

+ £l — file — ) Tu(e) + Ti(e — w)

+ T () Tir (e — ) + T (&) T (6 — )

— 8T 7Re[G(£)GR(e — w)ZR(e — w)GR (e — w)]
— 8T /Re[G" (s — w)GR(e)ZR(e)GR(e)]}.  (26)

To formally obtain the result of Eq. (26), we have
to introduce the renormalize transmission Taﬂ(e) =
T,5(e)Re[GR()ER(e)]. Then, we can substitute T,z(¢)
with Tg(e) + Taﬂ(s) in Eq. (19) as well as substitute GR(¢)
with — G&(e) + GR(e)ZR(e)GR(¢) in the last term of
Eq. (19). Here, ©%(¢) is the retarded self-energy %% (¢) with
respect to the charge-vibration interaction (a summary of the
self-energies associated to the charge-vibration interaction is
given in Appendix B). Then, after these substitutions we keep
only the terms proportional to A2. In this way, the elastic term
to the mean-field correction corresponds to a renormalization
of the transmission functions and it describes the same
processes as the zero-order noise. This renormalization can
be seen as a virtual exchange of absorption and emission of a
phonon from the tunneling charge to the local vibration.

2. Inelastic term of the mean-field correction

The second term Sj,(w) appearing in the mean-field cor-
rections correspond to the inelastic processes involving the
vibration, i.e., emission or absorption of a quantum energy
(phonon).

As we focus on the limit of vanishing temperature for the
vibration, we have only phonon emission. In other words,
since the frequency-dependent current noise is related to
the probability of photon emission or absorption, Si,(®) is
associated to such processes involving not only the tunneling
charge but even the emission of one vibrational quantum wy.
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FIG. 6. Diagrams corresponding to the vertex correction Sy.(t,7")
in Eq. (28). The solid dot is for the tunneling between the left lead
and the dot. The other symbols are defined in the caption of Fig. 2.

This term can be written as
)
2hT,
x D Tir(e + sl file +50) = [(e + 50)]

Sin(a)) =

/dstr(E){ﬁ(é?)En(E) +[1 = fi®]Z1n2(e)}

+ T (e)Z12(8)[1 — file — w)]
— T ()21 (8) fi(e + w), 27

with the self-energies X,(¢) and X;(¢) with respect to the
charge-vibration interaction defined in the Appendix B. Notice
that Eq. (27) is real despite the imaginary factor i in front of it.

D. Vertex correction

The vertex correction is more difficult to analyze compared
to the mean-field one. A diagrammatic representation of it
is shown in Fig. 6 and its formula in terms of the times on
the Keldysh contour is given in Eq. (28). In Appendix C,
we illustrate the transformation of the Eq. (28) from the time
defined on the Keldysh contour 7 to the real time ¢.

In comparison to the mean-field results in Fig. 5, the
upper and lower branch in Fig. 6(a) are connected due to the
interaction with the oscillator. The diagrams in Fig. 6(a) have a
similar structure as the rainbow diagrams, whereas in Fig. 6(b)
they have a similar structure as the tadpole ones, albeit with
the external times 7 or t’.

Sve(T,7) = iz / dtidvdrdt [G(t,1)G(11,13)2i(13,T))

X G(t',1)G(12,74) X/(74,7) D(11,72)
—G(t,1)G(11,7) 5 (7', 13)G (13, 72)

X G(12,74) (T4, 7T) D(71,72)
—G(t,1)G(11,13)Z(13,7)G (7', 1)

X G(12,74)Zy(14,7) D(11,72)

+ G(7,11)G(11,73) Zy(13,7) Zi(7', 74)

x G(14,12)G(12,7") D(11,12)] (28)

IV. ENERGY INDEPENDENT TRANSMISSION REGIME

In principle one can evaluate numerically the different
corrections to the noise for an arbitrary range of parameters.

200 \ T
—_ —_—=0.8
— 1.5} ——=03
< 0.1
310
U? ~
0.5 ~3s
000 =05 00 05 10

w/eV

FIG. 7. Zero-order current noise S() as a function of frequency
w and different transmissions 7.

However, to gain some insight, we concentrate here on two
limit cases that can be worked out analytically.

