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Temperature evolution of superparamagnetic clusters in single-crystal La0.85Sr0.15CoO3

from nonlinear magnetic ac response and neutron depolarization

A. V. Lazuta, V. A. Ryzhov, V. V. Runov, V. P. Khavronin, and V. V. Deriglazov∗
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The representative measurements of the second harmonic in ac magnetization complemented by
neutron depolarization have been performed for single-crystal La0.85Sr0.15CoO3 in the temperature
range 97 K< T < 230 K, where occurrence of a small fraction (. 10−3) of nanoscale ferromagnetic
clusters (FMC) has been found. Magnetic, geometrical and dynamical parameters of the FMC
system have been evaluated in the temperature range T < 140 K, where superparamagnetic regime
installs, by means of the formalism involving the Fokker-Planck equation (FPE). With lowering
the temperature, the amount of clusters fraction, the cluster size and magnetic moment along with
its diffusion relaxation time strongly increase, each in its own temperature interval. Below 130
K, FMC contribute essentially to the total linear magnetic susceptibility. The damping factor of
the order 10−1 proves the importance of precession in thermal relaxation of the cluster magnetic
moment. The FMC are a precursor of long-range ferromagnetic correlations seen below 100 K
with neutron-scattering techniques. The employed technique supplemented with FPE-based data-
treatment formalism is a novel method for studying superparamagnetic systems.
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I. INTRODUCTION

Hole-doped lanthanum cobaltites are known to exhibit the tendency to magnetoelectronic phase separation (MEPS)
in the wide range of doping and temperature [1–6]. The parent compound LaCoO3 in the ground state is the
diamagnetic insulator. The 3d orbital of Co3+ ions is split by nearly cubic crystal field, slightly exceeding intra-ion
exchange, in such a way that t2g orbital triplet is completely filled with six electrons, forming the low-spin (LS) state
with the spin S = 0, whereas the empty eg orbital doublet lies 10-12 meV higher. At elevated temperatures, LaCoO3

becomes paramagnetic due to the thermally induced transition to higher spin states.
The hole doping with alkali-earth ions Sr2+ gives rise to nanoscale MEPS in the form of spin polarons and/or

larger spin clusters depending on temperature and doping, as established from neutron diffraction, nuclear magnetic
resonance (NMR), Mössbauer spectroscopy [7], small-angle neutron scattering, inelastic neutron scattering, x-ray
spectroscopies, heat capacity, magnetometry, ac magnetic susceptibility (MS), thermopower, transport and magneto-
transport measurements (Refs. [5 and 8] and a wide bibliography therein). On the x-T phase diagrams [1 and 9], the
MEPS state covers a broad area below the paramagnetic phase. The transition temperature increases with doping,
so that, e.g. at x = 0.15, the spin-polaronic state extends up to T ≈ 250 K [1]. At lower temperatures somewhat
below 60 K, a highly inhomogeneous state develops [1 and 2], its particular form depending on x. For the doping less
than the characteristic value xc = 0.17, pronounced hole-rich and hole-poor regions coexist in the form of insulating
spin glass, whereas in the doping range xc < x < 0.25, the spin-polaronic state evolves upon cooling followed by
the long-range-order ferromagnetic (FM) region eventually passing to the metallic phase of strongly inhomogeneous
ferromagnet [1]. According to other sources (Ref. [8] and references therein), the insulator-metal transition occurs in
the interval 0.18-0.22, with the percolation onset at xc = 0.18.
The nature and temperature evolution of MEPS close to xc has been of keen interest. In the insulator-state vicinity

of xc, large-scale magnetic inhomogeneities in single crystals have been known to occur at temperatures not exceeding
100 K implying spin-polaronic MEPS at higher temperatures [1]. An extensive neutron scattering study of the single-
crystal La0.85Sr0.15CoO3 revealed coexistence of the regions with long-range and short-range order at temperatures
T < 100 K [2]. The former were identified as FM clusters of the diameter larger than 7 nm and the latter as referring
to smaller, less than 2 nm, entities. Under external magnetic field, large clusters formed at the expense of small ones.
After switching off the field, some part of the large clusters still persisted. The small-angle neutron scattering assisted
by magnetotransport measurements for the same composition also showed spontaneous MEPS developing below 150
K in the form of small FM clusters embedded in a non-FM matrix reaching the size 1.5-2.5 nm at low temperatures
[4].
It is generally accepted that, similarly to manganites, in doped cobaltites double exchange interaction between

Co3+ and Co4+ leads to formation of FM clusters with metallic conductivity with higher density of charge carriers
than in the surrounding matrix. Increase of the Coulomb energy with the cluster growth is compensated by kinetic
energy of the carriers up to some critical cluster size, above which the clusters become unstable [10–13].
The MEPS occurs in manganites, as well, revealing a certain resemblance to that in cobaltites at a close level of

doping, in compounds both conserving their insulator state and exhibiting insulator-metal transition below the Curie
temperature [14 and 15]. In manganites, however, the increase of paramagnetic fluctuations upon cooling resulting
in the FM phase transition impedes and restricts in temperature observation of FM clusters [14]. The latter is easier
for cobaltites as their matrix is only slightly paramagnetic down to lower temperatures.
In polycrystalline LaSr cobaltites, FM clusters occur in the wider doping and temperature ranges, as crystallite

boundaries favor their formation. From linear and non-linear magnetic susceptibility measurements [16], FM clusters
were found to exist at the dopings x > 0.25 and to appreciably contribute well above 100 K even in the insulating
state for x = 0.1 and 0.15.
Previously, the non-linear magnetic response was found to occur in single-crystal La0.85Sr0.15CoO3 in the wide

temperature range below T ≈ 213 K [17]. The preliminary qualitative analysis has shown that, below this temperature,
a small fraction of FM clusters emerges, exhibiting nonsuperparamagnetic behavior characterized by considerable field
hysteresis. Localization of the clusters was attributed to preferable sites formed by slight doping heterogeneity and
local oxygen nonstoichiometry. The concentration of clusters increased weakly with lowering the temperature. On
cooling below T ≈ 147 K, homogeneous nucleation of FM clusters developed exhibiting superparamagnetic (SPM)
behavior with only a small field hysteresis. Starting from 135 K, the concentration of SPM clusters increased intensively
in a narrow temperature interval.
However, the former studies [14, 18, and 19] provide quite limited, indirect, and approximate information on FM

