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It is shown that a local bend of a nanowire is a source of pinning potential for a transversal
head-to-head (tail-to-tail) domain wall. Eigenfrequency of the domain wall free oscillations at the
pinning potential and the effective friction are determined as functions of the curvature and domain
wall width. The pinning potential originates from the effective curvature induced Dzyaloshinsky-
like term in the exchange energy. The theoretical results are verified by means of micromagnetic
simulations for the case of parabolic shape of the wire bend.
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I. INTRODUCTION

Dynamics of domain walls in nanowires underlies mod-
ern memory1,2 and logic3–5 devices, see also review Ref. 6.
Most of these designs require wires with curvilinear seg-
ments, e.g. vertical configuration of the racetrack mag-
netic memory.1 Therefore, the modification of dynamic
and static properties of a domain wall due to the wire
curvature is of high importance for the applications. It is
known that the local curvilinear defects of the wire can
be a source of pinning potential for the domain wall.7–9

However, in contrast to widely studied mechanisms of the
domain wall pinning, such as interaction with artificial
notches,10–17 surface roughnesses,18–21 inhomogeneities
in the magnetocrystalline anisotropy distribution,21–23

the role of the curvature remains unclear and the gen-
eral theory is absent. Nevertheless, one should note some
progress in studying the simplest case of circular wire ge-
ometry, where the domain wall pinning is achieved due
to the applied external magnetic field.24,25

As it was recently shown26 the exchange interac-
tion in a curvilinear wire can produce an effective
Dzyaloshinsky-like term. In this paper we demonstrate
that the inhomogeneous distribution of this curvature in-
duced Dzyaloshinsky-like contribution can be an origin of
domain wall pinning at the local wire bend, analogously
to the case of studied anisotropy inhomogeneities.21–23

Considering the coordinate dependent curvature of the
wire we propose a general approach valid for a wide class
of geometries.

II. MODEL AND GENERAL RESULTS

In this paper we consider a plane curved ferromagnetic
wire of circular cross-section. Such a wire can be param-
eterized in the following way:

r(s, χ, ρ) = γ(s) + ρ cosχen(s) + ρ sinχeb(s). (1)

Here the three-dimensional radius vector r defines the
space domain, occupied by the wire, the two-dimensional

vector γ(s) = γx(s)x̂+γy(s)ŷ determines the wire central
line, which lies within the xy-plane, with s being the nat-
ural parameter (arc length). Within a wire cross-section
the polar coordinates ρ ∈ [0, R] and χ ∈ [0, 2π) are used,
where R is the wire radius. We use here the Frenet-Serret
basis (et, en, eb) with et = γ′(s), en = γ′′(s)/κ(s), and
eb = et × en being the tangential, normal, and binor-
mal unit vectors, respectively. Here the wire curvature
κ(s) = |γ′′(s)| is introduced.

Using the Frenet-Serret basis one can introduce the
angular magnetization parameterization

m = cos θ et + sin θ cosφ en + sin θ sinφ eb, (2)

where m = M/Ms is the normalized magnetization unit
vector with Ms being the saturation magnetization.

Magnetization dynamics of this system can be studied
by means of phenomenological Landau-Lifshitz equations

− sin θθ̇ = ω0
δE

δφ
+α sin2 θφ̇, sin θφ̇ = ω0

δE

δθ
+αθ̇, (3)

where overdot indicates the time derivative, frequency
ω0 = 4πγ0Ms determines the characteristic time scale
of the system with γ0 being the gyromagnetic ratio,
E = E/4πM2

s is normalized total energy, and α is the
damping coefficient.

We start with a simple model, which takes into account
only two contributions to the total magnetic energy

E = S

+∞∫
−∞

[
`2Eex − kt cos2 θ

]
ds, (4)

namely, exchange one Eex and easy-tangential anisotropy
– the second term in (4). Here S = πR2 is area of the wire

cross-section, ` =
√
A/4πM2

s is the exchange length with
A being exchange constant, and kt = K/(4πM2

s ) + 1/4
is the dimensionless anisotropy constant. Here K >
0 is constant magnetocrystalline anisotropy of easy-
tangential type and the term 1/4 comes from the mag-
netostatic contribution. It is known27–30 that for thin
wires of circular and square cross-sections the magneto-
static energy is reduced to an effective easy-tangential
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FIG. 1. (Color online) Equilibrium state of the transversal do-
main wall at the wire bend. Top row shows the magnetization
distribution obtained using micromagnetic NMAG simulations
for permalloy parabolic wire with R = 5 nm, total length
L = 1 µm and κ0 = 0.05 nm−1 (only the bend vicinity is
shown). The bottom row demonstrates comparison of mag-
netization components mt = m ·et and mn = m ·en obtained
from the simulations (markers) and from the Ansatz (7)
(lines). In the latter case the domain wall width ∆ = 2`
was used.

shape anisotropy with Keff = πM2
s , including case of

a curvilinear wire.29 Competition of the exchange and
anisotropy contributions results in the length scale of the
system w = `/

√
kt. For magnetically soft wires K = 0

and w = 2`. In (4) and everywhere below we restrict
ourselves with the case of thin wire R . w, thus we as-
sume that the magnetization varies along the wire and it
is uniform within a wire cross-section: m = m(s).