In the first one, we assume that the energy dependence in
the Green’s functions can be neglected, e.g., we write the
retarded Green'’s functions as G®(¢) = G®(er), with the en-
ergy at the Fermi level er. This means in practice that the
transmission in Eq. (20) is energy-independent and we note it as
Typ(e) = Typ(er). This is a good approximation in two cases:
(1) when the coupling to the leads is so strong that I'; + ', >
wo, eV, g9 — er and (ii) when the resonant level is far away
from the Fermi energy, i.e., |eg — er| > [, [y, eV, wg (We set
w = i, = 0 in absence of applied voltage). In the following
we assume a symmetric coupling to the leads I =T, =T,
and we write it as

41?2
(eF — £0)> +4T%

The case (i) then corresponds to large transmissions 7 — 1
and case (ii) to small transmissions 7' — 0. However, the
approximation of energy-independent transmissions our model
reduces to a simple model of an atomic contact in which the
transmissions 7' is determined by the overlap of the atomic
orbitals at the smallest constriction.

T =Tup(er) = (29)

A. Zero-order current noise Sy(w)

It is convenient to start with the discussion of the current
noise without the interaction with the oscillator. At zero
temperature, we can write the elastic current noise as

2w w<—eV
. eV—w+T(EeV+w) eV<w<0
So@=€G\ (| _1yev_p) O<w<ev @ GO
0 w>eV

with the conductance G = 2¢>T/h. Sy(w) shows a linear
piecewise dependence on the frequency w and eV.

Figure 7 shows S,(w) as a function of the frequency w
for varies transmissions 7. When w > eV, the noise is zero
since a photon due to a single electron tunneling event here
examined—can only be emitted with a maximal energy given
by the applied bias voltage w = eV. When w < —eV, the
current noise scales as Gw such that in Fig. 7 the current
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FIG. 8. Correction to the noise S;(w) as a function of frequency
w for different transmissions. In (a) wy = 0.25 eV and in (b) wy =
1.25 eV. In (a) the correction to the noise shows a double transition
in the frequency range —w, < @ < eV — wy from positive to negative
value. At T =1, Si(w) is finite and positive in the frequency range
0 < w < eV — wy, in contrast to the zero-order noise So(w) = 0 in
Fig. 7.

noise seems to be independent of the transmission. In the
region 0 < @ < eV, the current noise linearly decreases with

J

4T -3)w+Q2T —Dwy
3T——)a)+(T——)a)0 - (T —5)eV

=
~—

22e’T?
STV>u)0 (w) —

ST—4T*-3)w

0

For w < eV, the noise shows a linear dependence as a
function of @ which can be divided into nine frequency
intervals. The behavior of the noise Eq. (31) is illustrated in
Fig. 8(a) as a function of the frequency w for wy = 0.25 eV
and varies transmissions 7. The separation of the correction

E4T2 2T — —)a)—i-(T— —)wo+(4T — 6T + ) eV
(27% = 3)w — (2T% = 3T + ) wo + (477 —
—T[eV( —2T) + (3 —4T)w + wplA(eV — 2a)0)

(4T2—T —3)o— (4T2—4T + 1) o+ (67> =TT + 3) eV
( —(4T*—4T +})wo+(6T> =TT +3) eV
(2T2+3T—1)w+2T(1—T)wo+(1—T)(1 4T)eV

+2{eV(1 —2T)—[1-8T(1—T)]w—wo}0(eV—2wy) min(wy,eV — wy) < w < max(wy,eV — wg)
(—4T* +5T — Do+ (1 — T)(1 —4T) eV

increasing transmission and vanishes at 7 = 1. A similar be-
havior appears when —eV < w < 0 in which the current noise
decreases fromeV — wto 2 eV by increasing the transmission.
Finally, for perfect transmission 7 = 1, the noise vanished at
positive frequency.

B. Correction to the noise S;(®)

In this section we analyze the correction S;(w) to the finite-
frequency current noise due to the charge-vibration interaction
in the limit of energy independent transmission of the quantum
dot.

The charge-vibration interaction leads to a suppression or
an enhancement of the current noise: as shown in Fig. 8:
depending on the transmission 7" and the frequency w, S;(®)
can be positive or negative. Such a complex behavior is caused
by the interplay of the mean-field corrections and the vertex
correction. We note that the corrections to the current noise is
scaled with A% and the total noise is positive for all parameter
range.

Although the elastic term S..(w) and the inelastic term
Sin(w), of the mean field correction and the vertex correction
Sve(w) can be further simplified under the assumption of
energy-independent transmissions, here we discuss the full
expression Sj(w) for energy-independent transmission. The
detailed expressions for the individual terms are given in
Appendix D. Generally, S;(w) has a piecewise linear depen-
dence of the current noise on the frequency w controlled by
the frequency of the oscillator wy and the voltage eV. When
o > eV, the noise correction Sj(w) vanishes in similar way
as So(w), as previously discussed. We distinguish two regimes
depending on the frequency of the oscillator and the voltage.
The first regime is given by wy < eV, in which the voltage is
sufficiently large to excite the oscillator. In the second one,
wy < eV, the voltage is smaller than the frequency of the
oscillator such that an additional absorption of a photon by
the electron is needed to excite the oscillator.

