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We report a comprehensive micro-Raman scattering study of electrochemically-gated graphene
field-effect transistors. The geometrical capacitance of the electrochemical top-gates is accurately
determined from dual-gated Raman measurements, allowing a quantitative analysis of the frequency,
linewidth and integrated intensity of the main Raman features of graphene. The anomalous behavior
observed for the G-mode phonon is in very good agreement with theoretical predictions and provides
a measurement of the electron-phonon coupling constant for zone-center (Γ point) optical phonons.
In addition, the decrease of the integrated intensity of the 2D-mode feature with increasing doping,
makes it possible to determine the electron-phonon coupling constant for near zone-edge (K and
K’ points) optical phonons. We find that the electron-phonon coupling strength at Γ is five times
weaker than at K (K’), in very good agreement with a direct measurement of the ratio of the
integrated intensities of the resonant intra- (2D’) and inter-valley (2D) Raman features. We also
show that electrochemical reactions, occurring at large gate biases, can be harnessed to efficiently
create defects in graphene, with concentrations up to approximately 1.4 × 1012 cm−2. At such
defect concentrations, we estimate that the electron-defect scattering rate remains much smaller
than the electron-phonon scattering rate. The evolution of the G- and 2D-mode features upon
doping remain unaffected by the presence of defects and the doping dependence of the D mode
closely follows that of its two-phonon (2D mode) overtone. Finally, the linewidth and frequency of
the G-mode phonon as well as the frequencies of the G- and 2D-mode phonons in doped graphene
follow sample-independent correlations that can be utilized for accurate estimations of the charge
carrier density.

PACS numbers: 78.67.Wj, 78.30.-j, 72.80.Vp, 63.22.Rc, 63.20.kd, 82.45.-h

I. INTRODUCTION

Graphene, as an atomically thin two-dimensional crys-
tal, features an electron gas that is directly exposed to
its local environment. As a result, graphene is uniquely
sensitive to external stimuli. This is remarkably illus-
trated by the electric field effect, which makes it possible
to swiftly tune the carrier density of graphene (i.e., its
Fermi energy EF) and, in return, to control a wealth of
fundamental properties, among which, the electrical1–3

and optical conductivities,4–6 as well as of the electron-
phonon coupling.7,8 From a more applied standpoint, the
unique controllability of graphene can be harnessed in a
variety of nano-devices.9

Among the various experimental techniques employed
to study graphene, Raman scattering spectroscopy10,11

stands out as a fast, sensitive, and minimally invasive
tool in order to probe electron-phonon,7,8,12–14 electron-
electron15 and electron-defect scattering16,17 at vari-
able carrier density. Raman spectroscopy is also rou-
tinely employed to characterize unintentional doping in
graphene18–20 and to study the sensitivity of graphene
to atmospheric21 and chemical dopants.22–28 Quantita-
tive investigations of doped graphene are particularly
relevant, since several interesting phenomena, such as
superconductivity,29–31 ferromagnetism,32 charge or spin
density waves,33,34 as well as changes in the plasmon
spectrum35,36 are expected to occur in the strong dop-

ing regime (|EF| & 1 eV).
In practice, solid state graphene field-effect transistors

(FETs), typically using a Si substrate as a back-gate and
a SiO2 epilayer as a gate dielectric, have been widely
used to study the Raman response of graphene in the
vicinity of the Dirac point (|EF| = 0− 300 meV).7,8,37,38

To access higher doping levels, other methodologies
based on chemical doping22–28 and electrochemical gat-
ing39–41 have been introduced. The former is highly
efficient, resulting in charge carrier concentrations ex-
ceeding 1014 cm−2, but is irreversible and little con-
trollable. The latter, which relies on the forma-
tion of nanometer-thin electrical double layers (EDL)
with high geometrical capacitance, makes it possible
to reversibly attain electron or hole concentrations
as high as ∼ 1014 cm−2, (i.e., |EF| ∼ 1 eV) at cryo-
genic temperatures.42 Recently, electrochemically-gated
graphene FETs have been successfully employed to inves-
tigate electron-phonon coupling,41,43–47 but also bandgap
formation in bilayer graphene,48,49 electron transport at
high carrier density,42,50,51 many-body phenomena,6 as
well as to electrically control the interaction between
nano-emitters and graphene.52,53

