
1 
 

Evidence for two spin-glass transitions with magnetoelastic and magnetoelectric couplings 

in the multiferroic (Bi1-xBax)(Fe1-xTix)O3 system 

Arun Kumar,1 S. D. Kaushik,2 V. Siruguri2 and Dhananjai Pandey1,* 

1
School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), 

Varanasi-221005, India. 

2
UGC-DAE Consortium for Scientific Research, Bhabha Atomic Research Centre, Mumbai 400085, India. 

ABSTRACT 

For disordered Heisenberg systems with small single ion anisotropy (D), two spin glass 

transitions below the long range ordered (LRO) phase transition temperature (Tc) has been 

predicted theoretically for compositions close to the percolation threshold. Experimental 

verification of these predictions is still controversial for conventional spin glasses. We show that 

multiferroic spin glass systems can provide a unique platform for verifying these theoretical 

predictions via a study of change in magnetoelastic and magnetoelectric couplings, obtained 

from an analysis of diffraction data, at the spin glass transition temperatures (TSG). Results of 

macroscopic (DC M (H, T), M(t), AC susceptibility (χ (ω, T)) and specific heat (Cp)) and 

microscopic (x-ray and neutron scattering) measurements are presented on disordered BiFeO3, a 

canonical Heisenberg system with small single ion anisotropy, which reveal appearance of two 

spin glass phases SG1 and SG2 in coexistence with the LRO phase below the A-T and G-T lines. 

It is shown that the temperature dependence of the integrated intensity of the antiferromagnetic 

(AFM) peak shows dips with respect to the Brillouin function behaviour around the SG1 and 

SG2 transition temperatures. The temperature dependence of the unit cell volume departs from 

the Debye-Grüneisen behaviour below the SG1 transition and the magnitude of departure 

increases significantly with decreasing temperature upto the electromagnon driven transition 

temperature below which a small change of slope occurs followed by another similar change of 

slope at the SG2 transition temperature. The ferroelectric polarisation also changes significantly 
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at the two spin glass transition temperatures. These results, obtained using microscopic 

techniques, clearly demonstrate that the SG1 and SG2 transitions occur on the same magnetic 

sublattice and are intrinsic to the system. We also construct a phase diagram showing all the 

magnetic phases in BF-xBT system. While our results on the two spin glass transitions support 

the theoretical predictions, it also raises several open questions which need to be addressed by 

revisiting the existing theories of spin glass transitions by taking into account the effect of 

magnetoelastic and magnetoelectric couplings as well as electromagnons. 
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I. Introduction: 

               Study of phase transitions in disordered magnetic systems has been a time honoured 

problem in the field of solid state and materials sciences. In dilute magnetic systems (e.g. Cu-

Mn), the ground state is known to be a spin glass (SG) state [1-4]. However, controversies still 

abound in the case of concentrated systems. Theoretically, it is known that the disordered 

concentrated magnetic systems can still lock into a long range ordered (LRO) magnetic ground 

state if the disorder content (c) is less than a percolation threshold (cp) for the exchange 

pathways, except that there is disorder induced broadening of the phase transition leading to the 

rounding of the susceptibility peak at the transition temperature (Tc) [1,5,6]. However, when the 

disorder content is close to the percolation threshold, the LRO percolative phase for both the 

Ising [7-11] and Heisenberg [12-16] systems has been reported to undergo another transition to 

the SG state. The pertinent questions that arise in relation to such systems are: (1) What is the 

true ground state? (2) Does the LRO phase coexist with SG phase in the ground state? (3) If both 

the phases do coexist, what is the proof that the SG phase has resulted from the same magnetic 

sublattice that led to the LRO phase? (4) Is the coexistence of SG phase with the LRO phase due 

to coexistence of isolated short range ordered (SRO) superparamagnetic (SPM) clusters with 

LRO clusters on two different magnetic sublattices as a result of segregation and clustering? 

               The theoretical treatments for such concentrated Ising as well as Heisenberg systems 

predict that the SG state can result from freezing of either the longitudinal or transverse 

components of the spin in the LRO phase and that it can coexist with the LRO phase on the same 

magnetic sublattice [17-26]. These theoretical predictions cannot be verified using macroscopic 

measurements (DC and AC susceptibilities) alone and require microscopic tools (neutron 

scattering, Mössbauer spectroscopy etc.) which have been used for a few systems in support of 
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the longitudinal/transverse freezing model in both the Ising and Heisenberg systems [7-16]. 

More interestingly, yet another interesting situation has been predicted theoretically for 

concentrated Heisenberg systems with small single ion anisotropy (D) as compared to the 

magnetic exchange interaction (J), where both the longitudinal and transverse components can 

freeze successively leading to two SG transitions below the so-called Almeida-Thouless (A-T) 

and Gabey-Toulose (G-T) lines, respectively [23-26]. Although most of these theoretical 

treatments are for concentrated ferromagnetic (FM) systems, these theories have been applied to 

disordered antiferromagnetic (AFM) systems as well [7]. While evidence for two SG transitions 

has been obtained in several systems using macroscopic measurements [27-34], the results are 

rather controversial as it is not clear if the LRO and the SG phases are formed on the same or 

separate magnetic sublattices. Unambiguous evidence confirming the occurrence of two SG 

transitions and coexistence of the two SG phases (SG1 and SG2) with the LRO phase on the 

same magnetic lattice using microscopic tools are rather sparse [e.g. Ref. 29] in such systems. 

               Spin glass phase has been reported in several multiferroic systems also [35-40]. Unlike 

the conventional SG systems, the multiferroic SG systems offer the possibility of verifying the 

theoretical predictions for concentrated systems through a study of the change in ferroelectric 

polarization and strain as a result of magnetoelectric and magnetoelastic couplings across the SG 

transition using diffraction techniques. A transition from LRO AFM phase to SG phase at low 

temperatures with coexistence of LRO and SG phases in the ground state has been reported in 

the multiferroic systems like pure [35-37] and disordered [38] BiFeO3 and some site-disordered 

compounds like Pb(Fe1/2Nb1/2)O3 [39,40]. The origin of coexistence of SG and LRO AFM phases 

at low temperatures in such multiferroics is still controversial as experimental evidences for and 

against both the phase segregation [39] and transverse freezing models [40] have been advanced 
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in the literature. Further, there is no experimental report for LRO to LRO+SG1 to LRO+SG2 

transitions in a disordered multiferroic systems. In this context, it is interesting to note that the 

single ion anisotropy (D) of BiFeO3, a canonical Heisenberg system, is rather small as compared 

to exchange interaction (J) D/J ~0.001 [41-44] which falls within the range where two SG phases 

have been reported in non-multiferroic disordered systems like MgMn [24].  

