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The hydrogenated Sb monolayer epitaxially grown on a LaFeO3 substrate is a novel type of
two-dimensional material hosting quantum spin-quantum anomalous Hall (QS-QAH) states. For a
device formed by Sb monolayer ribbon, the QAH edge states, belong to a single valley, are located
at opposite edges of the ribbon. The QSH edge states, on the other hand, belong to the other
valley and are distributed in a very narrow region at the same edge. In this paper, we find such
material can be used to fabricate perfect valley filter. Adopting scattering matrix method and
Green’s function method, the valley resolved transport and spatial distribution of local current are
calculated, in the present of Anderson disorder, edge defects and edge deformations. The numerical
results demonstrate that, in the presence of above three types of disorder with moderate strength,
the carriers can flow disspationless with nearly perfect valley polarization. Moreover, when the
device becomes longer, the transport current does not decrease while the valley filter works even
better. The origin is that the disorder can destroy the QSH edge states, but the valley-polarized
QAH edge states can well hold.

PACS numbers: 73.63.-b, 72.80.Ng, 73.20.At

I. INTRODUCTION

Two dimensional materials have captured great atten-
tion in the past decades since the discovery of graphene,
the single layer hexagonal lattice of carbon atoms. One
peculiar character of hexagonal structure material (such
as graphene,1 MoS2,

2 silicene3,4 etc) is the valley index
in band structure. In analogy to electron’s spin, valley
index provides another degree of freedom for quantum in-
formation manipulation, named valleytronics.5–33 A val-
ley filter, which generates valley polarized carriers, is the
key device for the application of valleytronics.10–14 A val-
ley filter can be formed by the way of optical pumping
in MoS2,

15–19 at the domain wall of materials with re-
versal inversion asymmetry20–28 or through valley Hall
effect.17,29–33 Valley Hall effect is predicted when the in-
version symmetry is broken in monolayer graphene or
few-layer graphene. Recently in experiment the valley
Hall effect is reported in bilayer graphene with nonlocal
measurement.32,33

One of the most important indexes that characterize a
valley filter is the valley current polarization.13,14,34,35 A
perfect valley filter requires the following two key points:
i) it should be a material experimentally accessible and,
ii) nearly perfect valley polarization and large magni-
tude of the current are asked as well. What’s more, the
transport of valley polarized current should be dissipa-
tionless, thus is robust against various kinds of disorders
and edge deformations. In conventional valley materials,
the inevitable disorders introduce intervalley scattering

and backscattering.13,14,36–40 Thus, the performance of
the valley filters could be bad, especially in longer val-
ley filters. Such phenomenon are observed in the exper-
iments of graphene36,37 and is studied by some of the
present authors as well.14 To avoid the disorder induced
backscattering, the topological protected states may be
better candidates for building perfect valley filters.

Using a toy model, Pan et al. proposed the valley-
polarized quantum anomalous Hall (QAH) states in
silicene.41 Under proper disorder, two pairs of edge states
are destroyed through intervalley scattering, leaving the
QAH edge states in a single valley.11 However, to achieve
such goal, the parameters required are unrealistic exper-
imentally. Furthermore, it is also predicted that a valley
filter exists at the boundary between a QAH insulator
and a quantum valley Hall insulator based on hexagonal
lattice models.12 It is rather difficult to generate two dif-
ferent topological states in a single sample. In above two
proposals, the perfect valley states are more like theoret-
ical hypothesis other than realistic proposals. Moreover,
the direct investigation of how to manipulate the valley
transport in these two system still remains to be investi-
gated.

Soon after the fabrication of monolayer Sb in
experiment,42,43 quantum spin-quantum anomalous Hall
(QS-QAH)44 is predicted in hydrogenated Sb monolayer
based heterostructure using ab initio calculation.45 In
such model, hydrogenated Sb monolayer is epitaxially
grown on a LaFeO3 substrate, in which the spin-orbit
coupling of px and py is strong. The combination of stag-
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gering exchange field and spin-orbit coupling leads to a
nontrivial topological phase with large bulk gap. Consid-
ering the spatial distribution of the edge states (see Fig.
1 b), one speculate that the valley polarized QAH states
are robust and the QSH states are fragile in the presence
disorder, which can be used as valley filters.
In this paper, we present the pure valley polarized