For eV > wy, the correction to the noise is given by

w<—eV —wy

—eV —wyg<w<—eV

—eV <w <min(—wgy,—eV + wy)

6T +

min(—wg,wp—eV) < w < max(—wq,wy—eV)
max(—wq,wg —eV)<w<0

0 < w<min(wy,eV — wy)

max(wg,eV — wp) <w <eV
w>eV.
(31

(

to the noise in intervals appears as a kink in the frequency-
dependence, i.e., at w = 0, £ wy,—eV + wp,—eV and wy =
—eV — wy. For the other intervals of Eq. (31), the change in
slope is too small to reveal the kinks in Fig. 8(a). In the interval
—wy < w < eV — wy, the correction to the noise is positive
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for small transmission, becomes negative by increasing the
transmission, and is again positive when 7 — 1. Such a double
transition has been obtained for the shot noise (w = 0) in
Ref. [41] and measured in Ref. [94]. Here we demonstrate
that such a double transition also appears at finite frequencies.
Finally, when w < —wy, the correction to the noise has a single
transition in which it switches from positive to negative values
as increasing the transmission 7.

Interesting features appear in S;(w) for the emission noise
(w > 0) at perfect transmission 7 = 1. In this case, the vertex
correction vanishes at positive frequencies. The noise S;(w) is
given only by the mean-field corrections and vanishes when
w > eV — wy due to the cancellation of the elastic correction

J

eV<w _ 2
S @ =gt

0

Figure 11(b) shows the correction to the noise at wy =
1.25 eV. In this case, the correction to the noise is positive at
small transmission and changes sign once time by increasing
the transmission.

V. RESONANT TRANSMISSION REGIME

In this section, we focus on the regime in which the
electrons tunnel through the resonant level at . This regime
is characterized by a tunneling coupling much smaller then
the voltage and the frequency of the oscillator with tunneling
rates I[';,I', < eV, wy. In this case, we have to take the energy-
dependence of the Green’s functions appearing the zero-order
noise [Eq. (19)], the elastic term [Eq. (26)] and the inelastic
term [Eq. (27)] of the mean-field correction, and the vertex
correction [Eq. (28)] into account. We report here the numerical
results of these expressions. Similar to the previous section, we
first study the zero-order noise So(w) and then we discuss the
correction S (w).

A. Zero-order current noise Sy(w)

Figure 9 shows Sp(w) as a function of the gate voltage
&o and the frequency w. The voltage is applied on the left
lead u; = eV and w, = 0. Since we discuss the resonant
regime, we fix a small coupling to the leads with I'; =
I, =0.01eV.

First, consider the case of the emission noise (w > 0).
Since the voltage is applied on the left lead, an electron with
energy ¢ = (; can tunnel from the left chemical potential
to the quantum dot at gy and thereby emit a photon with
energy w = eV — gy. An example of this process is shown
in the inset of Fig. 10(a) for &y = 0. Then, when then gate
voltage in increased, e.g., &g = eV /2, the maximal energy for
the electron to emit a photon reduces to eV /2. In other words,
in the resonant transport regime here discussed, the effective,

(AT — 3)w + 2T — Dy

(3T — %)w—}- (T — %)wo + (% — T) eV

3202 (BT =)o+ (T — Hawo —eV(T — 1)

27% - Do+ (T - Yo+ (2T —4T + 3) eV
—(1=T)Y1 +2T)w +eV(l — T)(1 —2T)
(=2T%* 43T — Dw + (T — DT — 1) eV

and the inelastic one, as can be seen from Eqs. (D1) and (D2)
in the Appendix. However, S;(w) is finite and positive when
0 < w < eV — wy. Here, as recalled in the previous section,
the zero-order noise Syp(w) vanishes for positive frequencies
at T = 1; e.g., it scales linearly to zero as 1 — T. Hence, a
finite emission noise for perfect transmission (or close to it
T — 1) can be an intrinsic signature of the charge-vibration
interaction of the quantum transport through the tunnel
junction.