               Here we present first experimental evidence in support of theoretical predictions for 

two SG phases below the A-T and G-T lines in coexistence with the LRO phase on the same 

magnetic sublattice in the multiferroic solid solution (Bi1-xBax)(Fe1-xTix)O3 (BF-xBT) system 

using a combination of macroscopic (DC M(H,T), M(t), AC susceptibility (χ (ω, T)) and specific 

heat (Cp)) and microscopic (x-ray and neutron scattering) measurements. We have selected 

BaTiO3 based solid solution of BiFeO3 for this study as it has received considerable attention in 

recent years due to large ferroelectric polarization [45-47], highest depolarization temperature for 

piezoelectric applications [47,48] and destruction of spin cycloid [45,46,49-52] leading to large 

remnant magnetization [45,46,49-52] as well linear magnetoelectric coupling [45,46]. From the 

analysis of neutron and x-ray diffraction data on BF-0.20BT, we demonstrate two distinguishing 

features of SG transitions in disordered multiferroics: (1) very strong and moderate 

magnetoelastic couplings associated with the SG1 and SG2 transitions, respectively, as revealed 

by the change in the unit cell volume (V) with respect to the theoretically predicted values, that 

scales quadratically with the spontaneous magnetization (Ms
2) and (2) strong magnetoelectric 

coupling at both the SG transitions as revealed by the large change in  spontaneous polarization 

(Ps), calculated from the atomic coordinates obtained by Rietveld refinements of the nuclear 

structure and the Born effective charges (BEC), at the two SG transitions. After presenting the 
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results on BF-0.20BT, we also discuss the effect of dopant (BaTiO3) concentration on the 

magnetic transitions in BF-xBT and construct a phase diagram showing all the magnetic phases. 

II. Experimental: 

(a) Sample preparation: 

Polycrystalline samples of (Bi1-xBax)(Fe1-xTix)O3 (BF-xBT) solid solutions were synthesized by 

solid state route for x = 0.10 to 0.60 at Δx = 0.10 interval using high purity oxides of Bi2O3, 

Fe2O3, BaCO3, TiO2, MnO2 (Aldrich and Alfa Aesar). The starting materials were carefully 

weighed in stoichiometric ratio and mixed in an agate mortar and pestle for 3 hours and then ball 

milled for 6 hours in acetone as mixing media using zirconia jar and zirconia ball. After drying, 

the mixture was calcined at optimized temperatures in the range 1073 K-1173 K depending upon 

the composition for 8 hours in open alumina crucible. The calcined powders were mixed with 0.3 

wt % MnO2 and ball milled again for 4 hours to break the agglomerates formed during 

calcination. MnO2 doping reduces the leakage current as discussed in the literature [47]. We used 

2 % polyvinyl alcohol as a binder to press the calcined powder into pellets of 12 mm diameter 

and 1 mm thickness at an optimized load of ~70 kN. After the binder burn-off at 773 K for 12 

hours, sintering were carried out at optimized temperatures in the range 1173 to 1273 K, in 

closed alumina crucible with calcined powder of the same composition as spacer powder for 

preventing the loss of Bi2O3 during sintering. The sintering time was increased with increasing 

BaTiO3 content from 1 hour for x = 0.10 to 4 hours for x = 0.60.  

(b)Experimental details: 

               X-ray powder diffraction (XRD) measurements in the temperature range 12 K to 350 K 

were carried out using an 18-kW Cu rotating anode powder diffractometer (Rigaku) operating in 

the Bragg-Brentano geometry and fitted with a curved crystal monochromator in the diffraction 



7 
 

beam. Sample environment was varied using a close cycle helium refrigerator based low 

temperature attachment on this diffractometer. The data in the 2 range 20 to 120° were collected 

using annealed powders (10 hours at 773 K) obtained after crushing the sintered pellets at a step 

of 0.02 degrees. High resolution synchrotron x-ray powder diffraction (SXRD) patterns were 

also recorded at PETRA III, Germany at 60 keV energy for a few selected temperatures above 

liquid N2 temperature. Temperature dependent neutron powder diffraction (NPD) data in the 

range 300 K to 2.8 K was collected at Druva reactor, BARC, Mumbai at a wavelength of 1.48 Å 

using high-resolution powder diffractometer. Composition analysis was carried out using 

Electron Probe Micro Analyzer (EPMA) and CAMECA SXFive instrument. The nuclear and 

magnetic structures were refined by Rietveld techniques using FULLPROF suite [53]. DC 

magnetization (M(T, H)) measurements were carried out on a SQUID based magnetometer 

(Quantum Design, MPMS-3) in the temperature range 2 K to 900 K at 500 Oe applied dc field in 

two separate measurements from 2 to 400K and 300K to 900K range. The ac susceptibility (χ (ω, 

T)) measurements were carried out in the temperature range 2 K to 300 K on the same machine 

using an ac drive field of 2 Oe. The heat capacity (Cp) measurement was carried out in the 

temperature range 1.8 to 387 K using physical property measurement system (PPMS) (Dynacool, 

Quantum Design, USA). 

III. Results and Discussion: 

A. Magnetic transitions in BF-0.20BT: 

                    The antiferromagnetic (AFM) transition in pure BiFeO3 (BF) occurs at TN ~643K. 

As a result of 20% substitution of BaTiO3 in BiFeO3, i.e. in BF-0.20BT, TN decreases due to 

dilution of the magnetic sublattice. Fig.1 depicts the zero-field cooled (ZFC) DC magnetization 

(M(T)) at an applied field of 500 Oe in the temperature range 2-900K. It is evident from the 
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figure that a long range ordered (LRO) magnetic phase emerges below TN ~608K in agreement 

with the previous results [49]. The nature of ZFC M(T) response of BF-0.20BT is, however, not 

like a typical AFM transition seen in pure BF but is rather like a ferromagnetic (FM) transition. 

The FM type transition is due to the destruction of the spin cycloid, superimposed on the canted 

G-type AFM arrangement of spins in BF, that releases the latent FM component of the spins in 

magnetic sublattice. This was confirmed through M-H hysteresis loop measurements, Curie-

Weiss plot and neutron diffraction patterns. 

               The M-H hysteresis loop at 300 K for BF-0.20BT reveals weakly ferromagnetic 

behaviour (see Fig. 2) in contrast to linear M-H characteristic of AFM phase in pure BF. 

However, even in pure BF, the M-H loop opens up with a remanant magnetization Mr ~ 0.3 

emu/g at 10 K on destruction of the spin cycloid in the presence of external magnetic field in 

excess of ~18T [54,55]. The opening of the hysteresis loop in BF-0.2BT even at moderate fields 

thus indicates the destruction of the spin cycloid of BiFeO3 as noted by previous workers also in 

various solid solutions of BF [49-52]. The remanant magnetization Mr ≈ 0.13 emu/g of our 

samples is close to the value of ~0.15 emu/g reported by Singh et al. [49]. The fact that the 

magnetization does not saturate even at 7T field also suggests weakly FM behaviour due to 

canted AFM structure. 

               The ZFC M (T) of BF-0.20BT shows Curie-Weiss behaviour χ = C/(T-θW), where C 

and θW are Curie constant and Curie-Weiss temperature, respectively. Fig.1(b) shows the 

temperature dependence of inverse DC susceptibility (χ-1) whose linear behaviour at high 

temperatures (T > 700 K) clearly confirms to Curie-Weiss law with θW = -873.6 K. The large 

negative value of θW indicates strong antiferromagnetic interactions in the LRO AFM state. The 

effective magnetic moment (μeff) of Fe3+ ion, calculated from the Curie constant C, comes out to 
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be 4.98 μB which is nearly 80% of the magnetic moment of Fe3+ ions in the high spin 

configuration (S = 5/2) as expected for BF-0.20BT due to 20% Ti substitution at the Fe site. 