QAH effect in a Sb monolayer ribbon, in the presence
of Anderson disorder, edge defects, or edge deforma-
tions. Using a tight-binding model, the scattering matrix
method and Green’s function methods are applied to cal-
culate the valley resolved transport coefficients and local
current distributions. In a clean ribbon, the QAH edge
states are located at opposite edges of the ribbon and
the QSH edge states are restricted in a narrow region of
a single edge. In the presence of above three kinds of dis-
orders, the conductance contributed by QSH edge states
are easily to be suppressed and the QAH edge states re-
main intact. The valley polarization is enhanced conse-
quently. For moderate disorder strength, nearly fully val-
ley polarized QAH edge states appear within the energy
gap in which the edge states determine the transport.
In above situations the intervalley scattering is insignif-
icant. These results are supported by the local current
distribution as well.
The rest of the paper is organized as follows. The

model of the valley filter, the methods and the parame-
ters are detailed in section II. In section III, we give the
numerical results for the performance of the valley filter
under three type of disorders (Anderson disorder, edge
defects and edge deformations in sperate subsections),
including the conductance, valley resolved transmission
coefficients, valley polarization and local current distri-
butions. A brief conclusion is given in section IV.

II. MODEL AND METHODS

The Sb atoms in Sb2H/LaFeO3 heterostructure formes
a hexagonal lattice as shown in Fig. 1 (a). A and B sub-
lattices of Sb atoms are coupled to H atoms and Fe atoms,
respectively. We investigate a two terminal device com-
posed of the central region and semi-infinite terminals.
The disorders are considered in the central region.
In the tight-binding representation, the whole Hamil-

tonian H = H1 +H2 can be divided into on-site term H1

and the hopping term H2,
45

H1 =
∑

i

Φ†
i [Uiτ0 ⊗ σ0 + λSOτz ⊗ σz +Miτ0 ⊗ σz]Φi,

H2 =
∑

i∈A

3
∑

j=1

Φ†
i[Tδj

+ TRδj
]Φi+δj

+H.c.

Here the basis φ is φ = {|φ+〉, |φ−〉} ⊗ {↑, ↓} with
orbitals φ+ = − 1√

2
(px + ipy), φ− = 1√

2
(px − ipy)

and spin part {↑, ↓}. Thus, τ and σ are the Pauli
matrices acting in orbital and spin space, respectively.
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FIG. 1: (color online) (a) The schematic of Sb hexagonal lat-
tice ribbon model in Sb2H/LaFeO3 heterostructure. The left
and right sides are connected to two terminals of the same
material with infinite length. Two sets of sublattices are rep-
resented by green (A) and yellow (B) balls. Three nearest
neighbor vectors δ1, δ2, δ3 are shown with red arrows. The
edge states are indicated by transverse arrows at the zigzag
boundaries: blue (red) arrows are for QAH (QSH) edge states.
The width and length of the ribbon are N = 6 (six atoms
along the longitudinal direction) and L = 9 (nine hexagonal
lattice in the transverse direction), respectively. (b) The spa-
tial distribution and the cumulation of local current along the
longitudinal direction. Here the value of Jy(x) is multiplied
by 50 and Jy(x) =

∑x
x=1

Jy(x) is cumulated from the bottom
upwards. The dotted blue line is 1.0. (c) The band structure
of the model with the width N = 300. The color represent the
location of the position weight of the eigenstates. Two valleys
are indicated by K and K′, respectively. The red dashed line
is E = 0. (d) Spatial distribution of wave functions along the
longitudinal direction for eigenstates marked as 1− 4 in (c).

The first term in H1 is the staggering potential with
Ui = U(−U) in A(B) sublattice. The second term in
H1 comes from the intrinsic spin-orbit coupling at site
i. The third term in H1 is the staggering exchange field
in A(B) sublattice contributed by LaFeO3 substrate and
absorbed hydrogen atoms. Hamiltonian H2 denotes the
coupling between site i and its nearest sites i + δj as
the three vector δj are displayed in Fig. 1(a). The
first and second term in H2 represent the nearest hop-
ping and the extrinsic Rashba spin-orbit coupling, re-
spectively. The specific expressions of Tδj

and TRδj

are Tδ1
=

(

t1 t2
t2 t1

)

⊗ σ0, Tδ2
=

(

t1 z2t2
zt2 t1

)

⊗ σ0,

Tδ3
=

(

t1 zt2
z2t2 t1

)

⊗ σ0 and TRδ1
= −i

(

λ1 λ2

λ2 λ1

)

⊗

σy, TRδ2
= i

(

λ1 z2λ2

zλ2 λ1

)