We now turn to the discussion of the correction to the noise
for eV < wy. In this case the oscillator cannot be inelastically
be excited. The corrections to the noise can be divided into
eight intervals:

w < —eV —wy
—eV—wy)<w< —wy

—wy < w < —eV

—eV <w <eV—wy (32)

eV—wy<w<0
0<w<eV
w >eV.

(

maximal energy of the photon emitted is givenby eV — gy > 0.
Eventually, when the energy level of the quantum dot is
tuned outside the voltage bias region, gy > eV or gy < 0, an
electron cannot tunnel through the resonant level and the noise
vanishes.

We now consider the absorption noise at negative frequen-
cies (w < 0). Similar to the emission noise, the effective,
minimum amount of absorbed energy by a photon is given
by |ep — eV]|; otherwise, the electron from the lead lead cannot
tunnel into the dot’s level. Thus, the current (absorption) noise
vanishes again for gy > eV.

To illustrate the general behavior in this frequency range,
we can assume &y = 0 for simplicity. When |w| < eV, aphoton
is absorbed by the electrons from the quantum dot’s level and
then tunnel only to the right lead since w < eV. An example

So(@)[GT]
' 0.1

w/eV

-2 0 1 2

&oleV

FIG. 9. Current noise Sy(w) as a function of the dot’s energy level
&o and noise frequency w at zero temperature. The coupling to the
leads is symmetric I, = I, = [ with ' = 0.01 eV.

205408-8



FINITE FREQUENCY CURRENT NOISE IN THE ...

PHYSICAL REVIEW B 97, 205408 (2018)

(@) (b) (©

-— ) —

FIG. 10. Schematic of processes corresponding to the emission
(a) and absorption (b, c¢) of a photon for the resonant transport regime
at &g = 0. These processes explain the behavior of the elastic noise in
Fig. 9. In (a), a photon with the maximal frequency w = eV is emitted
by the contact. In (b) an electron is excited by absorbing a photon with
energy smaller than the voltage. After the excitation, the electron can
only tunnel to the right lead. In (c), the photon has an energy larger
than the voltage such that the excited electron can tunnel to the left
and right lead.

of such an absorption process in shown in the right inset of
Fig. 10(b). This absorption process with the tunneling to the
right lead appears for all frequencies in the range |w| < eV.
However, when the frequency is larger than the voltage |w| >
eV, an electron from the quantum dot’s level at &g = O can,
after the absorption of a photon, tunnel to the right or the left

(@) S,(W)[A’G/T]

w/eV

-1 0 1 2
gy/eV

(b) | S (w)[A*GIT]

w/eV

-1 0 1 2
&y/eV

FIG. 11. Correction to the noise Sj(w) as a function of the
frequency w and the quantum dot’s energy level g;. The coupling
to the leads is symmetric I, = I, = I' = 0.01 eV. The oscillator’s
frequency is set to (a) wy = 0.25 eV and (b) wy = 1.25 eV.

S1(W)[V*G/T]

—_—

w/eV

goleV

FIG. 12. Correction to the noise Sj(w) as a function of the
frequency w and the quantum dot’s energy level & at finite temperature
T = wy/4. The coupling to the leads is symmetric I, =T, =T =
0.01 eV. The oscillator’s frequency is set to wy = 1.25 eV.

lead [Fig. 10(c)], leading to an increase of the current noise.
Similar discussion is valid at finite values of gy, albeit that the
electron can also tunnel from the leads to the dot, and it explains
the steplike increase of the current noise corresponding to the
dark red region in Fig. 9.

B. Correction to the noise S; (@)

In this section, we discuss the correction to the noise S (w)
in the resonant transport regime.

Figure 11 shows the correction Si(w) to the noise as a
function of the energy level gy of the quantum dot and the
frequency w for the oscillator’s frequency wy = 0.25 eV and
wp = 1.25 eV. The pattern of S|(w) reflects the behavior of
the zero-order current noise typical of the resonant transport
regime, as shown in Fig. 9. However, the noise correction
in Fig. 11 vanishes in extended regions of the diagram as a
function of @ and &j. As we show in Appendix E in Fig. 13,
the vanishing of S} (w) is related to the exact cancelation of the
inelastic noise and the mean-field elastic term of the mean-field
corrections.

To discuss the characteristic features of the oscillator in the
noise S (w), we start with a oscillator frequency wy = 0.25 eV
as a representative case for wy < eV [Fig. 11(a)].

