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Abstract 

A long spin relaxation time (τsf) is the key for the applications of graphene to 

spintronics but the experimental values of τsf have been generally much shorter than 

expected. We show that the usual determination by the Hanle method underestimates τsf 

if proper account of the spin absorption by contacts is lacking. By revisiting series of 

experimental results, we find that the corrected τsf are longer and less dispersed, which 

leads to a more unified picture of τsf derived from experiments. We also discuss how 

the correction depends on the parameters of the graphene and contacts. 
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Spin transport in graphene has strongly attracted attention from the perspective of 

the long spin relaxation time expected from the small spin-orbit coupling of carbon 

[1,2]. Spin transport to long distances without spin relaxation, with also the additional 

interest of the low dissipation of spin currents, is promising for the spintronic devices, 

in particular to merge functionalities of magnetic non-volatile memory and logic 

operation, for which a long spin diffusion length λsf enables multi memory elements to 

function as sources of spin current for input operation via spin-torque switching [3]. 

However the spin relaxation times τsf derived from experiments [4-10], rarely above 1 

ns, are much shorter than theoretically expected and also largely dispersed. For 

example, Volmer et al., see Fig.1(d) in Ref. [9] have clearly highlighted the broad 

dispersion of τsf in wide-ranging series of sample and also pointed out the puzzling 

general trend of an increase of τsf at increasing resistance of the MgO tunnel junction 

with the magnetic electrodes. 

Spin transport in a nonmagnetic conductor NM (metal, semiconductor or 

graphene) is generally studied [11-17] by using lateral spin valves (LSVs) on which 

two ferromagnetic (FM) wires are bridged by a nonmagnetic (NM) channel. A spin 

current is injected from one of the magnetic electrodes and one measures a non-local 

spin signal related to the spin accumulation in the NM channel. A frequent method to 
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derive the spin relaxation time is to analyze the variation of the spin signal induced by 

collective spin precession in an applied field, the so-called Hanle effect [16,17]. An 

important point is that, without a large enough resistance of the contact between 

channel and electrodes, a part of the injected spin current is reabsorbed by the 

electrodes (the so-called back-flow current) if the spin resistance RN = λsfρN/AN, where 

ρN is the electrical resistivity and AN is the cross section of the NM channel (we first 

suppose a 3D conductor), is larger than the corresponding spin resistance of the FM 

electrodes [11-13]. For graphene, most of the determinations of spin relaxation time 

have been performed by Hanle measurements, and although some numerical 

simulations have been proposed [8,18] to introduce the spin absorption in the 

interpretation, almost all the Hanle signal analyses have not taken into account the spin 

absorption. Here we present analytical expressions [19] of the effect of spin absorption 

on Hanle curves, and by taking some examples of prior results, we show that, except 

for the highest contact resistances (tunnel junction resistances), the spin relaxation time 

had been significantly underestimated. The correction of this underestimate allows us to 

reduce the dispersion of the spin relaxation times and also to bring closer the results 

obtained by Hanle measurements and other methods. We can also indicate the values 

needed for the contact resistances to avoid important spin absorption effects in large 
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ranges of several parameters such as spin diffusion length, spin resistance, and channel 

length L. 

First of all, we stress here that the spin absorption is more pronounced in the case 

of graphene compared to metals. Generally, the spin absorption due to contacts in 

metallic devices can be easily suppressed with contacts through tunnel junctions. The 

previous studies by some of us (H. I., Y. O.) clearly showed that, compared to LSVs 

with metallic contacts, the spin signal ΔRS was strongly enhanced by suppression of 

spin absorption [20] with Ni80Fe20(Py)(/MgO)/Ag contacts, as shown in Fig. 1(a) where 

ΔRS increases more than an order of magnitude with varying RI from 0.1 to 10 Ω. The 

spin signal ΔRS is reduced by the spin absorption if the contact resistance RI is smaller 

than the spin resistance RN of the lateral channel. The different resistance scale of the 

required contact resistance for metals and graphene comes from the fact that, in typical 

LSVs with graphene, the channel spin-resistance (~ 10 kΩ) is much larger than with 

metals (RN ~ 0.8 Ω for Ag in Fig. 1a). But the fundamental frameworks of spin 

transport are described in the same manner by replacing the ratio thickness/resistivity of 

a nonmagnetic metal, tN/ρN by the sheet conductance of graphene, σG so that the spin 

resistance of graphene channel is written as RN = λN /(σGwN) where λN is the spin 

diffusion length and wN is the channel width. The analytical formulation of the 
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absorption effect on Hanle curves was recently established by two of the authors (H. I., 

Y. O.) and collaborators explaining the reason why the spin transport parameters 

derived from Hanle curves without taking into account the spin absorption differ from 

the intrinsic ones [19]. With spin absorption the Hanle voltage is expressed as 

 F1 F1 I1 I1 F 2 F 2 I2 I 2 12
N 2 2 2 2
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resistance (conductance) and the conductance spin asymmetry of k-th contact. 