⊗ (
√
3
2
σx + 1

2
σy), TRδ3

=

i

(

λ1 zλ2

z2λ2 λ1

)

⊗ (−
√
3
2
σx + 1

2
σy). Here z = e2iπ/3, t1/2

and λ1/2 are hoping term and Rashba spin-orbit cou-
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pling between nearest sites, respectively. The parameters
adopted are MA/B = 180/30meV , UA/B = ∓25meV ,
λSO = 220meV , t1/2 = 1/− 0.9eV , λ1/2 = 10/− 9meV

for the case of QS-QAH state.45 Under such parame-
ters, the band structure of the nanoribbon described by
the Hamiltonian H is shown in Fig. 1(c) for the width
N = 300. The spatial location of each state is displayed
with different colors. At the upper edge, there are three
edge states and in the lower edge, there is only one edge
state. The propagation of the edge states are also indi-
cated in Fig. 1 (a): the blue (red) arrow indicates the
QAH and the QSH state, respectively. Since only the
K states are well localized around ka = −2π/3, in the
following discussion, the states other than K are referred
as K ′ states which is ambiguous in the range of energy
we are discussing: [−0.04eV, 0.02eV ].

The valley resolved transmission coefficients are cal-
culated by the scattering matrix method.46–48 The
intervalley and intravalley components are summed
up according to their valley indexes: TK1K2

(E) =
∑

k1∈K1

∑

k2∈K2
τk1k2

with τk1k2
the transmission coef-

ficient from state of k2 (in momentum space) in left
terminal to state of k1 in the right terminal. Thus
the transmission coefficient of electrons into valley K
in the right terminal is TK = TKK′ + TKK (similarly
TK′ = TK′K′+TK′K). In the numerical calculation, since
the QSH edge states are not well located around K ′ (see
Fig. 1(c)), we count states with ka > −0.5π as valley K ′

and ka < −0.5π as valley K for simplicity. The valley
polarization of the current is P = (TK−TK′)/(TK+TK′)
and the linear conductance at zero temperature is G =
e2

h (TK + TK′). The method also applies to the newly
reported ferrimagnetic honeycomb lattice for valley re-
solved transport calculation.49

The local current distribution in two dimensional ma-
terials provides detailed information of carriers flow
in space.50,51 To calculate it in our device, the non-
equilibrium Green’s function method is used.52–54 The
local current between neighboring sites i and j is: Ji→j =
2e2

h Im[(Tδ+TRδ)(G
rΓLG

a)ji](VL−VR) with Tδ and TRδ

the coupling between sites i and j and VL/VR the volt-
age at the left and right terminal. Here Gr/Ga is the
retarded/advanced Green’s function and ΓL the line-
width function of the left terminal. In the numerical
calculation, the correctness of local current distribution

is verified that the summation
∑N

x=1 Jy(x) equals to
G(VL − VR) along every longitudinal line across the rib-
bon in the central region.

III. NUMERICAL RESULTS

First we investigate the spatial distribution of edge
states in a clean zigzag edged ribbon. The band struc-
ture is shown in Fig. 1(c). Here and after N = 300 is
adopted, corresponding to a ribbon of width 450a with
a the lattice constant. In Fig. 1(c) the band gap at val-

ley K is much smaller than that of valley K ′. In the
QS-QAH regime (within the gap of valley K), there are
four edge states. The wave functions for the four cross
points 1 − 4 at E = 0 are displayed in (d). For QAH
states (1 and 2), the wave functions show an oscillation
behavior and mainly locate at two separated edges. The
QSH states (3 and 4), on the other hand, are strongly
restricted at a single edge. The different spatial distribu-
tion of wave functions comes from the fact that the gap
in K ′ is much larger than the gap at K. Furthermore,
when there is a tiny voltage bias between the left termi-
nal and the right terminal, the characters of local cur-
rent Jy(x) along the longitudinal direction is displayed
in Fig. 1(b). From bottom to top, Jy(x) shows a pe-
riodical oscillation with decreasing peak value. On the
other side, Jy(x) is very high. The cumulation of cur-
rent, Jy(x) =