Again, we consider first the case &g = 0. In the range || <
eV, the correction to the noise is positive and drops at w =
—eV to a negative value in the range —eV < w < —eV — wy.
When w < —eV — w; the correction slightly increases but
remains negative. A qualitative argument to explain such sharp
transition from a positive to a negative correction at w = —eV
is as follows. Since the oscillator is at zero temperature, it
can only absorb a vibrational energy quantum wg. In the
range —eV < w < —eV — wy, an electron is excited from
the quantum dot’s level at ¢9 = 0 to an energy above the
left chemical potential and, in absence of charge-vibration
interaction, it can tunnel to the left or right lead. However,
due to the interaction, the excited electron can emit a phonon
at frequency wg losing some energy. After the emission, the
electron has hence an energy below the left chemical potential
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FIG. 13. Contributions to S;(w) as a function as a function of the frequency w and the quantum dot’s energy level g,. The coupling to the
leads is symmetric I, = I', = I" = 0.01 eV and the oscillator’s frequency is set to wy, = 0.25 eV.

and hence can only tunnel to the right lead. On the basis of the
discussion for the zero-order noise in Sec. V A, this explains the
reduction of the noise and the reason why the correction results
tobe negative in the interval —eV < w < —eV — wgateg = 0.
Similar arguments hold at finite values of &j, where the noise
is suppressed within the frequency range —eV 4+ ¢y < w <
—eV + gy — wg forgy < eV. Furthermore, a region of negative
correction also appears below the line w = eV — gy for gy >
0 in the frequency range eV —wy — gy < w < eV — gy for
0 < gy < eV — wy (emission noise) and &y > eV (absorption
noise).

Another interesting feature appears when & is tuned close
to the left &g ~ eV or to the right &y ~ 0 chemical potential. In
the region delimited by w < —eV 4+ gy and w < eV — g, at
given frequency w, vibrational side bands appear in the form
of peaks (negative or positive) at &g = Fwg and g9 = eV =+ wy.
These two lateral peaks appear when the inelastic emission of
a phonon is in resonance with the lateral chemical potentials.
In this case, for instance, an electron inelastically emits a
phonon by tunneling either from the level to the right chemical
potential (€9 = +wp) or from the right chemical potential to the
quantum dot (&9 = —wy). In both cases the energy to excite the
oscillator solely comes from the applied voltage explaining the
independence of the two side peaks as a function of frequency.
A similar argument holds when the gate voltage is tuned such
that the level position is close to the left chemical potential;
i.e., g =eV.

It is also interesting to note that in the range eV < gy <
eV + wp, a resonant (negative) peak appears exactly at w =
—wy. In this case we argue that the photon energy absorbed by
the whole system, quantum dot and oscillator, is resonant with
the local vibration.

As an example of the case wy > eV, Fig. 11(b) shows the
correction to the noise for wy = 1.25 eV. Here, S;(w) has
similar features as the Fig. 11(a) with the negative correction
band below the diagonal lines having now a larger width of
wo = 1.25 eV. Additionally, the lateral side peaks are less
visible compared to the previous case.

The current noise at finite temperature is shown in Fig. 12
with the parameters as in Fig. 11(b) and an inverse temperature
of B = 4wy. At finite temperature the sharp features appearing
in Fig. 12(b) are broadened and the current noise is finite even
for frequencies w > eV.

VI. CONCLUSION

We study the frequency-dependent current noise in the
Holstein model for a quantum dot between two normal-
conducting leads, in the perturbative limit which covers several
realistic experimental cases, such as single-molecule junctions
or suspended carbon nanotube quantum dots. We focused
on two limiting cases: the regime of energy-independent
transmissions, in which we derived analytical expressions for
the current noise, and the regime of the resonant transport.
Our analysis and predictions, based on analytic formulas for
the Holstein model, constitute a reference for future studies
of the frequency-dependent noise in tunnel junction with
local charge-vibration interaction in more complex transport
situations (many conducting channels, multilevel dots, etc.).
Finally, for the case of energy-independent transmission, we
found that the noise induced by the interaction of the dot’s
charge with the vibration represents the only contribution to
the noise for high transmission of the junction 7" 2~ 1. This calls
for an experimental investigation of this noise using on-chip
detectors, thus providing direct information on the vibrational
states of the junction.