In such studies, an accurate determination of EF

(hence of the gate capacitance) as a function of the gate
voltage is a critical requirement. However, as opposed
to solid state FETs, in which the oxide dielectric con-
stant and thickness can be known with accuracy, the
thickness of the electrical double layer may be highly
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sensitive to the device geometry, fluctuate spatially and
vary over time. This further highlights the need for
(i) robust methods for device fabrication and, (ii) ac-
curate tools to experimentally measure the gate capaci-
tance. In previous works, the gate capacitance of elec-
trochemically gated graphene FETs has been evaluated
from an estimation of the thickness of the EDL,41,44 from
capacitance54,55 or Hall measurements,16,42,50,51 or from
optical absorption spectroscopy.6,46

In this article, we show that micro-Raman scattering
measurements on electrochemically top-gated and SiO2

back-gated graphene FETs can be used to accurately de-
termine the geometrical capacitance of the electrical dou-
ble layer and hence EF, with a spatial resolution down
to approximately 1 µm. Calibrated electrochemical gates
allow us (i) to quantitatively compare the anomalous
doping-dependence of the G-mode phonon to theoreti-
cal models,8,56,57 (ii) to deduce the electron-phonon cou-
pling constants at the center (Γ point) and near the edges
(K and K′ points) of the Brillouin zone of graphene,15

and (iii) to establish well-defined correlations between the
frequencies, linewidths and integrated intensities of the
main Raman features in doped graphene. Importantly,
we show that at top-gate voltages beyond the threshold
for electrochemical reactions, defect concentrations of up
to approximately 1.4 × 1012 cm−2 can be created with-
out damaging the device. This allows us, in particular, to
quantitatively investigate the doping dependence of the
defect-related D mode and to estimate the electron-defect
scattering rate in graphene.

The paper is organized as follows: the experimental
methods are exposed in Sec. II. Section III presents a
model for the electric field effect in electrochemically-
gated graphene FETs. Section IV is dedicated to the ex-
perimental determination of the geometrical capacitance
of the electrical double layer. In Sec. V we specifically
address electron-phonon coupling in pristine graphene.
Section VI describes our study of defective graphene and
the determination of the electron-defect scattering rate.
Finally, in Sec. VII, we describe the correlations between
the main Raman features in doped graphene.

II. METHODS

A. Sample preparation

Graphene samples are produced by mechanical exfolia-
tion of natural graphite onto highly p-doped Si substrates
covered with a (285 ± 15) nm SiO2 epilayer. Graphene
monolayers are identified by optical microscopy and
micro-Raman spectroscopy. Source, drain and gate elec-
trodes are made by photolithography, followed by metal
deposition (Ti (3 nm)/Au (47 nm)). The device are then
coated with a∼ 4 µm thick photoresist layer (MicroChem
SU8 2005), and a second photolithography step is per-
formed to open a window above the graphene channel
and gate electrode, as shown in Fig. 1(a)-(b). Finally, the

electrochemical top-gate is formed by depositing a drop
of polymer electrolyte with a micropipette. The poly-
mer electrolyte is prepared by mixing lithium perchlo-
rate (LiClO4) and polyethylene oxide (PEO) in methanol
at a weight ratio17,39,41 0.012:1:4. The mixture is then
heated at 45 ◦C and stirred until it becomes uniform.
This suspension is filtered to get a clear solution. Af-
ter dropcasting, the methanol evaporates and a thin film
of transparent polymer electrolyte is formed. To remove
residual moisture and solvent, the devices are annealed at
about 90 ◦C. Noteworthy, the device geometry depicted
in Fig. 1(a)-(b) features a well-defined gated region and
prevents the polymer electrolyte to be in contact with
the source and drain electrodes. As compared to earlier
works,41,43,44 this improves the gating efficiency and re-
duces the electrochemical reactivity of our devices. Some
measurements described in the following are performed
in a dual-gated geometry. In this case, the back-gate
voltage is applied using the Si substrate as a gate elec-
trode.