In terms of the angular parametrization (2) the ex-
change energy density has a form26

Eex = (θ′ + κ cosφ)
2

+ (φ′ sin θ − κ cos θ sinφ)
2
, (5)

where the prime denotes derivative with respect to s. In
(5) it is taken into account that a plane wire has zero
torsion.

Let us first analyze static solutions of (3). In this case
there is a solution φ = φ0 = 0, π, which corresponds
to a planar magnetization distribution: vectors m(s) lie
within the wire plane. The corresponding function θ is
determined by an inhomogeneous Sine-Gordon equation
(for details see Appendix A)

w2θ′′ − sin θ cos θ = −w2κ′ cosφ0. (6)

For the case κ′ ≡ 0 (rectilinear or circular wire)
Eq. (6) has the well known domain wall solutions cos θ =
−p tanh[(s− q)/∆] of head-to-head (p = 1) or tail-to-tail
(p = −1) types. Here q determines the domain wall po-
sition and ∆ = w is the wall width. For the case κ′ 6≡ 0
an additional driving force appears and the curvature

induced domain wall dynamics is expected. In the fol-
lowing, we consider a case of a localized curvature, i.e.
κ(±∞) = 0 and κ′(±∞) = 0, see Figs. 1, 2(a), this re-
sults in the boundary conditions cos θ(±∞) = ∓p, the
same as for a rectilinear wire. We also restrict ourselves
with the case w2κ′ � 1 assuming that the domain wall
remains its form and the curvature influence results in a
weak modification of the width ∆. Therefore, to analyze
the domain wall properties (static as well as dynamic
ones) we use collective variable approach31,32 based on
the simple q − Φ model31,33

cos θ = −p tanh

[
s− q(t)

∆

]
, φ = Φ(t), (7)

which is widely used for different types of domain walls
and various drivings.19,20,27,34–40 The domain wall po-
sition q and phase Φ, which determines orientation of
the transversal magnetization component, make a canon-
ically conjugated pair of collective variables. The domain
wall width ∆ is shown to be a slaved variable,27,37 i.e.
∆(t) = ∆[q(t),Φ(t)]. However, this is not the case when
Φ depends on coordinate41 (it is possible for a three di-
mensional wire, when the torsion is present), in this case
a generalization of the q − Φ model41 must be applied.

Substituting now the Ansatz (7) into (4) one obtains
the total energy in the form (up to an additive constant)

E

2S
=

(
`2

∆
+ kt∆

)
+ π`2p cos Φκ(q)− `2∆ sin2 Φκ2(q),

(8)
where the condition κ∆ � 1 was applied when in-
tegrating (4), for details see Appendix B. The first
term in (8) reflects the exchange-anisotropy competition
which determines the domain wall width for a rectilin-
ear wire. The second and the third terms originate
from Dzyaloshinsky-like and anisotropy-like terms, re-
spectively, which effectively appear in the exchange en-
ergy due to the curvature.26 Minimization of (8) with
respect to parameters q and Φ results in the following
equilibrium values q0 and Φ0:

κ′(q0) = 0, cos Φ0 = −p. (9)

Thus, the domain wall is pinned at the maximum of
the curvature, and the phase selectivity takes place:
the head-to-head domain wall is always directed out-
ward while the tail-to-tail one is directed inward the
bend, see Fig. 1. The latter effect was recently observed
experimentally.17 There is an intuitive explanation: the
choice of Φ0 defined by (9) makes the magnetization dis-
tribution more homogeneous, see Fig. 1, which decreases
the exchange energy.

As it follows from (8), the equilibrium value of the
domain wall width ∆0 = w is the same as for a rec-
tilinear wire. However, if the wall is perturbed and
the values of quantities (q, Φ) deviate from the equilib-
rium (9), the domain wall width is modified as follows
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∆(q,Φ) = `[kt − kb(q) sin2 Φ]−1/2, where kb = `2κ2(q)
is coefficient of the curvature induced effective easy-
binormal anisotropy. The similar domain wall width
modification caused by a geometrical constrain was dis-
cussed in Ref. 42.