F F F I( / )k kR Aρ λ=  and AFk are the spin resistance and cross-sectional area of the FM 

electrode on k-th contact. The expression ˆdet( )X is the determinant of the matrix X̂  

and C12 is the (1, 2) component of the cofactors of X̂ , where C12 and X̂  are given by 
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In the above equation, IkG ↑ ↓  is the spin mixing conductance. In order to reduce the 
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number of fitting parameters, we assume an isotropic spin absorption without additional 

absorption of the transverse spin components due to spin transfer. Hence the spin 

mixing conductance is given by I I F1 / (2 2 )k k kG R R↑↓ = + . As in the application to LSVs 

with graphene and Co electrodes (λCo = 38 nm, ρF = 25 μΩcm, PF = 0.36 [22]) , the 

contact RI is at least three orders of magnitude larger than RF, so that IkG↑↓  is practically 

equal to 1/(2RIk). In the limit of small spin absorption, Eqs. (1)-(4) reduce to the 

formula used in the interpretation that does not take into account the spin absorption 

[19]. The inset of Fig. 1(a) for the case of metallic LSVs shows that the contact 

resistance affects not only the amplitude of spin signal but also the width of the Hanle 

curves. Actually, Eqs. (1)-(4) enables to explain the different width of Hanle curves in 

the inset with almost the same spin relaxation time of 40.3±5.3 ps for Py/Ag contacts 

and 38.0±3.9 ps for Py/MgO/Ag junctions [19].  

As shown in Figs. 1(c)-(e), we have reanalyzed the Hanle curves of Ref. [4] for 

graphene-based LSVs with contact resistances ranging between 0.285 kΩ and 30 kΩ 

sample. All the data are taken at room temperature for graphene of typical conductivity 

around 0.4 mS and in samples with usual values of wN and L (Length) in the μm range. 

For the sample of Fig. 1c (RI = 0.285 kΩ), a good fit of the curve is obtained by using 

the parameters of the first line in Table I, i.e. with the experimental parameters of Ref. 
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[4], and, for the three free parameters, τsf = 498 ps, PI = 0.0108, DN = 0.0149 m2/s. It 

should be noted here that τsf is considerably increased with respect to the value derived 

without considerin 

g the spin absorption, τsf* = 84 ps. Therefore in order to characterize intrinsic spin 

transport properties, it is indispensable to consider the spin absorption which 

significantly modifies the spatial distribution of the chemical potential inside the 

nonmagnetic channel [19]. 

For the sample of Fig. 1(d) with RI = 6 kΩ (characterized by Han et al. as a sample 

with pinhole in the tunnel junctions) the spin relaxation time we obtained with the 

parameters of Table I is 359 ps, whereas τsf* = 134 ps had been obtained without spin 

absorption [4]. For the sample with a mean value of the tunnel contact resistance 

respectively equal to 30 kΩ and 50 kΩ in Ref. [4], our analysis of the Hanle curve (see 

Fig. 1(e) for one of the samples), leads respectively to τsf = 481 ps and τsf = 511 ps 

whereas the standard analysis [4] had led to τsf* = 448 ps and 495 ps. 

All the data are summarized in Fig. 2 by the plot of τsf and τsf* as a function of the 

interface resistance for all the sample in Ref. [4]. Whereas the original analysis leads to 

an apparent continuous contact-induced increase of τsf* from 84 ps for RI = 0.285 kΩ to 

495 ps for RI = 50 kΩ, we find that, with contact absorption, all the Hanle curves can be 
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accounted for with an almost constant “intrinsic” τsf of about 500 ps and an almost 

constant λsf close to 3 μm. The increase of spin relaxation time when the spin 

absorption is taken into account is still by a factor of 2.7 for the sample with relatively 

close values of RI and RN (6 kΩ and 9.11 kΩ, respectively). The correction factor still 

amounts to 7% (3%) for the interface resistance as large as 30 kΩ (50 kΩ). 

An apparent increase of spin relaxation time with the contact resistance similar to 

that in Ref. [4] was also reported by Volmer et al.[9]. We could interpret also these 

results by taking into account the effect of spin absorption on the Hanle curves and 

explain the general trend of the interface with a single value of τsf for each sample 

series of single-layer and bilayer graphene (not presented here). 