∑x
i=1 Jy(i), from bottom to site x is also

shown: it increases rapidly from 0 monotonously and is
saturated at 1.0 in a wide range. At the other end, Jy(x)
increases sharply and ends at 2.0, corresponding to bal-
listic transport of G = 2e2/h. It is clearly demonstrated
again that the rightward QAH edge state is distributed
at the lower boundary and the rightward QSH edge state
is highly restricted at the upper boundary. Besides, the
two propagation modes belong to two separate valleys,
leading to a current with no valley polarization.
In real experimental circumstances, two dimensional

materials are usually accompanied with different types
of disorders, such as Anderson disorder,11,38 edge
defects55,56 and edge deformations.57–59 Thus one may
imagine that if the material is not clean, the QSH edge
states will be localized easily and leave the valley polar-
ized QAH states along. So the device may perform as a
perfect valley filter in the presence of disorders. Here An-
derson disorder is introduced by the random on-site en-
ergy around the Fermi level. Edge defects mean atoms at
the boundaries are randomly vacant with a certain prob-
ability. Edge deformations are corresponding to ribbons
with curved edges. In the following, we will demonstrate
them through numerical calculations.

A. Anderson Disorder

When Anderson disorder is considered, an on-site ran-
dom energy is added for each site. To do this, HW =
∑

i Φ
†
i{diag[ε1, ε2, ε1, ε2]}Φi is added to H with εi the

random potential uniformly distributed in the interval
[−W/2,W/2] and W the disorder strength. For each W ,
200 disorder configurations are averaged. Here we focus
on the energy region at [−0.04eV, 0.02eV ] because the
gap center of valley K locates around E = −0.01eV and
the gap is much smaller than that of valley K ′ (see Fig.
1(c)).
The results are displayed in Fig. 2. In the clean limit,

the conductance G is large outside the gap and equals to
2e2/h within the gap. The quantized conductance is con-
tributed equally by the QAH edge states and QSH edge
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FIG. 2: (color online) The performance of the device (G,
TK/K′ , P and TKK′) under Anderson disorder. (a1-e1)
Quantities as function of the energy E for different disorder
strength W . (a2-e2) Quantities as function of W for different
disordered region length L. In the left column L = 240 and
in the right column E = −0.01eV . The dashed lines in (a2,
c1, ,c2, d1, d2) indicate 1.0.

states at opposite boundaries. When the disorder W is
increased, G is suppressed. The transmission coefficients
TK and TK′ versus the energy E is shown in (b1) and (c1)
for differentW . For all E values, TK′ is suppressed for in-
creasing W and such behavior is more obvious within the
gap region. TK , on the other hand, is suppressed outside
the gap region and are slightly affected within the gap.
For moderate disorder W (e.g. W = 0.5 and 0.8), TK′

is very small inside the gap. Meanwhile TK is almost
unaffected around the gap center (see E ∈ [−0.015, 0]
for W = 0.8 in Fig. 2(c1)) and is affected only at the
boundaries of the gap. The great difference between the
behaviors of TK and TK′ , also the main advantage of the
present material, comes from the fact that QAH states
are separate to each other while QSH states are located at
the same edge of the ribbon. Thus, the incoming electron
along the QSH edge states are easily backscattered and
the transport tends to be destroyed by disorder. The
QAH edge states, on the other hand, are topologically
protected, and it can only be backscattered into the op-
posite boundary, thus it is much more robust.
The intervalley scattering coefficients are shown in Fig.

2 (e1). Since two components of intervalley scattering
coefficients, TKK′ and TK′K , are basically equal to each
other under disorder average, only one of them is shown.
Three main characters are found: i) Generally TKK′ is
enhanced for increasing W ; ii) TKK′ is rather large out-
side the energy gap; iii) within the gap interval, TKK′ is
close to zero and is almost unaffected by Anderson disor-
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FIG. 3: (color online) The spatial distribution Jy(x) (the left
column) and the cumulation of local current Jy(x) (the right
column) for Anderson disorder (a1-a2), edge defects (b1-b2)
and edge deformations (c1-c2). L = 240 in all three cases.

der. Thus the valley index for carriers are well preserved
within the gap, implying that the valley polarization P
could be high in the QS-QAH regime. Next, the val-
ley polarization P vs. E relations are shown in Fig. 2
(d1). Outside the gap, P is large since the K valley dom-
inates. In the QS-QAH regime, P is zero for W = 0 and
P increases as W becomes large. For moderate W (e.g.
W = 0.8), P is nearly 1.0 around the gap center, demon-
strating a fully valley polarized current. At the band gap
edges, P shows two dips with value close to zero.