As it follows from the Fig. 1 the used Ansatz (7) and
the obtained static results (9) are in a good agreement
with the simulations results.

Let us now proceed to dynamical properties of the do-
main wall. In terms of the collective variables the equa-
tions of motion (3) take a form (see Appendix B)

q̇ =
ω0

2S

∂E

∂Φ
+ α∆Φ̇, Φ̇ = −ω0

2S

∂E

∂q
− α

∆
q̇. (10)

Our goal is to study linear dynamics of the domain wall
in vicinity of the equilibrium position. With this purpose
we introduce small deviations in the way q(t) = q0 + q̃(t)

and Φ(t) = Φ0 + Φ̃(t). For the limit case κ∆0 → 0 the
equations of motion (10) linearized with respect to the
deviations read

(1 + α2)

∥∥∥∥∥ ˙̃q
˙̃Φ

∥∥∥∥∥ ≈ ω0`
2π

∥∥∥∥ 0 κ(q0)

κ′′(q0) −ακ(q0)
∆0

∥∥∥∥ · ∥∥∥∥ q̃Φ̃
∥∥∥∥ . (11)

For the case of small α the solution of (11) results in

harmonic decaying oscillations q̃ ∝ sin(Ωt+ δ0)e−ηt, Φ̃ ∝
cos(Ωt+ δ0)e−ηt with frequency

Ω ≈ ω0`
2π
√
κ(q0)|κ′′(q0)| (12)

and modified effective friction

η ≈ αω0
π

2

`2κ(q0)

∆0
. (13)

The phase δ0 is determined by the initial conditions. In
(12) and (13) it is taken into account that κ(q0) > 0 and
κ′′(q0) < 0 at the maximum point q0.

It should be noted that an energy expression analogous
to (8) was earlier obtained for a certain case of a circu-
lar wire segment.24 However, the circular geometry does
not produce any geometrical pinning potential due to the
constant curvature κ ≡ const, which results in Ω = 0 and
undefined q0. Nevertheless, the domain wall can have an
equilibrium position in circular segment in the presence
of an external magnetic field.24,25

In more general case ∆0κ ∈ (0, 1) the Ansatz (7) leads
to the following expressions for the eigen-frequency and
effective friction

Ω = ω0
`2

∆2
0

√
|AB|, η = αω0

`2

∆2
0

|A|+ B

2
,

A = ∆2
0

+∞∫
−∞

κ′′(s)

cosh s−q0
∆0

ds,

B =

+∞∫
−∞

κ(s)

cosh s−q0
∆0

ds−∆0

+∞∫
−∞

κ2(s)

cosh2 s−q0
∆0

ds.

(14)

In this case the equilibrium position q0 is defined by the
equation

+∞∫
−∞

κ′(s)

cosh s−q0
∆0

ds = 0 (15)

and the equilibrium value of Φ0 coincides with one de-
fined in (9), for details see Appendix B.

It is important to emphasize that the pinning poten-
tial and the corresponding domain wall oscillations have
purely exchange origin, while the weak interactions, e.g.
magnetostatic one, contribute mediately via value of pa-
rameter ∆0.

III. THE CASE OF PARABOLIC BEND

Let us now check the obtained general results for an
example of parabolic wire, whose central line has a form

γ = xx̂+ κ0
x2

2
ŷ. (16)

The wire curvature κ = κ0(1 + κ2
0x

2)−3/2 as a func-
tion of natural parameter s = κ−1

0 f(κ0x), with f(ξ) =
1
2

[
ξ
√

1 + ξ2 + arcsinh(ξ)
]
, is shown in Fig. 2(a). It has

a single maximum at point s0 = 0 with extreme value
κ(s0) = κ0.

In accordance with (15) the equilibrium domain wall
position is q0 = 0, i.e. the domain wall is located at the
extreme point of the bend. The equilibrium phase value
Φ0 is determined by (9), see Fig. 1.

In the narrow domain wall limit ∆0κ0 → 0 the eigen-
frequency (12) and effective friction read

Ω ≈ ω0

√
3π(κ0`)

2, η ≈ αω0π`κ0/4. (17)

In order to verify our analytical results we performed
two types of numerical simulation: (i) micromagnetic
simulations of magnetically soft nanowire (NMAG code);
(ii) numerical solution of the Landau-Lifshitz equations
for a discrete chain of magnetic moments.