clusters being based on the analysis of the response signal itself, viz., extrema positions, signal amplitudes, field
asymptotes, etc. In this report, we specify the previous observations and present a detailed complete quantitative
characterization of the cluster system involving a thorough mathematical formalism for data treatment especially
focusing on the temperature region below 140 K. Evolution of clusters was traced down to 97 K at magnetic fields not
exceeding 300 Oe. From representative data on the second harmonic of longitudinal magnetic response complemented
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by neutron depolarization results, a large set of parameters characterizing geometrical, magnetic, and dynamical
features of the system of FM clusters in SPM regime was determined using the formalism based on the solution of the
Fokker-Planck equation (FPE) [20–24]. With these parameters, we visualize the above mentioned successive phases
of the cluster MEPS, specify the temperature boundaries of the MEPS stages, and outline two different regimes of
homogeneous nucleation alternating each other at 115 K.
The observed large SPM clusters are suggested to be (i) a precursor of the FM state occurring below the insulator-

metal transition at the doping x > xc and (ii) an onset of large FM clusters revealed by Phelan and collaborators
with neutron scattering techniques at lower temperatures, T < 100 K [2].
The technique employed in this research, though not being conventional, proved its high efficiency in studying large,

of the order 10 nm, FM particles [14, 18, and 19]. Such objects appear to give the main contribution to generation
of the second harmonic at magnetic fields of the order 10-100 Oe due to strong nonlinearity of their response in weak
fields. In this study, the signal from the SPM fraction occupying the sample volume & 10−4 was reliably measured
and the parameters characterizing the SPM system were obtained with sufficient accuracy. The ac-field frequency
matched the most informative frequency range where the real and imaginary parts of the second-order response signal
were comparable.
In Sec. II, relevant experimental details both for ac and neutron depolarization measurements are presented. Section

III acquaints with the principles of extracting the quantities characterizing the cluster system and explains how some
more parameters can be evaluated involving additionally the neutron depolarization data. In Sec. IV, the neutron
depolarization data and the non-linear response for some typical temperatures are presented and shortly described.
Temperature dependencies of the characteristic parameters are analyzed and a scenario of the cluster-system evolution
is discussed with the separate emphasis on the SPM dynamics. The linear ac susceptibility retrieved from the non-
linear data is compared to the measured linear response. Section V is devoted to quite a special problem concerning
the grounds of SPM dynamics. Experimental data on the non-linear ac response appear to be representative enough
to distinguish between Landau-Lifshitz and Gilbert ansatz underlying the Fokker-Planck formalism and to make a
choice in favor of the latter. In the conclusion section, the main results are summarized. The appendix contains the
formalism for ac nonlinear data treatment.

II. EXPERIMENTAL DETAILS

The manufacturing and certifying of the specimen are described in detail in Ref. [17]. The feed rod for the sample
was fabricated with the standard routine based on solid-state synthesis. The single-crystal La0.85Sr0.15CoO3 was
grown by the floating-zone technique using radiative heating under an oxygen pressure of 1 bar with a typical growth
rate of 1 mm/h. The crystal was found to be single-phase, pseudocubic with the slight rhombohedral distortion at
room temperature (the space group R3̄c), as confirmed by x-ray diffraction. The element content was monitored by
an x-ray microanalyzer with the relative accuracy 3%.
The second harmonic of magnetization M2 was measured in parallel dc and ac magnetic fields on the setup [25]

approved in a good deal of magnetic measurements (Refs. [14, 18, 19, 26, and 27] and references therein). The dc field
H was scanned symmetrically with respect to zero field within ±300 Oe with the round-up cycle 0.14 s. A frequency
and an amplitude of the excitation field were ω/2π = 15.65 MHz and h = 0.8 − 14 Oe, respectively. The latter
was optimized to obey the condition M2 ∝ h2, necessary for the preliminary comparative data analysis, although
not mandatory in the FPE data-treatment formalism. Both phase components of the signal, ReM2 and ImM2, were
simultaneously recorded as functions of the dc field in the temperature region 97 K < T < 230 K. The sample
temperature was stabilized with an accuracy of 0.2 K.
The neutron depolarization technique is known to be a powerful mesoscopic technique to study ferromagnetic

clusters in a phase separated system [28–31]. The neutron magnetic moment interacts with the internal magnetic
field of an FM cluster. As the internal fields of different clusters are thermally disordered, the neutron beam, passed
through the cluster ensemble, depolarizes. The contribution of spin polarons to neutron depolarization via forward
scattering is negligibly small, due to their small size. The scattering on structural inhomogeneities also does not affect
the neutron depolarization. However, in the case of too small concentration of clusters and/or the cluster size, the
depolarization can be also small, demanding high precision of the depolarization measurements.
The neutron depolarization was measured at the small-angle polarized-neutron facility “Vector”(the reactor WWR-

M, Gatchina, Russia) [32] in the temperature range 50-290 K, covering the relevant temperatures. The polarized
neutron beam with the wavelength λ = 0.85 nm and the spectrum half-width ∆λ/λ = 0.25 passed through the
cylinder sample 3.8 mm in diameter and 13.8 mm high, that was cut from the same parent single crystal, from which
the sample for the ac measurements was cut off. A diaphragm at the sample was 2×12 mm2. The guiding magnetic
field 5 Oe at the sample had a minor effect on the clusters state, if at all. To ensure the absence of temperature
hysteresis in the T -range under study, the measurements were performed both with decreasing and increasing the
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temperature. The measurement time 5 h at each temperature point was sufficient for the accuracy needed.
The linear ac MS was measured, as well, in zero dc field with the ac field of the frequency 95 KHz and the amplitude

1 Oe in the wide temperature range 80 K < T < 180 K, above the freezing temperature.

III. DETAILS OF DATA TREATMENT

The experimental data treatment was performed at the PNPI computer cluster.
The M2 measurement data were fitted with the model function obtained from the stationary solution of FPE [22

and 23],

2τN
∂W

∂t
=
β

α
u · (∇V ×∇W ) +∇(∇V + βW∇V ) , (1)

derived from the underlying Landau-Lifshitz-Gilbert stochastic equation [33] for the magnetization vector of a single-
domain particle. In Eq. (1), W is the nonequilibrium probability-density function for directions u = Ms/Ms of the
magnetization Ms, ∇ = ∂/∂u is the gradient operator, t is time, V is the magnetic potential, and β = v/kBT , where
v is the particle volume, and kB and T are the Boltzmann constant and the temperature, respectively. The diffusion
relaxation time was taken in Landau-Lifshitz form as τN = τ◦/α, where α is the damping factor and τ◦ = βMs/2γ
with γ being the gyromagnetic ratio.
The magnetic potential V is assumed to be uniaxial [20–23], viz.,