B. Experimental setup

We perform micro-Raman scattering measurements
in ambient conditions on top-gated and dual-gated
graphene field-effect transistors. Raman spectra are
recorded in a backscattering geometry, with a home-built
setup, using a × 40 objective (NA = 0.60) and a 532 nm
laser beam focused onto a spot of approximately ∼ 1 µm
in diameter. The sample holder is mounted onto a x-
y-z piezoelectric stage, allowing spatially resolved Ra-
man studies. The collected Raman scattered light is dis-
persed onto a charged-coupled device (CCD) array by a
single-grating monochromator, with a spectral resolution
of about 1 cm−1. The laser beam is linearly polarized and
the laser power is maintained below 500 µW, in order
to avoid thermally induced spectral shifts or lineshape
modifications of the Raman features,58 as well as photo-
electrochemical reactions.16,42,45 The sample holder is
electrically connected to a sourcemeter, which triggers
our CCD array. Raman spectra are recorded as a func-
tion of the applied gate bias, once a steady gate leak
current (typically lower than 100 pA in the electrochem-
ically top-gated configuration) is achieved. For this pur-
pose, the gate bias is first applied for a settling time of
∼ 1 min, before recording each Raman spectrum. This
procedure ensures that Raman spectra are recorded at
constant charge carrier densities. Raman spectra are also
recorded during several forward and backward top-gate
sweeps at the same spot on a given sample and very
reproducible results, with no significant hysteresis, are
observed. We find, however, that the geometrical ca-
pacitance of the top-gate, as well as the electron-phonon
coupling constant may exhibit a certain degree of spatial
inhomogeneity. Additionally, in ambient air, the gate ca-
pacitance may decrease over time, by up to one order
of magnitude over a couple of days, due to a degrada-
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FIG. 1. (a) Optical image of a dual-gated graphene field-effect transistor prior deposition of the polymer electrolyte. The
source and drain electrodes are covered with photoresist (SU8) to prevent them to be in contact with the polymer electrolyte.
(b) A schematic cross-section of our dual gated graphene field-effect transistor, with Li+ (green) and ClO−4 (red) ions and the
electrical double layers near each electrode. The Si substrate is used as a back-gate. (c) Schematic energy diagrams of the
electronic states of the gate electrode and of graphene. Occupied states are represented in grey. At zero gate voltage (V = 0),
the electrochemical potentials of the gate electrode µ and the graphene layer µSLG are equal. The Fermi energy of graphene is
E0

F. Applying a gate voltage V results in an electrostatically-induced shift (eφ) and in a change of the Fermi energy of graphene
(EF). The electrochemical potential difference is equal to eV , leading to Eq. (1) with eV0 = E0

F. (d) Equivalent electrical circuit
of our device at steady state. CBG is the geometrical capacitance of the Si/SiO2 back-gate, CG is the geometrical capacitance
of the electrical double layer at the graphene/polymer electrolyte interface and CQ is the quantum capacitance of graphene.

tion of the polymer electrolyte. Such aging effects un-
derscore the necessity of fast characterizations of electro-
chemically gated FETs and may account for the fairly
large spread in the gate capacitances reported in litera-
ture. In order to avoid sample aging effects, our mea-
surements were performed immediately after deposition
of the polymer electrolyte. Interestingly, the dispersions
obtained from a set of measurements at several spots on
a given graphene FET are very similar to the sample-
to-sample dispersions observed by measuring at (single)
random spots on a set of graphene FETs. This further
highlights the interest of spatially resolved studies.

III. ELECTRIC FIELD EFFECT

Figure 2 shows typical Raman spectra recorded over a
top-gate voltage sweep, with the two prominent Raman
features in pristine graphene: the first order G-mode fea-
ture, which involves zone-center optical phonons (at the
Γ point), and the second-order resonant 2D-mode fea-
ture, which involves near zone-edge optical phonons (at
the K and K’ points).10,11 Note that no defect-induced

D-mode feature emerges from the background in our ex-
perimental conditions. This illustrates the high struc-
tural quality of the graphene sample. As expected,41 the
G-mode frequency and linewidth vary significantly with
the top-gate bias (VTG). Similar trends are observed by
applying a back-gate voltage (VBG). The minimum value
of the G-mode frequency ωG and the maximum value of
its full width at half maximum (FWHM) ΓG are reached
at the same value of VTG,0 = +0.5 V. This value cor-
responds to the charge neutrality point (CNP), where
EF = 0. The CNP is reached at a finite VTG,0, due to an
unintentional doping of the graphene layer, induced by
the substrate as well as the polymer electrolyte.41 A fi-
nite value of VTG−VTG,0 results in a finite charge carrier
density n. In this work, a positive (negative) gate voltage
corresponds to electron (hole) injection.63 Qualitatively,
for both positive and negative values of VTG− VTG,0, we
observe a nearly symmetric increase of ωG accompanied
by a symmetric decrease of ΓG (see Sec. V A for details).
In contrast, the 2D-mode feature is less sensitive to dop-
ing than the G-mode feature41 (see Sec. V B).