                 AFM structure of BF-0.20BT was further confirmed by neutron powder diffraction 

(NPD) studies. Fig.3 shows the NPD pattern of BF-0.20BT at room temperature in the limited 2θ 

range of 15º -57º. This pattern contains main perovskite reflections as well as some superlattice 

reflections which arise either due to antiferromagnetic ordering or tilting of oxygen octahedra. 

All the reflections could be indexed with respect to a doubled perovskite unit cell. The 111pc (pc 

stands for pseudocubic unit cell) magnetic superlattice peak at 2θ = 18.6º (marked with an arrow) 

is not allowed in the rhombohedral R3c space group and arises due to AFM ordering of the Fe 

spins. Thus, the transition at TN ~608K in Fig.1 is linked with the appearance of a long range 

ordered (LRO) AFM phase.  

               Below room temperature, the ZFC M(T) of BF-0.20BT clearly reveals three anomalies 

near 240K, 140K and 30K (see inset (a) of Fig. 1). In addition, the ZFC and FC M(T) curves 

show bifurcation due to history dependent effects. Such bifurcation has been reported in spin 

glass and superparamagnetic (SPM) systems [1-4,56]. In canonical spin glasses, ZFC M(T) 

shows a cusp at Tmax and the bifurcation of FC and ZFC M(T) occurs close to the cusp 

temperature [1-4]. However, unlike the canonical systems, the peak around ~240 K in M(T) of 

BF-0.2BT is quite smeared out and the bifurcation starts well above Tmax. While smeared peak 

have been reported in several in cluster glass and SPM systems due to occurrence of 

freezing/blocking over a wide range of temperatures as a result of large distribution of cluster 

sizes [57-59], the peak around 240K is much more broad and the bifurcation of ZFC and FC M 

(T) curves occurs well above the peak temperature (Tmax). The extent of broadening of the 240K 

peak in the ZFC M(T) measurements is dependent on the field strength as discussed in section 
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C). As the specific heat can probe any magnetic transition with higher sensitivity than the 

magnetization measurements, we carried out specific heat measurements also. Fig.4 depicts the 

variation of specific heat (Cp) with temperature which reveals a weak but much sharper anomaly 

(see inset (a)) corresponding to the 240K transition in ZFC M(T). As shown in section B, the AC 

susceptibility peak is also relatively sharper (see inset of Fig.5(b)) than the peak in the ZFC M(T) 

for the 240K transition. Obviously, the time scales associated with different measuring probes 

give different widths for 240K transition as expected for a glassy phase in a concentrated system 

with larger distribution of cluster sizes. What is significant is that all the three different 

measurement probes, i.e. M(T), AC susceptibility, and specific heat, clearly confirm that a 

transition is indeed taking place around 240K. 

                      Below the 240K transition, the ZFC M(T) plot shows a kink around 140 K 

followed by a nearly temperature independent plateau upto ~30K. On further cooling below 30K, 

ZFC M(T) starts decreasing. The FC M(T) also shows a kink around 140K but below this 

temperature it keeps on increasing without any anomalous decrease around 30K. In 

polycrystalline BiFeO3 sample [37] and single crystals of BiFeO3 [35], two transitions around 

250K and 30K, respectively have been reported but not in the same sample. The transition 

around 140K has been investigated in great detail in BiFeO3 and has been linked with 

electromagnons [60-64]. The electromagnons are collective spin and lattice excitations and can 

be excited by electric field. The electromagnons have been reported by terahertz [65] and 

Raman spectroscopies [60-62] as well as inelastic neutron scattering studies [41,42]. The first 

experimental evidence of electromagnons was demonstrated in RMnO3 (R = Tb, Gd) using 

terahertz spectroscopy [65] whereas in BiFeO3, the electromagnons were first reported using 

Raman spectroscopy [60-62] where the intensity and frequency of magnon modes appearing 
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around 140K were shown to change on application of external electric fields. The theoretical 

work of de Sousa and Moore [64] and Fishman et al. [42, 44] have confirmed the existence of 

electromagnons in Raman scattering studies on BiFeO3. In case of BF-0.20BT, the M(T) 

measurement reveals strong signature of 140K (±5K) transition and shows an anomaly in the 

integrated intensity of the AFM peak in the neutron diffraction pattern (discussed later in section 

E). We believe that this transition is also linked with electromagnons although, Raman 

scattering, THz spectroscopy and inelastic neutron scattering studies are required to confirm 

this. As this is beyond the scope of the present work, we keep our focus on the other two 

transitions occurring around 240K and 30K in what follows hereafter.  

B. Evidence for two spin glass transitions in BF-0.20BT: 

               We carried out frequency dependent AC magnetic susceptibility (χ(ω, T)) 

measurements to understand whether the bifurcation of the ZFC and FC M(T) is associated with 

spin glass freezing or SPM blocking. Figs. 5 (a) and (b) depict real (χ' (ω, T)) and imaginary 

(χ''(ω, T)) parts, respectively, of χ (ω, T) of BF-0.20BT measured at various frequencies for a 

drive field of 2 Oe in the temperature range 2-300K. The χ' (ω, T) shows two peaks at Tf1 and Tf2 

corresponding to the two anomalies around ~240 and ~30K revealed in ZFC M(T) plot as can be 

seen from the insets (i) and (ii) of Fig. 5(a). It is noteworthy that the temperature dependence of 

χ'' (ω, T) for the 240K anomaly exhibits normal freezing behavior whereas it shows anomalous 

behavior with negative cusp for the 30K anomaly. The negative cusp is in agreement with that 

reported in single crystals of BiFeO3 as well as in polycrystalline samples of BiFeO3 [35-36]. The 

anomalous frequency dependence of the lowest temperature SG phase (SG2) has been discussed 

in detail in the context of pure BiFeO3 where the role of cycloidal magnetic structure has been 

highlighted [35]. However, the spin cycloid of BiFeO3 is known to be destroyed in the presence 
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of disorder, such as 20% BaTiO3 substitution in the present case. This has been confirmed by 

neutron scattering and magnetization measurements [46,49]. Suffice is to say that the opening of 

the M-H loop in our samples (see Fig. 2) rules out the presence of spin cycloid and therefore 

there is no correlation between the anomalous frequency dispersion [see Ref. 35 for more details] 

of the 30K anomaly and the spin cycloid. 

               The peak corresponding to the 240K anomaly in ZFC M(T) plot is relatively less broad 

in χ' (ω, T) and χ'' (ω, T) as compared to that in the ZFC M(T) indicating the role of time scales 

associated with the spin freezing/blocking process and the measurement time for different 

probes. The temperatures Tf1 and Tf2 corresponding to the two peaks in χ' (ω, T) shift towards 

higher side on increasing the measuring frequency. Such a frequency dependent shift may be due 

to either SG freezing or SPM blocking [1-4,56]. The shift of the χ' (ω, T) peak temperature has 

been analyzed in terms of an empirical frequency sensitivity parameter K = fT /( )(lnfT  (the 

so-called Mydosh parameter) which lies in the range 0.003-0.08 [66-68] and 0.1 to 0.3 [66] for 

spin-glass freezing and SPM blocking, respectively. In the case of BF-0.20BT, K is found to be 

~0.04 for both the transitions which supports the spin glass freezing rather than SPM blocking.  