Let us start by considering the magnetically soft wires,
whose geometries are determined by (1) and (16). The
radius of cross-sectionR = 5 nm and length L = 1 µm are
fixed for all studied samples, while the extreme curvature
κ0 is varied in the range κ0 ∈ [0.005, 0.05] nm−1 with
step ∆κ0 = 0.005 nm−1.

Permalloy is chosen as a material with the following
parameters: exchange constant A = 13 pJ/m, satura-
tion magnetization Ms = 860 kA/m, and damping coeffi-
cient α = 0.01. These parameters results in the exchange
length ` ≈ 3.7 nm and ω0 = 30.3 GHz. Thermal effects
and anisotropy are neglected.

The magnetization dynamics is studied by means of
numerical simulation of the Landau-Lifshitz equation ap-
plying the NMAG code43, wherein an irregular tetrahedral
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FIG. 2. (Color online) (a) Curvature of the parabolic wire (16) with κ0 = 0.05 nm−1. Insets (b) and (c) shows the time
dependences (with the corresponding Fourier spectra) of position q(t) and phase Φ(t) of the domain wall, perturbed at vicinity
of the equilibrium point q0 = 0. The data are obtained by means of micromagnetic simulations for a wire with κ0 = 0.05 nm−1

and R = 5 nm.

mesh with cell size about 1.75 nm is used. Only three
magnetic interactions were taken into account, namely
exchange, magnetostatic and Zeeman contributions.

The numerical experiment consists of three steps. Ini-
tially, we relax the domain wall structure in an over-
damped regime (α = 0.1) in order to determine the
equilibrium values of collective variables: position q0 and
phase Φ0. The obtained results fully coincides with the
prediction (9). To determine the values of q and Φ we
extract the curvilinear magnetization components mt =
m·et, mn = m·en, and mb = m·eb from the simulation
data, and apply fitting with the Ansatz (7). Namely, the
position q is determined as a fitting parameter for the
function mt(s) = −p tanh[(s − q)/∆], then the phase is
determined from the equation tan Φ = mb(q)/mn(q).

In the second step we slightly perturb the domain wall
phase Φ by applying a weak magnetic field B = B0ez
perpendicularly to the wire plane, where B0 = 25 mT.
After the system relaxation in the applied field B the
field is switched off and the magnetization dynamics is
simulated for the natural value of the damping coefficient
(the third step). Since the variables Φ and q are canoni-
cally conjugated, see Eqs. (10), the perturbed dynamics
of Φ induces the dynamics of q, i.e. the domain wall
starts to move. Typical time dependences of these col-
lective variables are shown in Fig. 2(b,c), where one can
see harmonic decaying oscillations with well pronounced
frequency Ω and friction parameter η. In this way we
determine Ω and η for all range of the studied curva-
tures κ0. The frequency Ω as well as the friction η in-
creases with the curvature increasing, see Fig. 3 (round
markers). One should note a good agreement of the ob-
tained numerical results with the analytical prediction
(14) with ∆0 = 2`, see solid lines in Fig. 3 and Ap-
pendix B for details. This means that the approxima-
tion of magnetostatic interaction by the effective easy-
tangential anisotropy is physically sound for a domain
wall dynamics in the thin nanowires.
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FIG. 3. (Color online) Eigenfrequency of the domain wall os-
cillations in vicinity of the equilibrium – the extreme point of
parabolic bend, see Fig. 1. Solid and dashed lines correspond
to the predictions (14) and its narrow-wall asymptotics (17),
respectively. Markers shows the results of numerical simula-
tions for nanowires (disks) and discrete chains of magnetic
moments (triangles). The inset demonstrates dependence of
the effective friction on the curvature parameter.

Additionally, we study dynamics of discrete chains of
magnetic moments mi, with i = 1, N , aligned along
parabolic line (16). The moments are aligned equidis-
tantly with the fixed step size ∆s along the chain. As pre-
viously, only three magnetic interactions are taken into
account, namely exchange (with ` = 3∆s), dipole-dipole
and Zeeman contribution. Total number of moments is
fixed N = 76 while the curvature parameter κ0 is varied
but the restriction κ0∆s� 1. Dynamics of this system is
described by a set of N vector Landau-Lifshitz equations
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which a solved by means of common numerical methods,
in details this procedure is described in Ref. 44.

The domain wall oscillations are studied in the same
way as for the wires described above. The resulting eigen-
frequencies and friction parameters are shown in Fig. 3
by triangles.