In order to carefully study the G- and 2D-mode fea-
tures as a function of EF, one has to convert the gate
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FIG. 2. (a)-(c) Color maps of the Raman spectra of a pristine graphene monolayer (sample 1), measured using a 532 nm laser
beam, as a function of the top-gate voltage VTG. The G- and 2D-mode features appear prominently and no defect-induced
D-mode feature is observed. Panels (b) and (c) show a clear evolution of the G- and 2D-mode features with varying VTG.
The black dashed lines correspond to the central frequency of each Raman feature. The charge neutrality point (CNP) is
indicated by an arrow. (d) Raman spectra at values of VTG between -0.5 V and +1 V. The circles are the experimental data
and the solid lines are fits (see text for details). The CNP is reached at VTG,0 = +0.5 V (see green line). (e)-(g) Schematic
representation, in the momentum-energy space, of the main Raman features in graphene.11 ~ωL (~ωS) denote the incoming
laser (Raman scattered) photon energy. The G mode (e) is a non-resonant process.15,46 In (f), the 2D mode is represented
as the dominant fully resonant inner process,59,60 involving two near zone-edge transverse optical phonons with frequency ωD

and opposite momentum ±q. The defect-induced D mode11,60–62 (g) involves one electron-phonon (solid arrow) scattering (q,
ωD) and one electron-defect (dashed arrow) scattering process. One of these two processes is resonant. In (g), a resonant
electron-phonon scattering process is represented.

voltage into EF or, equivalently, n. First, the Fermi en-
ergy at a given n is EF = sgn (n)~vF

√
π|n|, where ~ is

the reduced Planck’s constant and vF ≈ 1.1 × 106 m/s
is the Fermi velocity of graphene on a SiO2 substrate.64

Note that this formula applies only at T = 0. How-
ever, in practice, finite temperature effects only induce
a very minor correction to this simple scaling.65 An ap-
plied top- or back-gate voltage V creates an electrostatic
potential difference φ between the graphene monolayer
and the gate electrode. Besides, the injection of charge
carriers in graphene leads to a shift of its Fermi energy.
Consequently, V introduces a difference in the electro-
chemical potentials of the gate electrode µ and of the

graphene layer µSLG (see Fig. 1(c))

µSLG − µ = eV = EF + eφ+ eV0, (1)

where e is the elementary charge, V0 is a constant that
accounts for the initial doping and implicitly includes the
work function difference between the two materials.66

Assuming that the gate can be modeled as a parallel
plate capacitor with a geometrical gate capacitance CG,
the relation between V and EF is given by

V − V0 =
EF

e
+ sgn(EF)

eE2
F

π(~vF)2CG
. (2)
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Importantly, the first term on the right hand side of
Eq. (2) scales as EF (i.e.,

√
n) and is related to the quan-

tum capacitance of graphene CQ,67 while the second term
scales as E2

F (i.e., as n) and is related to the geometrical
gate capacitance CG.41,44

For a typical SiO2 back-gate insulator, the geometrical
capacitance CBG per unit area is simply given by CBG =
εrε0/dBG, where εr ≈ 4 is the relative permittivity of
SiO2, ε0 the vacuum permittivity and dBG is the SiO2

thickness. In this work, dBG = (285 ± 15) nm results in a
back-gate capacitance CBG = (12.4 ± 0.7) nF cm−2. For
a typical Fermi energy EF ∼ 100 meV, the quantity EF/e
is negligible as compared to the other term in Eq. (2).

The case of the polymer electrolyte top-gate is slightly
more complicated. Indeed, when a voltage is applied be-
tween the gate and the SLG, Li+ and ClO−4 diffuse in
the polymer to form electrical double layers at the in-
terfaces as it is sketched in Fig. 1(b).41 These EDL can
be modeled as parallel plate capacitors with a thickness
given by the Debye length dTG, and a geometrical capac-
itance per unit area CTG = εrε0/dTG. The total geomet-
rical capacitance of the polymer electrolyte is thus given

by CTG

(
S−1

p−gate + S−1
p−graphene

)−1

, where Sp−gate (resp.

Sp−graphene) is the contact area between the polymer elec-
trolyte and the gate electrode (resp. the graphene mono-
layer). Since Sp−gate � Sp−graphene (see Fig. 1(a)), one
only needs to take into account the geometrical capac-
itance of the EDL at the graphene-polymer electrolyte
interface. The Debye length is theoretically given by41

dTG = 2Ce2/ε0εrkBT , where T is the temperature, kB is
Boltzmann’s constant and C is the concentration of ions
in the polymer electrolyte. In practice, the exact value
of C cannot be measured. One can nevertheless obtain
an estimate of CTG ≈ 4.4 µF cm−2, assuming a typical
value of dTG ≈ 1 nm and εr ≈ 5 for PEO.41 This ca-
pacitance is more than two orders of magnitude larger
than CBG and becomes comparable to the quantum ca-
pacitance for EF ∼ 100 meV. As a result, the two terms
in Eq. (2) are of the same order of magnitude and must
be taken into account in the present study.