                  For SPM blocking, the relaxation time (τ) should follow the typical Arrhenius type 

dependence without any critical behaviour [56]:  

  τ= τ0 exp(Ea /kBT),                                (1) 

where τ is the relaxation time, Ea the activation energy, kB the Boltzmann constant, and τ0 the 

inverse of the attempt frequency. The ln τ vs 1/T plots derived from the frequency dependent 

peak positions Tf(ω) of χ' (ω, T) for the transitions around 240 K and 30 K are therefore expected 

to be linear for SPM blocking. The fact that this plot is non-linear in BF-0.20BT, as can be seen 
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from Figs. 6(a) and (b)), rules out the SPM blocking being responsible for the two peaks in χ' (ω, 

T).  

                   For spin glass freezing, one observes critical slowing down of the relaxation time (τ) 

due to ergodicity breaking. This has been modeled using a power law [69-70]:  

τ = τ0[(Tf –TSG)/TSG]-zν,                         (2) 

where, TSG is the SG transition temperature, ν the critical exponent for the correlation length (ξ) 

and z the dynamical exponent relating τ to ξ. In some spin glass systems [71], the frequency 

dependent shift of the χ' (ω, T) peak temperature has been modeled using the empirical Vogel–

Fulcher (V-F) law also : 

 τ= τ0 exp(Ea /kB (T-TSG),                         (3) 

where Ea is the activation energy. Both the power law and V-F law type critical dynamics 

provide excellent fits for the two transitions as can be seen from Figs. 7(a) and (b), respectively. 

The fitting parameters for the two transitions are: TSG1~ (218.6±0.8) K, zν1 = 2.09 s, τ01 = 

3.87x10-6 s and TSG2 = (18.6±0.4) K, zν2 = 0.69, and τ02 = 1.92x10-4s  for power law and TSG1 

~(214±2) K, Ea1 = 4.89 meV, and τ01 = 5.64x10-6s and TSG2 ~(15.9±0.1) K, Ea2 = 0.65 meV, and 

τ02 =1.64x10-4 s for V-F law. The continuous line in Figs. 6(a) and (b) are the fits using these 

parameters in the ln τ vs 1/T plots. Both the fits are excellent. The values of TSG1 and TSG2 as 

well as τ01 and τ02 obtained by V-F law and power law type critical dynamics are comparable. 

Thus, both the power law and V-F dynamics confirm the glassy nature of the two frequency 

dependent anomalies in χ' (ω, T). The magnitude of τ01 and τ02 for both the power law and V-F 

law type dynamics falls in the typical cluster glass (CG) category (10-5-10-10s) for concentrated 

systems [1,66] and not the canonical spin glasses in dilute systems [1].  

C. Evidence for de Almeida-Thouless and Gabay-Toulouse lines in BF-0.20BT:  
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               The existence of two spin glass phases, which we shall label as SG1 and SG2 hereafter, 

was further confirmed by the presence of the so-called de Almeida-Thouless (A-T) [18, 23-25] 

and Gabay-Toulouse (G-T) [23-25] lines. For Ising systems, it has been shown by de Almeida 

and Thouless [18] that the peak temperature (Tmax) of the ZFC M (T) plot shifts to lower 

temperature side on increasing the magnetic field (H) as a result of replica symmetry breaking 

[18]. For low fields, this shift shows the following H dependence: 

H2 = A [1- Tmax(H)/T (0)]3,             (4) 

where Tmax(H) and T(0) are the field dependent and zero-field freezing temperatures, 

respectively. Eq. (4) sets the boundary between the ergodic paramagnetic and non-ergodic spin 

glass phases and is commonly known as the A-T line [18]. For the Heisenberg systems also, it 

has been shown that the A-T line is present and Tmax follows H2/3 dependence at low fields [24-

25]. However, it can occur due to freezing of either the longitudinal (qll) or the transverse (q⊥) 

components of the spin, depending on whether the single ion anisotropy (D/J) is positive or 

negative. For low values of D/J, a second SG transition whose Tmax decreases as H2 at low fields 

is predicted to occur due to the freezing of the second component of the spin. For small but 

positive values of D/J, as is the case with BiFeO3 [41-44], the first SG transition (i.e. SG1) is 

expected to be due to the freezing of qll component while the second one (i.e. SG2) due to 

freezing of q⊥ as per the theoretical predictions [24-25]. The H dependence of the qll and q⊥ 

freezing temperatures should thus fix the A-T and G-T lines in the Tmax versus H phase diagram 

for the SG1 and SG2 phases, respectively..  

                To verify the existence of A-T and G-T lines in BF-0.20BT, we carried out ZFC M (T) 

measurements at different fields and the results are depicted in Fig. 8 for both the transitions. It 
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is evident from the figure that the peak corresponding to SG1 transition is prominent, even 

though broad, while no such peak is observed for SG2 transition up to a field of 500 Oe. With 

increasing field, the peak corresponding to SG2 transition also starts taking a prominent shape 

(see insets) while the peak corresponding to the SG1 transition starts getting smeared and 

suppressed after initial sharpening upto 800 Oe. We find that the Tmax for both the transitions 

decreases with increasing magnetic field as expected theoretically. The linear nature of the Tmax 

versus H2/3 and Tmax vs H2 plots shown in Figs. 9(a) and 9(b) for the SG1and SG2 transitions 

confirms the existence of A-T and G-T lines, respectively, in the Tmax versus H phase diagram. 

Thus our results confirm the theoretical predictions [23-25] for two spin glass transitions in 

Heisenberg systems with low D/J. 

D. Relaxation of thermoremanent magnetization for the spin glass phases of BF-0.20BT:  

             Spin glass state is known to exhibit slow relaxation of thermoremanent magnetization 

which has been modelled using stretched exponential function [67,72,73]:  

M(t) = M0 + Mr exp[-(t/τ)1-n]                       (5) 

where M0 is the intrinsic static magnetization component, Mr the glassy component, τ the 

characteristic relaxation time and n the stretched exponential exponent. To study the slow 

relaxation of the thermoremanent magnetization, we cooled the sample under a field of 1T from 

300 K to 200K for the SG1 phase.  After reaching the set temperatures, the sample was allowed 

to age without switching off the field for a waiting time of tw = 500s. After the elapse of the 

waiting time tw, the field was switched off. For the SG2 phase, the sample was first annealed at 

773 K above TN to remove any remanent magnetization introduced during the first cycle and 

then cooled to 10K under 1T field. This was followed by the protocol identical to that adopted 
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for the SG1 phase. The thermoremanent magnetization so measured as a function of time is 

shown in Figs. 10 (a) and (b) at 200K and 10K, respectively. The continuous line in the two 

figures depicts the best fit for Eq. (5). These fits yield n, M0, Mr and τ as 0.55, 0.1575 emu/g, 

0.0008 emu/g, (1207±15)s for the SG1 phase and 0.53, 0.1697 emu/g, 0.0009 emu/g, (1661±14)s 

for the SG2 phase, respectively. The observed exponent (n) and relaxation time (τ) are in 

agreement with the reported values for cluster glasses and super spin glasses [67,73]. Thus, 

relaxation behaviour of thermoremanent magnetization also favours the existence of two SG 

phases in BF-0.20BT.  