Next we investigate how the sample length affects the
valley transport performance of the ribbon. For fixed E
(E = −0.01eV ), the conductance G decreases from 2.0
to near 1.0 as the disorder W increases. For longer sam-
ples, G decays much more rapidly for strong W . The
behavior of TK′ vs. W is similar to that of G: it de-
crease from unity value to zero. For very large W , TK′

is saturated with small magnitude (see Fig. 2(e2)). The
effect of disorder on TK is rather weak, even for large W
(e.g. W = 1) and longer sample (L = 360), TK ∼ 0.99.
Again, TKK′ is rather small inside the energy gap. Fi-
nally, the valley polarization P increases for increasing
W and L, it approaches unity value. So the transport
of QAH edge state is dispassionless and of high valley
polarization. The advantages are more obvious for larger
W and longer L. These behaviors mean that a perfect
valley filter is achieved in the present device.

The local current distribution under Anderson disor-
der is displayed in Fig. 3(a1) with L = 240. The curve
of Jy(x) for W = 0 is a copy from Fig. 1(b). The trans-
lational invariance is broken under Anderson disorder, so
the mean value of Jy(x) is taken at 20 continuous sites
attached to the right terminal of the scattering region.
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FIG. 4: (color online) The performance of the device (G,
TK/K′ , P and TKK′ ) with edge defects. (a1-e1) Quantities as
function of E for different L. (a2-e2) Quantities as function
of L for different defect density η. In the left column η = 0.1
and in the right column E = −0.01eV . The dashed lines in
(a2, c1, c2, d1, d2) indicate 1.0.

As the disorder is strengthened, Jy(x) at the lower part
shows non-periodical oscillatory behaviors and the value
at the upper boundary is strongly suppressed. For in-
stance, for W = 0.5eV , Jx(300) is suppressed from ∼ 0.6
at W = 0 to ∼ 0.01. The cumulation of Jy(x), Jy(x), is
shown in Fig. 3(a2). At weak disorder W , Jy(x) shows
no obvious different from that of an idea ribbon. For large
W (e.g. W = 0.5), Jy(x) shows an oscillatory behavior
at the lower boundary of the ribbon and it saturates at
1.0 at the upper boundary. When W is small, both Jy(x)
and Jy(x) are similar to an idea one in the lower half part
of the ribbon and the value in the upper half part is sup-
pressed. At large W , Jy(x) is almost destroyed at the
upper boundary. The result indicates that the QSH edge
states are fragile to disorder even at weak disorder while
the valley polarized QAH edge states are not affected.

B. Edge Defects

In case of edge defects, the outmost Sb atoms at the
edges are randomly removed with the probability η. In
Fig. 4 (a1), the conductance G vs. E curves are shown
for different length L with η = 0.1. Within the gap, G
shows a plateau with the value close to e2/h for different
L. Meanwhile, the transmission coefficient TK′ is severely
suppressed but TK is almost unaffected as plotted by
Fig. 4 (b1-c1). The suppression is more obvious for large
L, indicating stronger backscattering of QSH edge states
for longer samples. The results for intervalley scattering

0

5

10

15

20

0.0

0.4

0.8

0

1

2

0.0

0.5

1.0

-0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02
0.0

0.2

0.4

0.6

0.0

0.5

1.0

0

1

2

0.0

0.5

1.0

-0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02
0.0

0.2

0.4

0.6

0

5

10

15

20

G
(e

2 /h
)

 d=4
 10
 20

(a1)

(b1)

T K
'

(c1)

T K

(d1)

P

(e1)

T K
K
'

E(eV)

(f1)

(b2)

T K
'

(c2)

T K

(d2)

P

(e2)

T K
K
'

E(eV)

(f2)

G
(e

2 /h
)

 d=4
 10
 20

(a2)

FIG. 5: (color online) The schematics of the sawtooth edged
(a1) and sinuous edged (a2) ribbons with 10 periods. The
details of the edges are enlarged and in both cases the de-
formation is indicated by the maximum deviation from the
original lateral edge, d. The performance of G, TK/K′ , P and
TKK′ as a function of E for different types of edge deforma-
tions. The results for ribbons of sawtooth/sinuous edges are
shown in (b1-f1)/(b2-f2).

are shown in Fig. 4 (e1). Outside the QS-QAH regime,
the intervalley scattering is strong. In contrast, within
the QS-QAH regime, the intervalley scattering is almost
zero. Because of the robustness of QAH edge state and
the fragility of the QSH edge state, it is not surprise to
see high value of valley polarization P within the gap.
P = 1 plateau is achieved when the length L is large.