We want now to discuss how, in our model, a precise determination of τsf can be 

affected by the uncertainty of the other parameters. The polarization PI determines the 

amplitude of the spin signal but affects only very weakly its relative variation in Hanle 

curves. It can be seen from Eqs. (1)-(4) that PI is in the field-independent first factors 

but influences only very weekly the factor C12 governing the field dependence of Hanle 

signal (it can be easily seen from the expected small influence of PI via rk|| in Eq.(4)). It 

can be consequently said that some uncertainty on PI and the dispersion of its values 

affect very weakly our determination of τsf. There is also some uncertainty on the 
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parameter σG entering the calculation. For example, when σG = 0.35 mS instead of 0.44 

mS, τsf becomes 521 ps instead of 498 ps for the sample in the first row on Table I. 

Similarly, when wN = 2.2 μm instead of 1.0 μm, τsf becomes 397 ps instead of 498 ps 

because of the decrease in the spin absorption as RI/RN (∝ wN) increases. However 

these variations are small compared to the total correction. 

Finally, after having illustrated the influence of the spin absorption by the contacts 

in the specific case of the sample in Ref. [4], we will describe how, more generally, the 

effect of the contacts varies in different parameter ranges. In Fig. 3(a) we show the 

correction factor τsf/τsf* as a function of RI/RN for several values of the ratio L/λN (the 

other parameters are typical for graphene: σG = 0.335 mS, PI = 0.1 , wN = 1.0 μm, DN = 

0.010 m2/s). The Hanle curves are first calculated using our model with spin absorption 

for a series of values for τsf (which give the corresponding values of λN and RN). Then, 

in a second stage, the “non-corrected relaxation time” τsf* is derived from fitting these 

curves to the standard expression without spin absorption [17]. It turns out that the 

correction factor becomes very large when L is shorter than λN. With L/λN = 0.1, τsf/τsf* 

is about 10 for RI = RN and is still 1.6 for RI = 10 RN. This means that, for example with 

a sample of graphene of sheet resistivity 1 kΩ and λN = 10 μm, and a LSV with L = 1 

μm and wN = 1 μm (resulting in RN = 10 kΩ), the correction factor is still as large as 1.6 
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for RI = 10RN = 100 kΩ, the resistance larger than that of most tunnel resistance used up 

to now in graphene LSVs. 

In Fig. 3(b), the solid lines indicate how, for different values of RI and with the 

same value of σG, PI, wN, and DN (=0.010m2/s) as in Fig. 3(a), the τsf* derived from a 

non-corrected interpretation of Hanle curves [17] varies as a function of the τsf used to 

calculate these curves. The dashed and dotted lines are for the single value RI = 100 kΩ 

and two different values of DN (=0.050m2/s and 0.0020m2/s). It turns out that, when the 

intrinsic spin relaxation time τsf is long, the τsf* is more strongly underestimated, much 

more than in our above re-interpretation of the situation with relaxation times below 1 

ns in Ref. [4]. Typically, the results of Fig. 3(b) show that, even with a resistance of 100 

kΩ, a spin relaxation time of 5 ns is underestimated by a factor of 2.5 when DN = 0.05 

m2/s [23]. 

In summary, we have examined the effect of spin absorption on the determination 

of the spin relaxation time in graphene from Hanle experiments. We have revisited 

Hanle curves of graphene LSVs which were previously analyzed by using the “standard” 

model without spin absorption [17]. Our reanalysis shows that the reported difference 

in the spin relaxation times of samples with different contact resistances is due to 

interface effects with the contacts. After correction of these effects the spin relaxation 
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times are much less dispersed. A general discussion based on the results of Fig. 3 shows 

that, without correction for the back flow and the spin absorption through contacts, and 

even with contact resistances as large as 100 kΩ, the spin relaxation time is 

significantly underestimated when its intrinsic value is in the range of a few 

nanoseconds, especially when the graphene length is smaller than its spin diffusion 

length, or when, in highly conductive graphene, the diffusion constant DN amounts to 

few 0.01 m2/s. The characterization of intrinsic spin relaxation time taking account of 

the effect of spin absorption on the Hanle curves give a hint to interpret recent results 

such as similar spin relaxation time for suspended and non-suspended graphene the 

latter of which has an additional contact [24] and the difference between the spin 

relaxation derived from Hanle measurements and the slower spin relaxation obtained by 

other approaches [7].  
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Figure captions 