E. Evidence for magnetoelastic coupling at spin glass transitions in BF-0.20BT: 

                In order to verify if the two SG transitions and the intervening transition driven by 

electromagnons involve any structural phase transition, we carried out XRD studies in the 

temperature range 12K to 350K. Fig.11 depicts the temperature evolution of the XRD profiles of 

a few selected pseudocubic (pc) peaks (222pc, 400pc and 440pc reflections) of BF-0.20BT after 

stripping off the Kα2 contribution. It is evident from this figure that the 222pc and 440pc peaks are 

doublets, whereas 400pc is a singlet, as expected for the rhombohedral structure, down to 12K 

which implies absence of any structural phase transition below room temperature. This was 

further confirmed by Rietveld refinements at different temperatures. It was found that the 

rhombohedral R3c space group gives excellent fit between the observed and calculated profiles 

at all temperatures down to 12 K. The details of the refinement are presented in section S3 of the 

supplemental information. 

             While the magnetic measurements clearly indicate the existence of SG1 and SG2 

transitions in BF-0.20BT, the reason for the broad nature of the peak in the ZFC M(T) of the 
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SG1 transition needs to be understood. In order to rule out the role of a structural phase 

transition, which might have been missed in the medium resolution rotating anode based XRD 

data, we also carried out Rietveld refinement using high resolution synchrotron x-ray diffraction 

(SXRD) patterns at three selected temperatures 260K, 240K and 220K. Fig.12 depicts the 

observed, calculated and difference profiles obtained after the Rietveld analysis of the SXRD 

patterns at 260K, 240K and 220K, respectively, for BF-0.20BT using R3c space group. The 

excellent fit between observed and calculated profiles confirms that the R3c space group for BF-

0.2BT at room temperature does not change across the SG1 transition. We can thus conclusively 

rule out the role of any structural phase in the broad SG1 transition.  

                 Even though there is no structural phase transition, the temperature dependence of unit 

cell volume (Vhex), as obtained from the Rietveld refinements, shows anomalies around the three 

magnetic transitions (see Fig. 13). It is interesting to note that the slope of the experimental Vhex 

versus T plot changes prominently around the SG1 transition without any discontinuous change 

in the value of Vhex. After the initial change of slope, the experimental Vhex values decrease 

smoothly with temperature below SG1 transition upto ~150K. Small changes in volume around 

140 and SG2 transitions are also observed as shown in the inset (a) of the figure. The large 

change of slope around the SG1 transition suggests strong magnetoelastic coupling associated 

with this transition. It is possible to separate out the magnetic (magnetoelastic) contribution from 

the anharmonic lattice part at least for the SG1 transition because of the large slope change. For 

this, the temperature dependence of Vhex above TSG1 was modeled using the Debye-Grüneisen 

equation: 
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where V(0), D,  and B are the unit cell volume at 0K, the Debye temperature, the Grüneisen 

parameter and the bulk modulus, respectively. Continuous solid line in the figure shows the 

results of least squares fit to the observed unit cell volume in the temperature range 260K <T≤ 

350K using Eq. (6). The fitting parameters so obtained are: V (0) = (375.86 ± 0.01) Å3, D = 

(494 ± 39) K, and 9NkB/B = (0.071 ± 0.003) Å3/K. The difference ΔV between the 

experimentally observed values of Vhex and the theoretically calculated anharmonic lattice 

contribution increases with decreasing temperature. It is interesting to note that the bulk strain 

(ΔV/V) vs Ms
2 plot corresponding to the shaded region in the figure is linear in the temperature 

range 240 to 150K as can be seen from inset (b) of Fig. 13. This linear dependence confirms that 

the slope change is due to quadratic spin-lattice coupling [74]. The fact that the change of slope 

is much more pronounced around SG1 as compared to that around 140 and SG2 transitions 

suggests that the spin-lattice coupling for the other two transitions is rather weak as compared 

to that for the SG1 phase.  

F. Evidence for coexistence of LRO AFM and spin glass phases in BF-0.20BT 

               We now turn towards neutron diffraction studies to understand whether the LRO, SG1 

and SG2 transitions occur on the same magnetic sublattice or not. Fig.14 depicts the temperature 

evolution of the neutron powder diffraction patterns of BF-0.20BT in the limited 2θ range of 15-

57º. It was verified by Rietveld refinement that neither the nuclear nor the magnetic structure 

changes down to the lowest temperature of measurement (see section S4 of the supplemental 

information for more details). The fact that the AFM peak, marked with arrow in the figure, 

persists down to 2.8K clearly suggests that the LRO AFM phase coexists with the SG phases. 

We modelled the temperature dependence of the integrated intensity of the AFM peak using the 
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molecular-field theory according to which the magnetic moment should follow the following 

temperature dependence [75], 
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We fitted the square of the ordered magnetic moment to the experimentally measured integrated 

intensity of the AFM peak as a function of temperature and the results are shown in Fig.15. Solid 

line in the figure is the fit for the square of the Brillouin function behaviour. Evidently, the 

observed variation of the integrated intensity of the AFM peak deviates from the mean field 

behavior around the two SG transition temperatures. This decrease in the integrated intensity 

around TSG1 and TSG2 clearly suggests that some spin/spin components are being removed from 

the LRO AFM phase regions and transformed to the glassy phase. This proves that the two SG 

phases are formed on the same magnetic sublattice [40] that gives rise to the LRO AFM phase 

and that they are not due to nanosized impurity phases, proposed in the context of the low 

temperature SG phase of pure BiFeO3 [76-78] or smaller SPM clusters in a segregated magnetic 

microstructure proposed in the context of Pb(Fe1/2Nb1/2)O3 [39].           

G. Evidence for isostructural phase transitions and polarisation changes across spin glass 

transitions in BF-0.20BT: 

                 Even though the space group symmetry of BF-0.20BT does not change in the 300 to 

2.8K temperature range, the fractional coordinates of zBi/Ba and zFe/Ti, obtained by Rietveld 
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refinements using neutron diffraction data, change discontinuously around the two spin glass 

transition temperatures as shown in Fig.16. Further, the coordinates of the two oxygen positions 

(xO and yO) show anomalies around the third transition driven by electromagnons. This change 

of atomic positions (fractional coordinates) can be explained in terms of one of the irreducible 

representations (Irrep) of the R3c space group corresponding to an optical phonon mode at k= 

0,0,0 point of the Brillouin zone, as discussed in the supplemental information of Ref. 45. Such a 

change of atomic positions without any change in the space group symmetry has previously been 

observed in BF solid solutions across TN where it has been attributed to an isostructural phase 

transition (ISPT) [45,46,79]. We believe that the anomalies in atomic positions across the three 

low temperature magnetic transitions in BF-0.20BT are due to similar ISPTs driven by spin-

polar phonon coupling (SPC). In literature [80], the origin of SPC effect has been attributed to 

the electronic structure which may suggest that the low temperature transitions in BF-0.20BT 

could be of electronic origin. However, the calculations also indicate that the electronic 

contributions to the SPC effect in BF is rather small [80].  