In Fig. 4 (a2-e2) we investigate the length dependence
on the valley filter performance for different η values.
the conductance G decreases monotonically from 2e2/h
to e2/h as L increases. For large η values, G decreases
much more rapidly. For example, for η = 0.2, G is close
to e2/h when L > 200. As expected, the decreasing
behavior is mainly contributed by TK′ : as L becomes
large, TK′ decay to zero rapidly while TK are only slightly
affected. Even for η = 0.3 and L = 500, TK is larger than
0.98. The valley polarization P vs. the length L relations
increase and are saturated with value P = 1. The higher
value of defect density η, the faster P becomes saturated.
For all η values, the valley polarization P reaches 1 when
L > 200. Again, the intervalley scattering for all cases
(different values of η and L) is rather weak (see Fig. 2
e2).

The local current distribution Jy(x) for different η is
shown in Fig. 3 (b1) with L = 240. The clean model
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result is also presented for comparison. For different η
values, the curves for Jy(x) coincide each other in the
most sites of the ribbon (except the upper boundary). At
the upper boundary, Jy(x) decreases quickly from ∼ 0.6
to nearly zeros as η increases. The cumulation of cur-
rent Jy(x) is shown as well in Fig. 3 (b2). Similarly, in
the most sites of the ribbon, the curves are only slightly
changed. As η increases, the final value of Jy(x) de-
creases from 2.0 to 1.0. It means only the QSH edge
states are destroyed and the QAH edge states are nearly
unaffected. We note that the transport of QSH edge
states vanishes even for small η, and the conductance
G = 1 and the valley polarization P = 1 hold for even
large η values. So in the presence of edge defects, the
device can work as a perfect valley filter.

C. Edge Deformations

Finally we investigate the effect of the edge deforma-
tions on the performance of the valley filter. Two cate-
gories of edge deformations are considered: the sawtooth
edge (Fig. 5 a1) and sinuous edge (Fig. 5 a2). The
size of the central region is N = 300 and L = 360. For
both categories, at the edges there are 10 periods. The
deformation of the edge is indicated by d. It means the
maximum deviation of edge atom from an ideal ribbon
(no deformation) is da with a the lattice constant.
The numerical results are shown in Fig. 5 with saw-

tooth edge in the left column and sinuous edge in the
right column. For the first category of samples (left col-
umn), outside the gap region, the conductance G is sup-
pressed and inside the gap, G vibrates above the value
G = e2/h. From Fig. 5(d1), one notices that for all d
values TK stays at 1.0 in the QS-QAH regime, almost un-
affected by the deformed edges. However, TK′ is strongly
weakened except several peaks. As the deformation is se-
vere (larger d), the peaks inside the gap are suppressed
and TK′ tends to be flat with value zero. Consequently,
for ribbon with edge slightly curved (e.g. d = 4), the
valley polarization P can reach the value of 1.0 except
several dips. For large d, P equals to 1.0 in almost whole
QS-QAH regime. Similar to the cases for Anderson dis-
order and edge defects, TKK′ vibrates outside the gap
and is almost zero inside the gap under edge deforma-

tion. For the second category of samples, the results (see
Fig. 5 b2-f2) are quite similar.

Finally, we show current distribution results in Fig. 3
(c1-c2) for edge deformations. In analogy to the situa-
tions for Anderson disorder and edge defects, when the
ribbon edges are only slightly curved (e.g. d = 4), at the
upper boundary of the ribbon Jy(x) is nearly zero and
Jy(x) is 1.0. These characters holds as d increases from
4 to 20. So in a ribbon of curved edges, QSH edge states
are localized and the valley polarized QAH edge states
stay robust. In a word, edge deformation, naturally ex-
ists in the fabricated process, facilitates the performance
of Sb monolayer as perfect valley filters.

IV. DISCUSSION AND CONCLUSION

The valley transport properties of zigzag edged mono-
layer Sb ribbon in Sb2H/LaFeO3 heterostructure is in-
vestigated. Around the Fermi level, the system belongs
to QS-QAH regime. In such case, the QAH edge states
are distributed at both sides of the ribbon and the states
belong to the same valley. The QSH edge states, at the
other valley, are located in a narrow region at the same
side of the ribbon. We find that under Anderson dis-
order, edge defects or edge deformations, the QSH edge
states are easily to be localized and the valley polarized
QAH edge states stay robust. Consequently the cur-
rent through the ribbon carried by quantized QAH state
is of perfect valley polarization. The above results are
both supported by transport calculation and local cur-
rent distributions. So a Sb monolayer under disorders is
a promising candidate for realizing perfect valley filters.
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