Finite-frequency noise is related to the emission and ab-
sorption photon spectrum of the mesoscopic conductor and
provides a complementary physical quantity not related to the
dc current. At a more technical level, single-electron processes
of vibrational assisted inelastic tunneling rule the behavior
of the current and they also appear in the noise at the level of
mean-field corrections. However, our analysis shows that
vertex corrections can be of the same order of the mean-field
ones, and therefore they are indispensable for quantitative
evaluation of the noise. Vertex corrections eventually describe
inelastic electron-electron scattering induced by the vibration,
as shown in Fig. 6, therefore they are not reducible to a
description based on the single electron picture.
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APPENDIX A: KELDYSH GREEN’S FUNCTIONS

In this Appendix, we recall the definitions and some re-
lations of the Green’s functions which are used in the main
text. We refer to the books of Refs. [95,96] for a detailed
introduction. The Green’s functions are defined as (we omit
the spatial dependence)

G t'y=G" i) =—i(Ty@w'a)), (Al
Gt,t) = G2ty =—i(TyWy'a)), (A2
G=(t,t) = G"(t.,1) = i@,y @), (A3)
G~ 1,1y = G*(t,1) = =iy (W', (A4
GRt'y = =0t — Y.y @), (AS)
GAtt') = i0( — D{{y ).y ())), (A6)
GX 1,1y = =iy ),y (@), (A7)

with the commutator denoted with [, ] and the field operator
¥ (t) in the Heisenberg picture. In the case of bosonic field
operators, the commutator is replaced [, ] by the anticommu-
tator {, } and a minus sign must be added in the lesser Green’s
function.

The electron Green’s functions satisfy the following rela-
tions:

GR(t,1) = GA(t,t') = G~ (t.t') — G=(t.1)), (A8)

Gty =G (1,1 + G**(1.t)
=G=<(t, 1)+ G~ (,1), (A9)

GR(t.ty =G (t.1) - G=(t.1)
=G> (t,t)— G*(1.,1), (A10)

GAt,t) = G=(t,1") — GB(,1)
=Gt = G (1.1, (A1)

Gty =GRt + G=(t,1)
=G, 1)+ G (t,1), (A12)

G2t = G=@t,t") — G (t,1)
=G>t — GR@,1), (A13)

and

G=(t,1") = (GK@t,1")— GRt,t")+ GAt,1)/2,  (Al4)
G”(t,1") = (Gt + GR(t,t') — GA(1,1))/2.  (Al5)

Further, the Hermitian conjugate of the electron Green’s
functions satisfy the relations

GR@t,t) =Gt 1), (A16)
G=(t,t) = =G=(',1p), (A17)
Gt = -G~ (t',1), (A18)

G'(t,1) = —G®(t 1), (A19)

G*(t, 1) = =G 1). (A20)

The same relations are satisfied if the electron field operators
are replaced with bosonic field operators.

APPENDIX B: THE ELECTRON SELF-ENERGY WITH
RESPECT TO THE CHARGE-VIBRATION INTERACTION

We define the self-energies X!! as the following matrices:

. ) -2

2(8) - <_221(8) 222(8) ) (Bl)
with a minus sign in front of £'?(¢) and X?'(g) due to
the different position of the time arguments on the Keldysh
contour. The leading order of the self-energy with respect to

the charge-vibration coupling are proportional to A> and are
given by

sle) =2 Z [ [1 + np(@0)]G"" (¢ + swo)
_ 5 Gl
2n73/d €/+ G (¢ s)i| (B2)

2 %(e) = A’np(wo)[G"(e — wo)
+ (1 + np(wo))G"(e + wo)l, (B3)

22 (e) = A2np(wo)[G* (¢ + wp) + (14 np(wo))G*' (e — wo)],
(B4)

=2(e) = AZZ[ [1+np(@0)IG*(e + s)

P/da

) (e):E”(s)—

G”(s )}, (B5)
212(s>, (B6)

2Ae) = '%(e) — 2H(e), (B7)

with the frequency wy of the oscillator, the Bose-distribution
function ng(w), and the Cauchy principal value P of the
integral. In the previous formulas, the electronic Green’s
functions G are the dot’s function in the absence of interaction
with the vibration.

APPENDIX C: REAL-TIME VERTEX CURRENT NOISE

In this Appendix, we transform the vertex correction
from the Keldysh contour time integration to the real time
integration.

To this end, we first cast the vertex correction in terms of
rainbowlike and tadpolelike diagrams. The vertex correction
in Eq. (28) can be written as

Su(r.t)= [ dndudn 3 [6mEhn w6
v=I11
X Zy(13,7)+G (1, 71) Zy (12, 12) G (71, 73) 2y (73,7) |-
n
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Here, we defined the rainbowlike and tadpolelike self-energies
X (t1,72) and X} (71,72) with v = (I,11), respectively. We
remark that the energies X} (t1,72) and Xy (t1,72) implicitly
depend on the external time t’ [see Eqs. (C4)—(C7)].