βV = σ sin2 ϑ− ξHu · H
H

− ξhu · h
h
cosωt . (2)

The first term in Eq. (2) is the anisotropy energy with σ = βKa where Ka is the anisotropy constant and ϑ is the
angle between the magnetization vector and the anisotropy axis. The second and the third terms are the Zeeman
energies of the particle magnetic moment in the bias dc magnetic field H and the ac driving magnetic field h of the
frequency ω, respectively, with ξH = βMsH , ξh = βMsh. No restriction on the sign of σ is implied.
In the framework of the formalism, the time scaling factor τN in Eq. (1) denotes the characteristic time of diffusion

in the absence of potential (free-diffusion time). In the case σ > 0, it is a pre-exponential factor in the conventional
Néel relaxation time derived for a double-well potential with a barrier.
The first and the second terms in the right-hand side of Eq. (1) are responsible for precession and thermal relaxation,

respectively. When the magnetic field is parallel to the anisotropy axis, the problem simplifies considerably [33]. In
the present study, however, this was not the case. First, by technological reasons, the anisotropy axis was oriented
by the angle ϑ ≈ 41.4◦ relative to the sample plane and, hence, to the applied in-plane magnetic fields. Second, the
point Laue patterns indicated some twinning in the single crystal used, usually observed in pseudocubic perovskites
[34], necessitating averaging over the twins orientations. And third, the axial symmetry, if conserved, degenerates
precession, eliminating the precession term in Eq. (1), what strongly diminishes the informative content of the data.
An analytical solution of Eq. (1) for the common case of oblique magnetic field is absent, and one needs to solve
the problem numerically. However, by expanding the solution in series by spherical harmonics, it is still possible to
reduce the problem to an infinite system of equations, which, in turn, can be expressed as a continued-fraction matrix
relation (see appendix).
An experimental geometry with the parallel orientation of dc- and linearly polarized ac magnetic fields somewhat

simplifies the data treatment, with no damage for completeness of the information content.
The solution accuracy depends, mainly, on the number of retained equations in the system (the number of iterates

in solving the continued-fraction equation) and on the number of retained harmonics in the Fourier expansion. The
former number n◦ = 8 and the latter k◦ = ±4 appeared to be sufficient for the whole data array.
According to common symmetry requirements, the second harmonic must be antisymmetric on the dc magnetic

field. However, due to the finite cycling frequency of H , hysteretic behavior may occur, violating the H-antisymmetry
for a single, direct or reverse, H-scan, while the antisymmetry still conserves for the whole hysteresis loop. As the
present stationary solution, with the steady field H , does not account for the hysteresis, an average between the direct
and reverse scans was taken for each temperature, which, as expected, turned out to be antisymmetric within the
experimental error. This average was additionally antisymmetrized relative to H = 0. Such elimination of a small
hysteresis was believed not to distort the resultant parameters considerably.
The real and imaginary parts were simultaneously fitted with the following parameters: the saturation magnetization

of the cluster ensemble M , the anisotropy energy of a cluster εa = vcKa, where vc is the mean cluster volume, the
mean magnetic moment of clusters mc = vcMs, the dispersion of the log-normal distribution Dv over cluster volumes,
the damping factor α and two parameters describing the real and imaginary parts of the signal from the matrix
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assumed to be linear functions of the dc magnetic field. The matrix response, when observed, includes the signals
coming from magnetic inhomogeneities other than SPM clusters, e. g., from spin polarons. Due to their small size,
they exhibit only slight non-linearity in weak fields and make up a minor contribution to the total response in the
measured region H < 300 Oe, despite that these entities may occupy a large volume of the sample.
Some additional magnetic characteristics of the cluster system can be calculated from the fit parameters, as well.

These are the concentration of clusters N = M/mc, the mean intercluster distance 〈r〉 ∝ N−1/3, the incluster
anisotropy field Ha = εa/mc, the diffusion relaxation time of the cluster magnetic moment τN = mc/2γαkBT , and
the characteristic dipolar energy associated with the cluster subsystem εd = 4πm2

c/V , where V ∝ N−1 is the mean
volume per cluster evaluated from the concentration of clusters with the known perovskite-cube volume v◦.
With the neutron depolarization data additionally involved, some more quantities characterizing the SPM system

can be obtained. The polarization of the passed neutron beam can be expressed, in notations of Ref. [35], as

P = P◦ exp

{

−4

3

(

γnB

Vn

)2

RC1/3L

}

, (3)

where P◦ is the initial polarization directed along the beam, γn is the neutron gyromagnetic ratio, Vn is the neutron
speed, so that γn/Vn ≈ 46.3λ nm·Oe−1, B = 4π〈µ〉/v◦ is the magnetic induction in FM clusters with 〈µ〉 being the
mean magnetic moment per formula unit, R is the mean radius of clusters, C is the weight (or volume) fraction of
clusters in the sample and L is the sample thickness along the neutron beam. The value L = 3.58 mm was used as
an average over the diaphragm width 2 mm.
Equation (3) makes it possible to separate out the incluster magnetic moment 〈µ〉, the mean cluster volume vc, and

the fraction of clusters C. By definition, the mean cluster magnetic moment reads:

mc =
vc
v◦

〈µ〉 , (4)

noting that vc/v◦ is the mean number of formula units per cluster. The saturation magnetization M , a normalization
factor for the M2 response function in the units emu·g−1, can be presented as

M = C〈µ〉 NA

Mmol
, (5)

where NA and Mmol are the Avogadro number and the molecular weight, respectively. From Eq. (3), one obtains:

Cvc〈µ〉6 =
9π

16L3

(

v◦Vn
4πγn

)6

ln3
(

P◦

P

)

exp

(

−3Dv

2

)

. (6)

Remind that Dv is a dispersion of the volume distribution of the cluster ensemble. The exponential in Eq. (6) is a
correction factor to transfer from the cluster volume with the radius R (Eq. (3)), vR = 4πR3/3, to the mean cluster
volume vc to be obtained. This radius can be expressed as an average over the volume distribution in the form
R ∝

∫

dv 3
√
vf(v)ṽ/v where ṽ is a median of the assumed log-normal distribution f(v). The term ṽ/v occurs since

f(v)dv is taken as a fraction of the total volume occupied by the clusters with volumes in the interval (v, v + dv).
With the same note, vc =

∫

dvvf(v)ṽ/v just equals to the median ṽ. As a result, one obtains vc = vR exp(−3Dv/2).
In this study, the exponential factor yields a small correction 4%-11% to the cluster size.
The quantities C, vc, and 〈µ〉 can be resolved from the system of Eqs. (4), (5) and (6). Further on, the mean

cluster size will be referred to as a diameter relating to the mean cluster volume vc = πD3
c/6.