                    As a result of change in the atomic positions due to the ISPT, the ferroelectric 

polarisation (Ps) is known to change significantly by about 2 to 3 μC/cm2 at TN revealing 

magnetoelectric coupling in BiFeO3 solid solutions including BF-0.20BT [45,46,79]. We have 

also calculated Ps below room temperature from Rietveld refined coordinates, unit cell 

parameters and first principles derived Born Effective Charges (BEC) taken from the literature 

[81] using the following relationship: 

       P = e/V ∑ 𝑧𝑘 
′

𝑘 ∆(𝑘),                  (9) 

where the sum runs over all the ions inside the unit cell while ∆(𝑘) is the displacement of the kth 

ion from its ideal cubic perovskite position, 𝑧𝑘 
′  the Born effective charge for kth ion and V the 
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volume of the primitive unit cell.  The temperature variation of Ps so obtained is shown in Fig.17 

which reveals distinct changes across the two SG transitions. The change in Ps observed by us 

around TSG1 and TSG2 is (5±1)μC/cm2 and (2±1)μC/cm2, respectively, which are of similar order 

of magnitude as reported at the TN for BF-0.20BT [46]. The observation of change in Ps (Ps) at 

the two SG transitions not only reveals strong magnetoelectric coupling but also provides 

additional microscopic evidence for the coexistence of the SG and the LRO phases on the same 

magnetic sublattice at the two spin glass transition temperatures due to multiferroic nature of the 

two SG phases.  

H. Magnetic phase diagram of BF-xBT: 

              Before we conclude, we would like to discuss the effect of BT concentration (x) on the 

low temperature phase transitions in BF with the objective of constructing a magnetic phase 

diagram of BF-xBT system using the transition/freezing temperatures obtained from ZFC M(T) 

and AC susceptibility measurements (see Figs 18- 20). Fig. 18 depicts the plot of ZFC M(T) for 

various compositions (x). Signature of a transition to a LRO magnetic state is clearly seen upto 

x=0.40. For x=0.50 also, a diffuse transition is seen in the figure but for x=0.60 there is no 

signature of this transition in the M(T) plot. Disorder induced gradual broadening of the 

transition is seen quite clearly in this figure for high x values. The LRO transition temperature 

TN was determined from the first derivative of M(T) which shows clear dips for to all the 

compositions including x=0.50 (see also inset of Fig.18). The composition dependence of TN 

shown in Fig. 21 could be described using (x-xc)
n type dependence with n =0.30±0.02 and xc = 

0.55±0.01. In the previous neutron diffraction studies [49], AFM peak was observed for x=0.50 

but not for x=0.60 which also suggests that xc lies in the range 0.50 ≤ xc ≤ 0.60. We believe that 
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xc= 0.55 is the percolation threshold limit for the LRO phase to emerge in the presence of 

disorder introduced by BT substitution in the BF matrix.  

              To investigate the effect of disorder (x) on the SG1 and SG2 transitions, we show in Fig. 

19 the χ' (ω, T) plots at 497.3 Hz for various compositions of BF-xBT. The variation of χ' (ω, T) 

for x = 0.10, 0.20 and 0.30 are similar where the peaks corresponding to SG1 and SG2 

transitions are clearly seen. While two peaks in the χ' (ω, T) plot are also seen for x= 0.40, the 

magnitude of the susceptibility below the SG1 transition shows a slightly increasing trend with 

decreasing temperature whereas it shows a decreasing trend for x = 0.10, 0.20 and 0.30 showing 

that the disorder affects the two transitions differently. For x=0.50, only one peak corresponding 

to the SG2 transition is seen clearly. There is, however, an inflection point around 51K which 

could possibly be linked with the SG1 transition. The SG1 transition temperatures for various 

compositions, including x= 0.40 and 0.50, also show Tc~(x-xc)
n type dependence with xc 

=0.55±0.01 but with an exponent n =0.49±0.07. This exponent (n~ ½) is reminiscent of a 

quantum phase transition [82,83] and the possibility of the existence of a quantum critical point 

corresponding to the percolation threshold xc=0.55 for the SG1 transition needs to be 

investigated carefully in a future work. In contrast to the SG1 transition, the SG2 transition 

temperature shows weak composition dependence upto about x= 0.40 but significant decrease is 

seen for x=0.50. From the least squares fit to the observed Tf2 values using (x-xc)
n type 

dependence, the critical composition limit for this transition is also found to be close to xc=0.55 

but with an exponent n =0.08.   

                    We have also examined the composition dependence of the intermediate transition 

that occurs between the SG1 and SG2 transitions which is known to be driven by electromagnons 

in pure BF, using ZFC M(T) plot below room temperature shown in Fig.20 for four different 
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compositions of BF-xBT. The M(T) shows a peak corresponding to the SG1 transition whereas 

the SG2 transition is signalled by a decrease in the magnetisation value at low temperatures. As 

a result of dilution of the magnetic sublattice due to disorder, magnetization decreases and the 

peak corresponding to the SG1 transition becomes less prominent for x=0.40. The 

electromagnon transition is signalled by a kink (for x≤ 0.30) or a dip (x=0.40) at the foothill of 

the SG1 peak. The corresponding transition temperature shows a rather weak composition 

dependence upto x=0.30. The composition dependence of this transition temperature (Tc) was 

also fitted to (x-xc)
n type function which gave us n= 0.33±0.06 and xc =0.55±0.02. The phase 

diagram presented here clearly shows that the SG1 and SG2 transitions are intervened by a third 

transition supposedly driven by electromagnons for all the compositions with x < xc, a situation 

not envisaged in the existing theories of a succession of two spin glass transitions in Heisenberg 

systems [23-26].  

I. Concluding remarks: 

               We have presented evidence for two spin glass transitions in the BF-xBT system using a 

series of bulk measurements revealing history dependent effect, critical slowing down of the spin 

dynamics due to ergodicity breaking, existence of A-T and G-T lines due to freezing of the 

longitudinal and transverse components of the spins and stretched exponential decay of the 

thermoremanent magnetization. Using neutron and x-ray diffraction measurements, which 

provide evidence on microscopic scales, we have shown that the two spin glass transitions are 

not only intrinsic to the BF-xBT system but also occur on the same magnetic sublattice in 

coexistence with the long range ordered antiferromagnetic phase. Our results show for the first 

time that the spontaneous polarization (Ps) and unit cell volume (V) show significant variation 

across the SG1 and SG2 transitions confirming the presence of magnetoelectric and 
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magnetoelastic couplings, respectively. These couplings and the possibly the presence of 

electromagnons constitute unique features of a multiferroic spin glass systems that distinguish 

them from the conventional spin glass systems. While the existence of the A-T and G-T lines 

confirm that the SG1 and SG2 transitions result from the freezing of the longitudinal and 

transverse components of spins as predicted theoretically for Heisenberg systems with small 

single ion anisotropy (D), there are a few unexplained aspects of our observations. First and 

foremost is whether the smeared SG1 transition could have a structural origin, rather than 

magnetic. Although the SG1 transition is not found to be linked with any change in the space 

group symmetry, the occurrence of isostructural phase transition (ISPT) has been confirmed by 

us which indicates spin-phonon coupling. Secondly, the temperatures for the two spin glass 

transitions are far too apart whereas the difference between the two-successive spin-glass 

transitions in conventional spin glasses is rather modest (<50K). Thirdly, the two spin glass 

transitions are not successive as there is another transition, possibly driven by electromagnons, 

in between the two spin glass transitions. Any plausible theory of spin glass transitions in a 

multiferroic system requires consideration of magnetoelastic and magnetoelectric couplings as 

well as electromagnons, if present. The mechanism of spin-phonon coupling (electronic or 

otherwise) needs to be investigated for each multiferroic system since it differs from compound 

to compound [80]. We hope that our results would stimulate future work to consider the effect of 

these couplings and electromagnons in the mean field theories as well as Monte Carlo 

simulation studies of SG transitions in insulating magnetoelectric multiferroics like BiFeO3. 
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Figure Captions: 

Fig. 1. ZFC DC magnetization vs temperature plot for an applied field of 500 Oe. Insets depict 

(a) the temperature dependence of DC magnetization under ZFC and FC conditions and (b) 

Curie-Weiss plot for BF-0.20BT above TN. 