FIG. 1. (a) Non-local spin signal ΔRS as a function of contact resistance RI for 

NiFe/Ag/NiFe lateral spin valves (LSVs) with MgO layer between NiFe(Py) and Ag, 

for the separation L = 0.30 μm [20]. The crossover resistance between the 

conductivity mismatch regime (too fast spin absorption by the contacts) and saturation 

(intrinsic spin relaxation in Ag), Rcrossover = RN = ρAgλAg/tAgwAg is the scale governing 

the variation with RI [21] and is of the order of 1 Ω for a metal as Ag (resistivity ρAg in 

the μΩcm range, spin diffusion length λAg around 1 μm and the thickness tAg (width 

wAg) in the 101nm (102nm) range. Inset: Example of the different widths of Hanle 

curves for two LSVs with different contact resistances. Taking into account the spin 

absorption enables a fit of the Hanle curves of the two samples (see solid lines) with 

practically the same spin relaxation time. (b) Schematic illustration of Hanle 

measurement. Larmor precession of spin current is observed electrically. (c) Fit of 

Hanle curves for single layer graphene lateral spin valves with transparent contacts (RI 

= 0.285 kΩ), (d) with pinhole in the tunnel contacts (RI = 6 kΩ), and (e) with tunnel 

junctions (RI = 30 kΩ). τsf is the intrinsic spin relaxation time derived from the model 

with the effect of spin absorption whereas the spin relaxation time τsf* is derived 

without taking into account the spin absorption (“standard” model) in Ref. [4]. 
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FIG. 2. Comparison of the spin relaxation time τsf (circles) and τsf* (triangles) 

respectively derived in models with (this paper) and without [4] spin absorption for 

samples of various contact resistance RI. Solid lines are guide to the eyes. Dashed line 

is the approximate trend in a similar plot of spin relaxation times derived with taking 

no account of spin absorption in Ref. [9].  

 

FIG. 3. (a) General variation of the spin absorption correction factor of the spin 

relaxation time, τsf/τsf*, as a function of RI/RN for several values of L/λN. The 

correction factor is large for RI/RN < 1 (strong spin absorption) but it can also be 

significant for values of RI as large as 5-10 RN if the channel length is shorter than the 

spin diffusion length. Curves were calculated with typical parameter for graphene: σG 

= 0.335 mS, PI = 0.1, wN = 1.0 μm, D = 0.010 m2/s. (b) Solid lines: uncorrected τsf* vs 

intrinsic τsf for several values of RI calculated for graphene LSVs with, in addition to 

the parameters used in (a), L = 1 μm and a typical value for DN = 0.010 m2/s. The 

dotted (dashed) lines are calculated for the only value RI = 100 kΩ with DN = 0.050 

m2/s (DN = 0.0020 m2/s) to show that the correction becomes more important for high 

mobility graphene (for example DN = 0.050 m2/s in recent experiments [23]). D and R 

in legend represent DN and the contact resistance RI, respectively. One sees that even a 

contact resistance of 100 kΩ is not enough large to block spin absorption when τsf or 

DN are large. Typical value for λN is given by λN = (DNτsf)1/2 = 5 μm for DN = 0.01 

m2/s and τsf  = 2.5 ns. 
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Tables 

Table I: Parameters for the interpretation of Hanle signals in Figs. 1(c)-(e). RI, σG, 

L, wN are from Ref. [4], DN, PI and τsf are the free parameters (λN and RN are the 

corresponding values of the spin diffusion length and spin resistance), and τsf* is the 

spin relaxation in the previous interpretation [4] in a model without spin absorption. PI 

shown with † was the geometric mean of PI for Hanle curves with parallel and 

antiparallel magnetic configurations. 

 

Junction  RI (kΩ) σG (mS) 
L 

(μm)
wN 

(μm) 
DN (m2/s) PI 

τsf  
(ps) 

λN 
(μm) 

RN (kΩ)
τsf*  
(ps) 

Transparent 0.285 0.44 3.00 1.00 0.0149 0.0108 498 2.72 6.18 84 
Pinhole 6.00 0.27 2.00 1.00 0.0168 0.120† 359 2.46 9.11 134 
Tunnel 30.0 0.29 5.50 2.20 0.0134 0.0810 481 2.54 4.26 448 
Tunnel 50.0 0.29 2.10 2.20 0.0176 0.156† 511 3.00 4.70 495 
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Fig.1  Idzuchi et al. 
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Fig.2  Idzuchi et al. 
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Fig.3 Idzuchi et al. 