Thus, in this study, the neutron depolarization analysis adds to more complete quantitative characterization of the
SPM system.
A constant value of the perovskite-cube volume v◦ = 0.0558 nm3 was used for evaluation of the parameters in the

relevant interval 97 K < T < 140 K neglecting its relative variation of the order 1 · 10−3 due to thermal expansion
[16].

IV. RESULTS AND DISCUSSION

The real [Figs. 1(a)-1(d)] and imaginary [Figs. 1(e)-1(h)] parts of the M2 signal are presented as functions of the
scanned magnetic field for four characteristic temperatures.
In Figs. 1(a) and 1(e), the signal for T = 156 K is presented as a typical example of the response in the wide range

147 K < T < 230 K. The regular part of the signal, noticeably contaminated with the apparatus noise, is suggested
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FIG. 1. (Color online) The second harmonic of ac response as a function of dc magnetic field for four characteristic temperatures:
the real part (a)-(d) and the imaginary part (e)-(h). Black solid and blue open circles denote direct and reverse scans,
respectively. The red curves on the plots (b), (c), (d), (f), (g), and (h) are best fits (see text).
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FIG. 2. Normalized polarization of the neutron beam passed through the sample vs temperature. The solid curve is a polynomial
fit. (Insets) “Coercive field”estimated from the real parts of M2 (a) and resistance of the sample (b) vs temperature.

to originate from small-size magnetic inhomogeneities, which are, most likely, spin polarons and a small portion,
C . 10−4, of fine FM clusters located at spatial chemical inhomogeneities formed by oxygen nonstoichiometry and
local enrichment with Sr, favorable for the clusters nucleation. A great deal of the response still extends far beyond
the measured H-field range. The marked hysteresis is due to pinning of the clusters magnetic moments. At elevated
temperatures, the signal gradually loosens and eventually fades in the apparatus noise somewhere near T ∗ ≈ 230 K
[17].
At lower temperatures T < 147 K, the character of the M2 response, exemplified in Figs. 1(b) and 1(f) for T = 141

K, drastically changes. In a temperature interval of only 15 K, both the real and imaginary parts grow rapidly by
an order of magnitude. The hysteretic behavior becomes much less pronounced. Upon cooling down to 140 K, the
“coercive field”Hc2 defined by the condition ReM2(Hc2) = 0 [Fig. 2, inset (a)] strongly falls. Such a form of the
signal is typical for isolated SPM clusters. The extrema positions shift noticeably towards lower fields indicating the
clusters growth, as evidenced by the calculations below.
Starting from 130 K, the rate of the signal growth from SPM clusters strongly increases. At this stage, illustrated

by Figs. 1(c) and 1(g) for T = 120 K, the signal becomes redistributed in favor of low fields exhibiting extrema at
H < 50 Oe in the real part and H < 30 Oe in the imaginary part. The cluster signal dominates absolutely over
the matrix response, the hysteresis being almost absent. This tendency persists down to the lowest temperatures
measured.
Below 120 K [Fig. 1(d) and 1(h) for T = 97 K], the signal continues to increase moderately with almost no change

of its shape. This is the stage where the mean size and magnetic moment of clusters start to stabilize.
The parameters characterizing the cluster system at temperatures 97 K < T < 140 K were evaluated from the best

fits of M2(H) responses and the neutron depolarization data, as explained above. The latter are displayed on Fig. 2,
where the polarization of the beam passed through the sample normalized by the polarization of the incident beam is
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FIG. 3. The total saturation magnetization of the clusters ensemble (solid circles) and the characteristic dipolar energy
associated with the cluster subsystem (open squares) (a); the mean magnetic moment mc and the magnetic moment mm

corresponding to a maximum position of the volume distribution (b); the concentration of clusters (solid circles) and the mean
intercluster distance (open squares) (c); the incluster anisotropy field (solid circles) and the mean cluster anisotropy energy
(open squares) (d), and the width of the log-normal distribution function (e) as functions of temperature. The solid curves in
(a)-(d) are guides for the eye; the line in (e) is the linear approximation

√
Dv ≈ −0.349 + 0.0127T .

presented as a function of temperature. The error bars are close to the size of points. The solid curve is a polynomial
fit, to interpolate between the points. Upon lowering the temperature, depolarization of the passed beam increases,
due to growth of the FM-cluster ensemble. At Tf ≈ 65 K, the polarization ceases to fall and stabilizes at a constant
level, indicating the end of FM-cluster evolution and freezing the FM-cluster dynamics on the time scale at least 104

s. A value of the freezing temperature Tf is compatible with NMR data [1] and off-site ac MS measurements [36].
A weak inflection between 130 and 150 K correlates with the appreciable growth of FM clusters below 140 K. The
descending temperature dependency of resistivity [Fig. 2, inset (b)] evidences a dielectric character of the sample,
typical for the doping x < xc.

A. Magnetic and geometrical characteristics

In Fig. 3, some quantities obtained solely from nonlinear magnetic response are presented as functions of temper-
ature. These are the saturation magnetization of the cluster ensemble M and the characteristic dipolar energy εd
(a), the mean cluster magnetic moment mc and the cluster moment mm corresponding to the maximum position of
the volume log-normal distribution (b), the concentration of clusters N and the mean intercluster distance 〈r〉 (c),
the anisotropy field Ha and the mean cluster anisotropy energy εa (d), and the width of the log-normal distribution
function (e).
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Temperature dependencies of the parameters obtained by means also of the neutron polarization data are presented
in Fig. 4, namely, the mean cluster diameter Dc and the diameter Dm corresponding to a maximum of the volume
distribution (a), the volume fraction of clusters C (b), and the mean magnetic moment per formula unit in the clusters
〈µ〉 (c).
These dependencies specify the tendencies exemplified in Figs. 1(b)-1(d) and 1(f)-1(h) and visualize two stages of