Fig. 2. The M-H hysteresis loop at 300K for BF-0.20BT. 

Fig. 3. Neutron powder diffraction pattern at room temperature. Arrow marks the 

antiferromagnetic peak. All the indices are written with respect to a doubled pseudocubic cell. 

Fig. 4. The variation of specific heat capacity with temperature for BF-0.20BT. Inset (a) is a 

magnified view around SG1 transition depicting an anomaly.  

Fig. 5. Variation of χ' (ω, T) and χ'' (ω, T) in the temperature range 2-300K at various 

frequencies [47.3 Hz (►), 97.3 Hz (◄), 197.3 Hz (▼), 297.3 Hz (▲), 397.3 Hz (●), 497.3 Hz 

(■)]. Insets (i) and (ii) depict χ' (ω, T) on a zoomed scale for SG 1 and SG 2, respectively. 

Fig. 6. lnτ versus 1/T plot for (a) SG1 and (b) SG 2 transitions. Solid line is the least squares fit 

for Vogel-Fulcher law. 

Fig. 7. lnτ versus ln(T-TSG/TSG) plot for (a) SG1 and (b) SG 2 transitions. Solid line shows the 

least squares fit for power law. 

Fig. 8. ZFC DC magnetization vs temperature plots of BF-0.20BT measured at different applied 

fields. Insets depict the magnified view around SG2 transition.  

Fig. 9. (a) de Almeida-Thouless (A-T) line for SG1 transition and (b) Gabay-Toulouse (G-T) line 

for SG2 transition. 

Fig. 10. Variation of thermoremanent remnant magnetization (M (t)) with time at (a) 200 K and 

(b)10 K for BF-0.20BT. 
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Fig. 11. The evolution of x-ray powder diffraction profiles of the (222)p, (400)p and (440)p 

reflections of BF-0.20BT with temperature showing absence of any structural phase transition. 

Fig. 12. Observed (filled circles), calculated (continuous line), and difference (bottom line) 

profiles obtained from the Rietveld refinement using SXRD data at (a) 220K (b) 240K and (c) 

260K using R3c space group for BF-0.20BT. The vertical tick marks above the difference profile 

represent the Bragg peak positions. 

Fig. 13. Variation of unit cell volume with temperature: XRD (▲) and NPD (●) data. Solid line 

(▬) is fit for Debye Grüneisen equation TSG1. Inset (a) shows the zoomed view around 140K and 

SG2 transitions. Inset (b) depicts the variation of volume strain (V/V) against square of 

magnetization (MS
2) obtained by M-H loop. 

Fig. 14. The evolution of the neutron powder diffraction patterns with temperature in the limited 

2θ = 15º-57º range. The first peak is due to AFM ordering. The Miller indices are written with 

respect to a doubled pseudocubic cell.  

Fig. 15. Temperature dependent variation of the integrated intensity of the AFM peak (111) (The 

miller indices are with respect to a doubled pseudocubic cell). Solid line is fit for Brillouin 

function.  

Fig. 16. Temperature dependence of the fractional z coordinates of (a) Bi/Ba and (b) Fe/Ti. The 

x and y coordinates of O are shown in (c) and (d). All these coordinates were obtained from the 

Rietveld refinements using neutron powder diffraction data. 

Fig. 17. Temperature dependent variation of the spontaneous polarization calculated from the 

positional coordinates. 
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Fig. 18. (a) The variation of ZFC magnetization with temperature measured at a field of 500 Oe 

for various compositions in the range 0.10 ≤ x ≤ 0.60. (b) shows first derivative of M (dM/dT) 

with respect to temperature for these compositions. 

Fig. 19. Left panel shows the variation of χ' (ω, T) of BF-xBT with temperature at 497.3 Hz 

frequency for various compositions in the range 0.10≤x≤0.60. Right panel (a-c) as well as panel 

(d) depict the zoomed view around the SG1 transition. 

Fig.20. The variation of ZFC magnetization of BF-xBT with temperature below 300K measured 

at field of 500 Oe for compositions (a) x= 0.10, (b) x= 0.20, (c) x= 0.30 and (d) x= 0.40 

Fig.21. Phase diagram of BF-xBT. PM: Paramagnetic, SG: Spin glass, AFM: Antiferromagnetic, 

EM: Electromagnon. The SG2 transition temperatures (see the inset) shows the weakest 

composition dependence. The dotted lines through the data points depict the least squares fit for 

Tc~(x-xc)
n type dependence with xc = 0.55 giving n = 0.30, 0.49, 0.33 and 0.08 for the AFM, 

SG1, electromagnon driven and SG2 transitions, respectively. The exponent n ~ ½ indicates the 

possibility of a quantum critical point at xc~0.55.  
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Supplemental Information 

S1: Chemical composition and phase purity analysis of BF-0.2BT: 

                    The results of the quantitative analysis of the chemical composition of BF-0.2BT 

sample using EPMA, averaged over 10 different regions, are given in Table S1 along with the 

standard deviation. It is evident from the table that the values obtained by EPMA analysis are 

close to the nominal composition within the standard deviation. This confirms excellent sample 

quality.  

                    The synchrotron x-ray diffraction (SXRD) pattern of the sintered powder of BF-

0.2BT at room temperature is shown in Fig.S1. It is evident from the figure that all the peaks in 

the SXRD patterns of the sintered powder of BF-0.2BT could be indexed with the pure perovskite 

phase and no trace of any impurity phase is observed. 

 

Table S1: Compositional analysis of BF-0.2BT sample using EPMA 

 

Average Chemical Composition in Weight % 

Element Expected Average 

Bi 56.3 56.2 ± 0.5 

Fe 15.1 15.0 ± 0.2 

Ba 9.2 8.9 ± 0.2 

Ti 3.2 3.1 ± 0.05 

Mn 0.3 0.22 ± 0.04 

O 16.2 15.2 ± 0.5 
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Fig. S1. The SXRD pattern of the sintered BF-0.2BT powder at room temperature. 

S2: Rietveld refinement at room temperature using synchrotron x-ray diffraction pattern: 

               The asymmetric unit of rhombohedral structure with R3c space group consists of three 

ions (Bi3+/ Ba2+, Fe3+/ Ti4+ and O2-) in which, Bi3+/ Ba2+ and Ti4+/Fe3+ ions occupy the 6(a) 

Wyckoff site at (0, 0, z) while O2-ions at the 18(b) sites at (x, y, z) in the hexagonal unit cell. 