The difference between the self-energies labeled with [
and /1 comes from the dependence of the Green’s function
and self-energies on the external time 7’. The rainbowlike and
tadpolelike diagrams are

T (t1.12) = iA*Cly(11,12) D(11,T2), (C2)
Ty (11.1) = —iA’Ch () D(11,12), (C3)
with the functions C and C} given by
Clhnm) = f 146 (0. S (. T)G( 1), (Ch)
Cl(t1,m) = /dr4G(r1,r’)Ez(t/,m)G(th), (C5)
and
Ctlp(fz) = /d1’4G(1’2,T4)21(T4,T/)G(T/,1’2), (Co)

J

Col (1) = /dt4G(t2,f’)Ez(T’,m)G(m,tz)- €N

The functions Cf}‘)(rz) depend only on the time 7, but not on t;.

Second, we transform the vertex correction from the time
on the Keldysh contour to the real time and perform a Fourier
transformation. When transforming Eq. (C1) from the contour
to the real time, we introduce the matrix Green’s functions
defined in Eq. (2). To give an example, the term

A(r,t) = /drlG(r,rl)El(rl,r’) (C8)

transforms as

A1) = / dtG(t,0)tx (1,1, (C9)
where we have the Pauli matrix Tx with 1 and —1 for diagonal
elements which takes into account the position of the contour
time t; on the Keldysh contour; see Ref. [95]. Finally, the
crucial step to calculate the current noise vertex corrections
is to transform the rainbowlike and tadpolelike diagrams in
Eqg. (C2) and (C3) in the real-time representation and perform
a Fourier transformation.
The rainbowlike diagrams can be written as

. de' [ Cy''(e —&)D"(e)  —Cp*(e — €)D" (e)
$h(e) = ix? f o (_C"w‘; —88')1)211) CV";Z(;_ ;)D”(gj , (C10)
b b
with the functions
i (Cle—w) Gle—w)\, (0 ElPEe-o\/ 0 0
Cale) = (G“(g —w) G2 - w)) i (0 52 — o) (G%) G”(a)) (1D
A (0 G2 —-w) 0 0 . (G''(e) G2(e)
Crlbl(g) - <0 G22(8 _ w)) <2121(8) 2122(8)) [2:¢ (GZI(S) G22(8)>' (C12)
Similarly, the tadpolelike diagrams are given by
- DX (—w) 0 de'
v _ 92 “e v,12, 1
Yy = —ik ( 0 —DA(—a))> > Cyp (e, (C13)
with
i (GMe—w) G2e—w)), (0 ZTj-o) 0 0
Ctp(g) - <G21(8 _ w) G22(8 _ CL)))TK (0 2122(8 _ (1)) (GZI(S) G22(8))7 (C14)
A (0 G2 —-w) 0 0 . (G'(e) G2(e)
Ctlpl(‘g) - <0 G22(8 _ w)) <2121(8) 2122(8)> (3¢ (GZI(E)) G22(8)>' (CIS)

APPENDIX D: INDIVIDUAL CORRECTIONS St = Sec + Sin AND S, FOR THE ENERGY-INDEPENDENT
TRANSMISSION REGIME

As discussed in the manuscript, the corrections to the noise can be divided into a mean-field elastic correction and vertex
correction. In this Appendix, we report analytic formulas for the individual contributions to the Sj(w) in the case of energy-
independent transmissions. When eV > @y, these corrections are given by
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2\2e*T
S§V>wo -
w (@)=
)\.262T2
eV>w _
Sec "(w)= W
A2e’T?
SeV>wo —
AT

—4(w + wo)
eV — 3w — 3wy
eVl —-T)— B+ T)w — 3wy
eVl -T)—w—(1—T)wy
-0V —2wo){eVT + 2[(1 + T)w + wol}
eV -2T)—-(1+4+T)w — (1 —2T)ayg
eV(1 —2T) — (1 — T)w — (1 — 2T)wy
(—eV + w)T
460V — 2wp)[eV(1 — T) — (1 —2T)w — wp]
(—eV+ )T
0

2

—4(1 -2T)w+4T wy

—eVT + (=4 4+ 7T)w + 3T wy

eV(2 — 8T +6T?) — 2w + 3T 2T w + wp)
eVQ—8T+6T2)—[24+T(1—4T)]w+2(1—-T)T wy
+ TQeVT + w4+ 4T w + wy)f(eV — 2ay)
2eV(1 =27 —(14+2T)2=3T)w+2(1-2T)T wy
(=1 4+2T)eV(—2+4+4T)+ 2 —3T)w — 2T wy)
(=1 4+2T)[eV(—2+3T)+ 2w — TQRw + wy)