the SPM cluster MEPS alternating each other upon cooling, namely, (i) growth of FM clusters bound to chemical
inhomogeneities in the temperature range down to 130 K and (ii) homogeneous nucleation of clusters below this
temperature. The latter stage, in turn, proceeds via two regimes, viz., progressive increase of the mean cluster size
down to 115 K and its stabilization below this temperature, the concentration of clusters still increasing.
Now, these processes will be considered in more detail. At the first stage, growth of FM clusters bound to chemical

inhomogeneities occurs gradually upon cooling [Figs. 3(b) and 4(a)]. At T ≈ 140 K, the clusters become appreciably
larger than the chemical inhomogeneities. The pinning of the cluster magnetic moment strongly weakens resulting in
reduction of magnetic hysteresis [Figs. 1(b) and 1(f)] evidenced by substantial lowering the M2 “coercive field”down
to Hc2 ≈ 2 Oe [Fig. 2, inset (a)]. Thus, Ts = 140 K may be accepted as the onset of SPM behavior in the cobaltite
under study. At this temperature, the cluster magnetic moment exceeds 102µB (150 formula units), large enough for
the SPM formalism to become applicable. However, the clusters themselves still remain bound down to 130 K. The
concentration of clusters and the mean intercluster distance [Fig. 3 (c)] at these temperatures vary only a little, if at
all. The former may be considered as an estimate for the concentration of chemical inhomogeneities responsible for
the initial cluster formation, 8.5 · 1014 cm−3, with the mean distance 〈r〉 ≈ 100 nm between them. Slow increase of
the saturation magnetization [Fig. 3(a)] and cluster fraction [Fig. 4(b)] above 130 K occurs only due to the growth
of the cluster size.
At this stage, the mean magnetic moment per formula unit [Fig. 4 (c)] obeys an exponential law 〈µ〉 =

µeff exp(−∆/T ) with ∆ = 140 K and µeff = 2.15µB (dashed curve). Such kind of behavior, found in pure
LaCoO3 by electron spin resonance for not too high temperatures [37], is conventionally interpreted as thermal
excitation to the intermediate-spin state or, alternatively, a mixture of low-spin- and high-spin states, valid for not
too high temperatures. Thus, above 130 K, 〈µ〉 of the doped cobaltite under study also follows the common tendency
of thermal excitation, predominantly, of Co3+ ions, implying that the incluster hole concentration only a little exceeds
the concentration of holes in the matrix, x ≈ 0.15. In this temperature region, the concentration of holes in the
clusters is independent of temperature and determined, mainly, by the distribution of chemical inhomogeneities.
Below T ≈ 130 K, the cluster fraction [Fig. 4(b)] and the saturation magnetization [Fig. 3(a)] start to rise steeply

signifying intense growth of the sample volume involved into the SPM component. The concentration of clusters
increases [Fig. 3(c)] manifesting entering the stage of free condensation (or homogeneous nucleation). The clusters
are, mainly, no longer bound to chemical inhomogeneities and formation of new free clusters is activated over the
whole sample volume resulting in increase of N by five times upon cooling to 97 K. This transition is most distinctly
visualized via a cusp in the temperature behavior of the anisotropy field [Fig. 3(d)]. The “negative”sign of Ha

is consistent with the “easy-plane”character of magnetocrystalline anisotropy found by neutron diffraction in this
compound [16 and 38].
At the stage of free condensation, the mean magnetic moment 〈µ〉 deviates from the exponential law [Fig. 4(c)].

This peculiar nonmonotonous behavior of the Co magnetic moment may be explained by variation of the concentration
of holes in clusters with temperature. At first, the concentration even slightly lowers, whereas below 115 K, holes
start to intensely fill the clusters importing additional uncompensated electron spin s = 1/2, thus increasing 〈µ〉. Due
to the small volume fraction of clusters, C . 10−3, this process does not cause noticeable hole depletion of the matrix.
Two different regimes can be distinguished at the stage of free condensation. Upon cooling down to T ≈ 115 K, the

magnetic moment and cluster diameter strongly increase [Figs. 3(b) and 4(a), respectively], while 〈µ〉 even slightly
decreases [Fig. 4(c)]. Below 115 K, mc and the cluster diameters Dc and Dm cease to grow reaching the large values
mc ≈ (12 − 13) · 103µB and Dc ≈ 12.5 nm, whereas 〈µ〉 rapidly rises. The position of the distribution maximum
stabilizes at the value Dm ≈ 8 nm (compare to the long-range FM correlation length ≥ 7 nm evaluated by Phelan
and collaborators [2] in the polarized-neutron study of La0.85Sr0.15CoO3 below 100 K). At the same time, the mean
cluster diameter Dc starts to decrease. The latter occurs due to gradual narrowing of the (asymmetrical) volume
distribution of the cluster ensemble from both sides towards the maximum position. From M2 data treatment, the
distribution width varies linearly with temperature as

√
Dv ≈ −0.349+ 0.0127T [Fig. 3(e)]. Upon cooling below 115

K, the distribution “sharpens”around the stabilized Dm. Thus, absorption of holes by clusters and increase of the
clusters concentration are the main factors promoting the steady rise of the saturation magnetization [Fig. 3(a)] in
the latter regime.
Charging the clusters due to absorption of holes increases the Coulomb energy of a cluster opposing its growth.

The alternation of the regimes at 115 K is a result of the competition between these two tendencies.
Note also that Coulomb repulsion between the clusters may affect their space distribution especially at the lowest

temperatures measured where the clusters are essentially enriched with holes.
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FIG. 4. The mean cluster diameter Dc and the diameter corresponding to a maximum of the volume distribution Dm (a), the
volume fraction of clusters (b), and the mean incluster magnetic moment per formula unit (c) as functions of temperature. The
solid curves are guides for the eye; the dashed curve in (c) is µeff exp(−∆/T ) with µeff = 2.15µB and ∆ = 140 K.
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FIG. 5. The damping factor (a) and the mean diffusion relaxation time of the cluster magnetic moment (b) as functions of
temperature. The solid curves are guides for the eye.

However, particular reasons for the change of the MEPS character at 130 K as well as for alternation of the regimes
at 115 K remain an open question.