Following Megaw and Darlington notation [1], the positional coordinates of atoms in the 

asymmetric unit cell can be written as Bi3+/Ba2+ (0,0,1/4+s), Fe3+/Ti4+ (0,0,t), O2- (1/6-2e-2d,1/3-

4d,1/12). The parameters s and t describe the displacement of cations along [111]pc axis, whereas 

d and e represent the octahedral distortion and octahedral tilt angle  = tan-1(4e√3 ) along 

[111]pc axis, respectively [1]. In the refinement process the background was modeled with linear 

interpolation and the peak shape was modeled using pseudo-Voigt function. Occupancy of all the 

ions were fixed at the nominal composition in the refinements. Zero correction, scale factor, 

background, lattice parameters, half width parameters (u, v and w), positional coordinates and 

thermal parameters were varied during the refinement. Fig.S2 depicts the observed, calculated 
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and difference profiles obtained after the Rietveld analysis of the SXRD pattern for BF-0.2BT 

using R3c space group. The observed (filled-circles) and calculated (continuous line) profiles are 

in excellent agreement, as can be seen from the difference (bottom line) profile given in Fig.S2. 

This confirms that all the peaks in the SXRD pattern of the BF-0.2BT samples are indexed with 

single phase of rhombohedral structure with R3c space group. The refined structural parameters 

given in Table S2 are in good agreement with those reported in literature [2, 3]. 
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Fig.S2: Observed (filled circles), calculated (continuous line), and difference (bottom line) 

profiles obtained from the Rietveld refinement of SXRD data at room temperature using 

R3c space group for BF-0.2BT. The vertical tick marks above the difference profile 

represent the Bragg peak positions. 

S3: Low temperature x-ray diffraction (XRD) studies: 

                   We have verified the absence of structural phase transition in BF-0.2BT below room 

temperature by x-ray diffraction patterns (XRD) using Rietveld technique. The asymmetric unit 

of rhombohedral structure with R3c space group is already given in section S2. The refinement 

converged successfully after a few cycles at all temperatures. The excellent fits confirm the R3c 
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space group for BF-0.2BT at all temperatures. Fig.12 depicts the observed, calculated and 

difference profiles obtained after the Rietveld analysis of the XRD patterns at selected 

temperatures 300K, 200K, 100K and 12K, respectively, for BF-0.2BT using R3c space group. 

Thus, our Rietveld refinements confirm that there is no structural phase transition down to l2K. 
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Fig. S3. Observed (filled circles), calculated (continuous line), and difference (bottom line) 

profiles obtained from Rietveld refinement using R3c space group at (a) 300K (b) 200K (c)100K 

and (d) 12K. The vertical tick marks correspond to the position of all allowed Bragg reflections. 

S4: Neutron powder diffraction (NPD) studies: 

                    In this section, we present the details of the Rietveld analysis of the NPD patterns. 

The asymmetric unit of rhombohedral structure with R3c space group is already given in section 

S2. All the nuclear structure peaks are well indexed with respect to unit cell of the R3c space 

group except the magnetic peaks. No evidence for any magnetic impurity phase was found in the 

neutron data. The magnetic peaks are indexed by considering additional phase in the nuclear 

structure refinement of neutron powder diffraction (NPD) data. Following Singh et al. [2, 3], all 

the magnetic peaks were well indexed with propagation vector k⃗  = (0,0,0). The initial input 

parameters for Rietveld refinement of nuclear structure were taken from the Rietveld refinement 

using SXRD data. Both the nuclear and magnetic structures were refined, and the refinement 

converged successfully after a few cycles. The observed (filled-circles) and calculated 

(continuous line) profiles show excellent fits at all temperatures and some selected Rietveld 

refined profiles (at 300 K, 200K, 100K and 2.8K) are shown in Fig. S4 (a) (b) (c) and (d), 

respectively. The refined lattice parameters, positional coordinates, thermal parameters, and 

magnetic moment are listed in Table S2 are in good agreement with those reported in literature 

[2, 3]. Our Rietveld refinement results also confirm that the nuclear structure with R3c space 

group does not change down to the lowest temperature as a result of the magnetic transitions. 
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Fig. S4. Observed (filled circles), calculated (continuous line), and difference (bottom line) 

profiles obtained from Rietveld refinement using R3c space group at (a) 300K (b) 200K (c) 

100K and (d) 2.8K. Arrow indicates AFM peak. The vertical tick marks correspond to the 

position of all allowed Bragg reflections for the nuclear (top) and magnetic (bottom) 

reflections. 
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Table S2: Refined nuclear and magnetic structural parameters and agreement factors using 

SXRD data at 300K and NPD data at 300K, 200K, 100K and 2.8K with R3c space group. 

Parameters SXRD 300K NPD 300 K NPD 200 K NPD 100 K NPD 2.8 K 

ahex (Å) 5.6139 (2) 5.6132 (5) 5.6084 (5) 5.6052 (5) 5.6051 (4) 

chex (Å) 3.9066 (5) 13.9078 (2) 13.8939 (1) 13.8825 (1) 13.8813 (1) 

vhex (Å) 379.48 (5) 379.42 (6) 378.48 (6) 377.73 (6) 377.59 (5) 

α, β, γ α=β=900,  =1200 α=β=900,  =1200 α=β=900,  =1200 α=β=900,  =1200 α=β=900,  =1200 

Bi/Ba (z) 0.2867 (6) 0.2854 (5) 0.2865 (4) 0.2862 (4) 0.2859 (4) 

Fe/Ti (z) 0.0121 (5) 0.0110 (6) 0.0119 (4) 0.0110 (5) 0.0115 (4) 

O (x) 0.2104 (5) 0.2116 (8) 0.2117 (6) 0.2171 (6) 0.2159 (6) 

O (y) 0.3461 (7) 0.3468 (4) 0.3466 (7) 0.3488 (6) 0.3487 (6) 

O (z) 1/12 1/12 1/12 1/12 1/12 

Bi/Ba(Å2) 11= 22 = 212  

= 0.0431 (3) 

33 = 0.0039 (5) 

11= 22 = 212  

= 0.0363 (2)  

33 = 0.0031 (3) 

11= 22 = 212  

= 0.0313 (2)  

33 = 0.0029 (4) 

11= 22 = 212  

= 0.0250 (2)  

33 = 0.0026 (3) 

11= 22 = 212  

= 0.031 (2)  

33 = 0.0024 (2) 

Fe/Ti (Å2) 1.36 (5) 1.33 (9) 1.30 (5) 1.27 (9) 1.27 (8) 

O(Å2) 11= 0.064 (8) 

22 = 0.022 (3) 

33 = 0.004 (3) 

12 = 0.029 (4) 

13 = 0.004 (8) 

23 = 0.008 (3) 

11= 0.057 (3) 

22 = 0.019 (1) 

33 = 0.002 (3) 

12 = 0.025 (2) 

13 = 0.003 (9) 

23 = 0.006 (4) 

11= 0.048 (5) 

22 = 0.011 (3) 

33 = 0.002 (3) 

12 = 0.019 (7) 

13 = 0.003 (6) 

23 = 0.006 (5) 

11= 0.039 (3) 

  22 = 0.004 (13) 

33 = 0.003 (2) 

12 = 0.014 (2) 

13 = 0.002 (7) 

23 = 0.005 (3) 

11= 0.046 (3) 

  22 = 0.008 (14) 

33 = 0.003 (2) 

12 = 0.017 (1) 

13 = 0.004 (7) 

23 = 0.006 (4) 

μFe (μB) -     3.25 (8) 3.55 (7)    3.75 (8)     3.82 (7) 

Rwp (%) 2.12 9.15 9.89 9.87 9.03 

Rmag (%) - 4.63 4.21 3.39 3.36 

χ2 1.46 7.58 8.35 9.80 8.38 
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