+ T(eV — 2w)8(eV — 2wy)]

24+ T(74+6T)]eV —w)

0

2(w + wo)
2w+ wy) — T(eV 4+ w + wy)
T(—=34+2T)EeV + w) — Twy + 2(w + wp)

w < —eV —awy
—eV—wy < w < —eV
—eV < w < min(—wg,—eV + wy)

min(—wy,wy — eV) < o < max(—wy,wy — eV)
max(—wgy,wg —eV) < w < 0
0 < w < min(wgy,eV — wp)

min(wg,eV — wy) < w < max(wy,eV — wy)
max(wg,eV — wy) < w < eV
w > eV
(D1)
w<—eV—wy
—eV—wy < w< —eV
—eV < w < min(—wy,—eV + wy)

min(—wg,wy — eV) < w < max(—wgy,wy — eV)
max(—wg,wg —eV) <w <0
0 < w < min(wy,eV — wyp)

min(wg,eV — wy) < w < max(wg,eV — wy)
max(wg,eV — wy) < w < eV
w > eV
(D2)
w < —eV —wy
—eV—wy < w< —eV
—eV < w < min(—wy,—eV + wy)

T[eV(=3+2T)+ o+ 3wy — 2T wy] + 6(eV — 2wy)

{T[eV(—=14+2T) — 5w 4+ 4T w — 3wp] + 2(w + wy)}

AT[eV(~1+ T) + 1/2T (@ — 2wo) + wo]
2—1+T)T(2eV — w — 2ap)

2(—1+ T)T[eV — wy + (eV — 2w)f(eV — 2wp)]
2=1+T)T(EV — )

0

min(—wg,wg — eV) < w < max(—wgy,wy — eV)
max(—wg,wy —eV) <w <0
0 < w < min(wg,eV — wy)
min(wp,eV — wy) < w < max(wy,eV — wy)
max(wg,eV — wy) < w < eV
w >eV

(D3)

It is interesting to note that for perfect transmission 7 = 1, the emission noise S&~“°(w) vanishes due to the factor 1 — T. As
discussed Sec. IV the emission noise vanishes too for @ > eV — wyq at perfect transmission. From the Egs. (D1) and (D3) this
can be explained by the exact cancellation of the two mean-field contributions, the inelastic and the elastic term, in the interval

max(wg,eV — wy) < w

< eV.

When the voltage is smaller than the frequency of the oscillator, eV < wy, the contributions to the correction to the noise are

SV @) =

—4(w + wy) w < —eV —wy
1262 eV —3(w+wy) —eV—wy<w< —wy
SV (w) = T T2 eV —w—wy —wy<w<—eV (D4)
eV —w — wy —eV <w <eV —wy
0 eV—wy <w
(=4 4+ 8T)w + 4T wy w < —eV —awy
—eVT + (=4 +7T)w 4+ 3T wy —eV —wyg <w < —wy
1202 —4w + T(—eV + 5w + wy) —wy < w < —eV
A2 T2{eVI2+ T(=7+4T)] 4+ [-2+ T(—1 +4D)w + Twy —eV < w < eV — wy (D5)
2(—1+1)[eV(—14+2T) + o + 2T w] eV —wy<w
2(—1 4+ T)(—1+2T)(eV — w) 0<w<eV
0 w >eV
2(w + wp) w < —eV —wy
22 2w+ wy) —TEeV+w+wy) —eV—wy<w<—wy
8= (@) = mT2 T(—eV + w + wp) —wy < w < —eV (D6)

T(—eV + o+ wp)
0
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APPENDIX E: INDIVIDUAL CORRECTIONS S, = Sec + Sin
AND S, FOR THE RESONANT TRANSPORT

In this Appendix, we report the different contributions of
the correction to the noise S;(w) shown in Fig. 11 for the case
of resonant transport regime.

The inelastic term of the mean-field correction to the noise
is reported in Fig. 13(a). whereas the elastic term of the
mean-field correction in Fig. 13(b). Remarkably, in extended

regions of the phase diagram w and &y, the inelastic term and
the elastic term perfectly cancel leading to a finite correction
only close to the characteristic lines associated to the resonant
transport. These lines correspond to the step of the zero-order
noise Sp(w); see Fig. 9. Similarly, the vertex correction has
a relevant and sharp contribution close to these lines and in
correspondence of the vibrational sideband at w = 0, £ @ in
the range 0 < g9 < eV.
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