By the way, poor convergence of the fit procedure at the high-temperature margin resulting from growing correlations
between the parameters yields large error bars achieving 100% for some parameters at 141 K [Figs. 3(c) and 3(d)].
The small cluster size implies a part of the system to be somewhat beyond the SPM formalism applicability limits and
leads to serious convergence problems. Hence, quantitative results at temperatures close to 140 K should be referred
to with care.
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B. Superparamagnetic dynamics

When studying an SPM system, a conventional problem arises on the effect of interparticle interactions on SPM
dynamics [39]. For a diluted SPM system with the insulating matrix (the present case), the most relevant is the
long-range dipolar coupling between the particles. Its role can be estimated comparing the characteristic dipolar
energy εd [Fig. 3(a)] to the mean anisotropy energy of a cluster εa [Fig. 3(d)]. The modulus of the latter well exceeds
εd except only for the lowest measured temperatures, thus, justifying disregard of dipolar forces in the calculations.
At the margin T = 97 K, however, |εa| is only three times greater than εd. Below 97 K, the cluster anisotropy energy
tends to decrease (by modulus), while the dipolar energy increases. The ratio εd/|εa| grows upon cooling signifying the
dipolar forces coming gradually into play. Provided that this trend persists at lower temperatures, the two quantities
meet each other somewhere above the freezing temperature Tf . In this case, the FM-cluster subsystem enters the
regime of dipolar dynamics favoring intercluster long-range magnetic correlations and inhibiting correlations with the
anisotropy axes directions. The SPM dynamics acquires a collective character resulting, particularly, in increasing
the characteristic relaxation time and the blocking temperature [40–42]. Eventually, the cluster subsystem freezes in
the dipolar-cluster-glass (or super spin-glass [41]) state.
The damping factor α and the relaxation time τN (Fig. 5) are also deduced only fromM2 measurements. The former

is a purely dynamical quantity, hardly measurable with other techniques. This parameter is responsible for relaxation
of the FM-cluster magnetic moment due to its interaction with the environment. This might be incluster lattice
and magnetic excitations, magnetic inhomogeneities, etc. To our knowledge, there is no microscopic theory of SPM
relaxation. In the formalism, α was assumed to be explicitly dependent neither on magnetic field, nor on any cluster-
system parameter. Its smooth rise with temperature is characteristic of a quantity depending on thermal excitations.
The steeper increase with temperature above 130 K may be due to the growing effect of magnetic inhomogeneities as
the clusters become bound and their magnetic moments pinned to chemical inhomogeneities as their size decreases.
The steeper decrease of α below 115 K is suggestive of an onset of the freezing tendency enhanced (or provoked) by the
intercluster dipolar forces. The effect of dipolar forces on the quantity characterizing free diffusion should not confuse,
as the latter was defined with respect to the magnetic potential (2) not containing intercluster interactions. Explicit
inclusion of the dipolar-coupling term into Eq. (2) would have eliminated this effect from α and τN by transferring it
to the potential-dependent part, such as an exponential in the Néel relaxation time in its conventional definition in
the case σ > 0.
A magnitude of the damping factor itself yields essential information concerning the influence of precession on

relaxation of the cluster magnetic moment. The first and the second terms in the right-hand side of Eq. (1) describe
precession and thermal, diffusion-type, relaxation of the magnetic moment, respectively. In the case of axial symmetry,
when the magnetic field is parallel to the anisotropy axis, as well as in the limit α ≫ 1 (overdamped case), the first
(precession) term vanishes in favor of diffusion. The measured values α = 0.3 − 0.6 point out that relaxation is
considerably modified by precession. Both the terms of FPE turn to be comparable generating interplay of precession
and thermal diffusion. Upon cooling, the role of precession increases. This phenomenon was examined in simulations
by direct numerical solution of the Landau-Lifshitz-Gilbert equation (Ref. [33] and references therein).
The relaxation time τN [Fig. 5(b)] experiences intense increase upon cooling following the combined effect of mc,

the damping factor, and the temperature, with the main contribution from the growing cluster magnetic moment.
The values τN of the order 10−10 s are quite typical of SPM dynamics. The steeper growth below 115 K is suggestive
of the beginning of the slowing-down tendency leading, eventually, to freezing the cluster system.

C. Linear and third-order susceptibilities

With known parameters of the SPM system, it is possible to retrieve the linear magnetic response of FM clusters
and to estimate its role in magnetism of the cobaltite under study. In Fig. 6, temperature dependencies of the total
magnetic susceptibility measured at 95 KHz and zero dc magnetic field and the linear SPM response recovered to these
experimental conditions from M2 measurements are presented. The recovered SPM susceptibility arises at T ≈ 140
K correlating with the onset of FM clusters growth [Figs. 3(b) and 4(a)] and SPM behavior. Upon cooling, its
relative contribution increases and becomes dominant below 120 K, in the region of intense growth of the saturation
magnetization M [Fig. 3(a)]. Recall, that for all temperatures measured, the clusters occupy not more than 2 · 10−3

of the sample volume [Fig. 4(b)], indicating that the large cluster magnetic moment is the main factor highlighting
the SPM contribution to magnetic susceptibility.
In the inset to Fig. 6, the third harmonic is also displayed as retrieved for zero dc field and the ac field with the

frequency 30 kHz and the amplitude 1 Oe. Its temperature dependency with the broad maximum at T ≈ 115 K
stands alongside with the behavior of the low-frequency third harmonics measured by Caciuffo and collaborators on
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recovered from the second harmonic data for the excitation frequency 95 kHz (open circles and dashed line). (Inset) Third
harmonic of the response vs temperature recovered for the excitation frequency 30 kHz. The curves are guides for the eye.

the powder LaxSr1−xCoO3 for a set of doping values in the “metallic”region where FM clusters distinctly exhibited
themselves in a pure form [16]. These authors observed qualitatively similar dependencies with the maxima at T ≈ 175
and 150 K for x = 0.25 and 0.20, respectively, correlating with the maxima in respective linear susceptibilities. For
x = 0.15, the linear response exhibited a wide hump in the interval 150 K < T < 200 K associated with FM clusters
(unfortunately, the third harmonic was not presented for this doping). The latter is absent in Fig. 6 due to much
lesser concentration of clusters in the single crystal.

V. SPM DYNAMICS ANSATZ: GILBERT vs LANDAU-LIFSHITZ

High accuracy and representativity of the experimental data enables to put a question concerning the main alter-
native underlying the formalism used.
Historically, the Gilbert dynamical equation describing evolution of the classical magnetic moment m of a large

FM cluster was introduced phenomenologically as a starting point (unpublished work, mentioned in Ref. [43]) [33]:

dm

dt
= αm ×

[

Beff − α

γm

dm

dt

]

, (7)

where the effective field Beff is given by

Beff = − ∂V

∂m
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TABLE I. Normalized chi-squares of the best fits, the damping factor α, the relaxation time τN , and the anisotropy field Ha

evaluated for a set of temperatures for the cases of Landau-Lifshitz- and Gilbert schemes.