In conclusion, we demonstrate an effect of curvature
induced pinning of a transversal head-to-head (tail-to-
tail) domain wall at a local wire bend. The curvature
induced pinning potential has purely exchange origin.
We obtain an expression (14) for frequency and effec-
tive friction of the free domain wall oscillations within
the pinning potential, and we demonstrate its validity
numerically for the range of parameters κ∆ ∼ 10−1.
For the case of a narrow domain wall or weak curva-
ture (κ∆ ∼ 10−2) the approximations (12) and (13) can
be used. The good agreement of analytical predictions
and results of full scale numerical simulations for mag-
netically soft cases (K = 0) demonstrates that the ap-
proximation of magnetostatic interaction by the effective
easy-tangential anisotropy is physically sound for a do-
main wall dynamics in the thin nanowires.
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Appendix A: Static solutions for a planar wire

Static form of Eqs. (3) reads δE/δθ = 0, δE/δφ = 0.
Taking into account form of energy (4) and exchange en-
ergy density (5) one obtains the following set of equations

θ′′− sin θ cos θ
[
φ′2 − κ2 sin2 φ+ w−2

]
(A1a)

−2φ′κ sin2 θ + κ′ cosφ = 0,

φ′′+2θ′ [cot θφ′ + κ sinφ] + κ2 sinφ cosφ (A1b)

−κ′ cot θ sinφ = 0.

Equation (A1b) has solutions φ = φ0 = 0, π. Substitu-
tion of this solution into (A1a) results in equation (6),
which determines the function θ(s).

Appendix B: Details of the q − Φ model usage

The equations of motion (3) are the Euler-Lagrange
equations

δL

δξi
− d

dt

δL

δξ̇i
=
δF

δξ̇i
, ξi = θ, φ (B1)

for Lagrange function45

L = − S

ω0

∞∫
−∞

φ sin θθ̇ds− E (B2)

and dissipative function

F =
α

2
S

∞∫
−∞

[
θ̇2 + sin2 θφ̇2

]
ds. (B3)

Substituting the Ansatz (7) into (B2) and (B3) and per-
forming the integration over s (along the curve) one ob-
tains the effective Lagrange and effective dissipative func-
tions in the form

Leff =
2S

ω0
Φq̇ − E, Feff = α

S

ω0

[
q̇2

∆
+ ∆Φ̇2

]
. (B4)

Substituting (B4) into the Euler-Lagrange equations
(B1) one obtains the equations of motion (10) written
in terms of the collective variables.

Let us now consider energy of the system E. Substi-
tuting the Ansatz (7) into the energy expression (4) and
performing the integration one obtains (up to an additive
constant)

E

2S
=
`2

∆
+ ∆kt +

`2

∆2

[
pF1 cos Φ− F2

2
sin2 Φ

]

Fn =

∞∫
−∞

fn(s)ds, f(s) =
κ(s)∆

cosh s−q
∆

.

(B5)

In the limit case κ∆ → 0 the expression (B5) is re-
duced to (8). For the more general case 0 < ∆κ < 1
one has f < 1 and consequently F1 > F2. In this case
the value of phase Φ0 which minimizes the energy (B5) is
determined as cos Φ0 = −p and the corresponding value
of the equilibrium domain wall position q0 is determined
by the equation (15). The case ∆κ > 1 (domain wall
width is larger than the curvature radius) is not consid-
ered here, because the application of the Ansatz (7) is
questionable in this case and a precise solution of equa-
tion (6) is required.

The equations of motion linearized in vicinity of the
equilibrium q = q0, Φ = Φ0 read

(1 + α2)

∥∥∥∥∥ ˙̃q
˙̃Φ

∥∥∥∥∥ = ω0
`2

∆2
0

∥∥∥∥αA ∆0B
A
∆0
−αB

∥∥∥∥ · ∥∥∥∥ q̃Φ̃
∥∥∥∥ , (B6)

where q̃ = q−q0 and Φ̃ = Φ−Φ0 are small deviations from
the equilibrium and quantities A and B are defined in
(14). For the case of small α the solution of (B6) results in

harmonic decaying oscillations q̃ ∝ sin(Ωt+ δ0)e−ηt, Φ̃ ∝
cos(Ωt + δ0)e−ηt with frequency Ω and effective friction
η presented in (14).
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For the case of parabolic wire (16) one obtains A = A(∆0κ0) and B = B(∆0κ0), where

A(x) = 3x2

+∞∫
−∞

(5ξ2 − 1)sech f(ξ)
x

(1 + ξ2)4
dξ,

B(x) =

∞∫
−∞

[
1− x sech f(ξ)

x

(1 + ξ2)
3
2

]
sech f(ξ)

x

1 + ξ2
dξ.

(B7)

These expressions are used to calculate the eigenfrequen-
cies and friction parameters in (14), see solid lines in
Fig. 3.
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