Landau-Lifshitz: τN = τ◦α
−1 Gilbert: τN = τ◦(α+ α−1)

T [K] χ2

norm α τN [1010 s] Ha [Oe] χ2

norm α τN [1010 s] Ha [Oe]

97 2.88 0.33 7.2 -17 2.33 0.36 6.5 -21

100 2.96 0.37 6.2 -20 2.25 0.41 5.5 -26

104 2.07 0.40 5.4 -23 1.48 0.44 4.9 -33

109 1.94 0.40 5.6 -26 1.53 0.42 5.6 -40

with V from Eq. (2). Equation (7) contains time derivatives of the magnetic moment in both the right- and left-hand
sides. This inconvenience was eliminated by expressing the derivative explicitly, resulting in the Landau-Lifshitz
equation [33 and 44]:

dm

dt
= γ̃m×Beff − γ̃

α

m
m× [m×Beff ] (8)

with the renormalized gyromagnetic ratio γ̃ = γ/(1 + α2). The famous Landau-Lifshitz relaxation (damping) term
proportional to −m× [m×Beff ] drives m to the direction of Beff , while α measures the magnitude of the relaxation
term relative to the gyromagnetic term.
In this transformation, no restrictions or additional assumptions were involved; thus, both the equations, (7) and

(8), are of one and the same level of generality. Moreover, both of them lead, formally, to one and the same FPE;
hence, each of the equations may be considered as generating one for the FPE. At first sight, the choice of the
commencing equation seems to be a scholastic question. However, due to renormalization of γ, the characteristic
diffusion time τN entering Eq. (1) is different in these two cases, depending on whether Gilbert- or Landau-Lifshitz
equation is chosen as commencing one. The diffusion time is τN = τ◦(α+ α−1) in the former and τN = τ◦α

−1 in the
latter case. A question arises, in which scheme, Gilbert or Landau-Lifshitz, γ has to be taken as bare one. Generally,
this difference may result in dissimilar parameter meanings evaluated from best-fit calculations.
One might try to distinguish between the two schemes and to make a choice in favor of one of them by comparing

chi-squares of the experimental-data best fits. As mentioned above, in the overdamped case (large α), the precession
term in Eq. (1) eliminates and the solution depends on the damping factor only implicitly via τN . Thus, one can
hardly expect any meaningful difference in the chi-squares. In the opposite case, α ≪ 1, there is also no difference,
as τN is the same for both the schemes. The presently obtained values of α [Fig. 5(a)] lie just in the intermediate
region for which the search of distinction in the best-fit quality makes sense.
Appropriate calculations were performed for a number of points in the lower-temperature region where the SPM

system is well formed, with the steady fit convergence. The results, including the normalized chi-squares and the
most sensitive parameters among those determined solely from the nonlinear measurements, viz., the damping factor,
the relaxation time, and the anisotropy field, are presented in the table. It is seen that the Gilbert scheme yields
systematically smaller values of χ2

norm than these for the opposite, Landau-Lifshitz, one. Thus, the Gilbert approach
seems to be more realistic, at least, for the object under study. The two parameters shown in the table differ essentially
for the two cases, while the differences between other parameters (not presented) are of the order 1%. At any rate,
calculations performed within either of the alternative schemes would result in qualitatively similar temperature
dependencies.
To establish the extent of universality of this finding, a study of the wide set of more conventional SPM systems is

needed.

VI. CONCLUSION

The study of La0.85Sr0.15CoO3 in the wide temperature range from 97 to 230 K was performed with linear and
nonlinear ac magnetic response as well as neutron depolarization techniques. The system of large ferromagnetic
clusters was found to emerge as a particular type of magnetoelectronic phase separation, besides well-established spin
polarons. The experimental data were treated with a thorough formalism based on the solution of the Fokker-Planck
equation to obtain magnetic, geometrical, and dynamical parameters characterizing the cluster ensemble.
Evolution of the cluster system upon cooling was found to occur via two processes, namely, (i) gradual growth

of clusters bound to local chemical inhomogeneities in the wide temperature range down to 130 K with reaching
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the superparamagnetic regime at 140 K accompanied by failure of pinning the cluster magnetic moment and (ii) free
condensation (or homogeneous nucleation) below 130 K consisting in intense formation and growth of clusters over the
whole sample volume accompanied by variation of the hole density in the clusters. The latter process proceeds in two
regimes alternating each other at 115 K, viz., growth of the cluster size with the incluster hole content only slightly
exceeding the nominal doping x = 0.15 above this temperature and stabilization of the cluster size accompanied by
intense increase of the magnetic moment per unit cell due to enrichment of clusters with holes below 115 K.
At the onset of superparamagnetic behavior, ferromagnetic clusters start to contribute noticeably to the total linear

magnetic susceptibility and, below 120 K, their contribution becomes dominant, at least down to 97 K.
The growing effect of intercluster dipolar coupling upon cooling may result in a dipolar character of the frozen state

below 65 K.
The observed ferromagnetic clusters are suggested to be (i) a precursor of the ferromagnetic state at higher doping

levels and (ii) an onset of large ferromagnetic clusters revealed by neutron scattering below 100 K [2]. Thus, the
phase separation and its evolution in a single crystal at temperatures higher than 100 K was shown to have a more
complicated character than was supposed before.
Relaxation dynamics of the cluster magnetic moment was found to be, essentially, the interplay of precession and

thermal diffusion. Below 115 K, the magnetic dynamics exhibits a tendency to freezing favored by intercluster dipolar
coupling.
High representativity and accuracy of the ac measurements performed made it possible to elucidate the ground

alternative underlying superparamagnetic dynamics and to make a choice, though not robust enough, in favor of
Gilbert approach.
The method employed was demonstrated to be an efficient means for studying the systems exhibiting superparam-

agnetic behavior.
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Appendix

The formalism used is presented in Refs. [20, 21, and 24]. By expanding the distribution function in Eq. (1) in the
series over spherical harmonics,

W (t, ϑ, ϕ) =

∞
∑

l=0

l
∑

m=−l

clm(t)Ylm(ϑ, ϕ) , (A.1)

the problem is reduced to the recurrence relation [20 and 21],

Sn = −[Qn +Q+Sn+1Qn+1]
−1 , (A.2)

relative to the matrix continued fraction Sn. The tridiagonal supermatrices Qn, Q
±
n are given by

[Qn]l,m = δl−1,mpn + δl,mqn(mω) + δl+1,mpn ,

[Q±

n ]l,m = δl−1,mp±

n + δl,mq±

n + δl+1,mp±

n ,

where qn(mω) = −imτNωI + qn, with I being the identity matrix. The supermatrices pn, p
±
n , qn, and q±

n are
presented as follows [20]:

p−

n =

(

0 0

d2n−1 0

)

, p+
n =

(

0 b2n

0 0

)

,

pn =

(

a2n d2n

b2n−1 a2n−1

)

, q−
n =

(

V2n 0

W2n−1 V2n−1

)

,

q+
n =

(

Z2n Y2n

0 Z2n−1

)

, qn =

(

X2n W2n

Y2n−1 X2n−1

)

.

Dimensions of the supermatrices pn (qn), p+
n (q+

n ), and p−
n (q−

n ) are 8n × 8n, 8n × 8(n + 1) and 8n × 8(n − 1),
respectively. Their matrix elements are, in turn, the matrices with the elements given by
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(al)n,m = δn−1,ma
−

l,−l+m + δn,mal,−l+m−1 + δn+1,ma
+

l,−l+m−2
,

(bl)n,m = δn,mb
−

l,−l+m−1
+ δn+1,mbl,−l+m−2 + δn+2,mb

+

l,−l+m−3
,

(dl)n,m = δn−2,md
−

l,−l+m+1
+ δn−1,mdl,−l+m + δn,md

+

l,−l+m−1
,

(Xl)n,m = δn−1,mx
−

l,−l+m + δn,mxl,−l+m−1 + δn+1,mx
+

l,−l+m−2
, (A.3)

(Yl)n,m = δn,my
−

l,−l+m−1
+ δn+1,myl,−l+m−2 + δn+2,my

+

l,−l+m−3
,

(Wl)n,m = δn−2,mw
−

l,−l+m+1
+ δn−1,mwl,−l+m + δn,mw

+

l,−l+m−1
,

(Zl)n,m = δn+2,mzl,−l+m−3 , (Vl)n,m = δn−2,mvl,−l+m+1 .

The last five supermatrices are drawn explicitly in Ref. [24].
Using the direction cosines for the vectors H and h,

γ1 = sinψ cosφ , γ2 = sinψ sinφ , γ3 = cosψ ,

and

γ′1 = sinψ′ cosφ′ , γ′2 = sinψ′ sinφ′ , γ′3 = cosψ′ ,

respectively, the matrix elements in Eqs. (A.3) can be written in the form [20 and 24],

an,m = −imξhγ
′
3

4α
, a+n,m = −i ξh(γ

′
1 − iγ′2)

8α

√

(n+m+ 1)(n−m) ,

bn,m = −ξhγ
′
3n

4

√

(n+ 1)2 −m2

(2n+ 1)(2n+ 3)
, b+n,m = −ξh(γ

′
1 − iγ′2)n

4

√

(n+m+ 1)(n+m+ 2)

(2n+ 1)(2n− 1)
,

dn,m =
ξhγ

′
3(n+ 1)

4

√

n2 −m2

(2n+ 1)(2n− 1)
, d+n,m = −ξh(γ

′
1 − iγ′2)(n+ 1)

8

√

(n−m)(n−m− 1)

(2n+ 1)(2n− 1)
,

xn,m =
σ[n(n+ 1)− 3m2]

(2n− 1)(2n+ 3)
− n(n+ 1)

2
− i

mξHγ3
2α

, x+n,m = −i ξH(γ1 − iγ2)

4α

√

(n+m+ 1)(n−m) ,

yn,m = −
(

ξHγ3n

2
+ i

σm

α

)

√

(n+ 1)2 −m2

(2n+ 1)(2n+ 3)
, y+n,m =

ξH(γ1 − iγ2)n

4

√

(n+m+ 1)(n+m+ 2)

(2n+ 1)(2n+ 3)
,

wn,m =

(

ξHγ3
n+ 1

2
− i

σm

α

)

√

n2 −m2

4n2 − 1
, w+

n,m =
ξH(γ1 − iγ2)(n+ 1)

4

√

(n−m)(n−m− 1)

4n2 − 1
,

zn,m = − σn

2n+ 3

√

[(n+ 2)2 −m2][(n+ 1)2 −m2]

(2n+ 1)(2n+ 5)
, vn,m =

σ(n+ 1)

2n− 1

√

(n2 −m2)[(n− 1)2 −m2]

(2n+ 1)(2n− 3)
,

with the additional relations,

a−n,m = −(a+n,−m)∗ , b−n,m = −(b+n,−m)∗ , d−n,m = −(d+n,−m)∗ ,

x−n,m = −(x+n,−m)∗ , y−n,m = −(y+n,−m)∗ , w−

n,m = −(w+
n,−m)∗ .

The stationary ac response can be calculated from the continued-fraction solution S1 of Eq. (A.2), viz.,

C1 ≡



























...

c−2

1 (ω)

c−1
1 (ω)

c01(ω)

c11(ω)

c21(ω)
...



























=
1√
4π

S1 ·



























...

0

p−

1

q−

1

p−

1

0
...



























,
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where each element of C1 is a column vector,

ck1(ω) =





























ck2,−2(ω)

ck2,−1(ω)

ck2,0(ω)

ck2,1(ω)

ck2,2(ω)

ck1,−1(ω)

ck1,0(ω)

ck1,1(ω)





























, (A.4)

and

q−

1 =





































0

0
2σ√
5
0

0
(γ1 − iγ2)ξH√

6
γ3ξH√

3

− (γ1 + iγ2)ξH√
6





































, p−

1 =





































0

0

0

0

0
(γ′1 − iγ′2)ξh

2
√
6

γ′3ξh
2
√
3

− (γ′1 + iγ′2)ξh
2
√
6





































.

Elements of the column vector ck1(ω) are Fourier components of the corresponding coefficients clm in the expansion
(A.1).
Following Refs. [20 and 21], we define the ac response as magnetization Mh(t) in the direction of the driving field

h, with the Fourier transform,

Mh(t) =Ms

∞
∑

k=−∞

mk
1(ω)e

ikωt ,

where

mk
1(ω) =

√

4π

3

[

γ′3c
k
1,0(ω) +

(γ′1 + iγ′2)c
k
1,−1(ω)− (γ′1 − iγ′2)c

k
1,1(ω)√

2

]

,

with ck1,0(ω), c
k
1,−1(ω), and c

k
1,1(ω) taken from Eq. (A.4).
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