IV. GEOMETRICAL CAPACITANCE OF THE
ELECTRICAL DOUBLE LAYER

Our first objective is to precisely determine CTG. Pre-
vious works on oxide dual-gated graphene FETs68,69

have shown that provided one geometrical capacitance
is known, the other can be determined by monitoring
the minimum (source-drain) conductivity point as a func-
tion of the bottom and top-gate biases. At steady state,
our dual-gated graphene FETs have the same equiva-
lent electrical circuit (see Fig. 1(d)) as the devices of
Ref. 69. Here, rather than using electron transport
measurements, we apply micro-Raman scattering spec-
troscopy, which provides a local measurement. For a
fixed VBG, we sweep VTG and record Raman spectra,
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FIG. 3. (a) Frequency ωG and (b) relative FWHM ∆ΓG of the
G-mode feature as a function of the top-gate voltage, recorded
at various back-gate voltages on sample 1. The curves are
vertically offset by 10 cm−1 for clarity. The symbols are
experimental data. (c) Top-gate voltage VTG,neutral, corre-
sponding to the CNP in dual-gated graphene, as a function
of the applied back-gate voltage VBG. A top gate capacitance
CTG = 3.3 µF cm−2 is deduced from a linear fit of the data
(solid line). The solid lines in (a) and (b) are fits based on
Eq. (5) and (6), respectively, with CTG = 3.3 µF cm−2.
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as described in Sec. II B. Then, we extract ωG and ΓG

from Lorentzian fits. Figures 3(a)-(b) show these two
quantities as a function of VTG for five different val-
ues of VBG. We observe a clear shift of the CNP, at-
tained at VTG,neutral, with VBG. In practice, VTG,neutral

is extracted from the ΓG(VTG) curves, which, expectedly
(see Sec. V A), exhibit a sharper extremum near neutral-
ity than the ωG(VTG) curves. As shown in Fig. 3(c),
VTG,neutral varies linearly with VBG. Indeed, from the
equivalent circuit in Fig. 1(d), the total charge density
injected by top- and back-gates leads69

ne = −CTG

(
VTG − VTG,0 −

EF

e

)
− CBG

(
VBG − VBG,0 −

EF

e

)
. (3)

At the CNP, n = 0 and EF = 0. Therefore,

VTG,neutral = VTG,0 −
CBG

CTG
(VBG − VBG,0). (4)

Using Eq. (4), a linear fit of the data in Fig. 3(c)
yields CBG/CTG = (3.8 ± 0.2) × 10−3. Since
CBG = (12.4 ± 0.7) nF cm−2, we deduce that CTG =
(3.3 ± 0.3) µF cm−2, which is of the same order
of magnitude as what was reported before for similar
devices.16,41,42,44,70 We may now convert VTG into EF.

V. ELECTRON-PHONON COUPLING IN
PRISTINE GRAPHENE

A. Doping-dependence of the G-mode feature

Considering only lattice expansion, due to the addition
of charge carriers, one may expect the G-mode frequency
to increase (decrease) under hole (electron) doping.57

Thus, the peculiar, nearly symmetric behaviors observed
here and previously reported by others7,8,41,45–47 contrast
strongly with the trends predicted if one only considers
lattice expansion effects. This anomalous behavior has
been originally predicted by Ando56 and by Lazzeri and
Mauri57 as a consequence of the strong coupling between
zone-center optical phonons and low-energy electronic ex-
citations across the gapless bands of graphene. Related
effects occur in metallic carbon nanotubes.71 The anoma-
lous doping dependence of the G-mode can be described
using the phonon self-energy,7,8,37,56,57 the real part of
which is equal to ωG and the imaginary part to ΓG. As a
result, the evolution of ωG and ΓG are deeply connected
(see Fig. 4).

The variation of ΓG is due to the decay of the G phonon
into an electron-hole pair (see right inset in Fig. 4) and
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FIG. 4. Frequency ωG (red squares, left axis) and relative
FWHM ∆ΓG (blue circles, right axis) of the G-mode fea-
ture, extracted from the measurements in Fig. 2, as a func-
tion of Fermi energy or doping. The corresponding Feynman
diagrams are shown as insets. The left inset represents the
renormalization of the G-mode phonon frequency due to in-
teractions with virtual electron-hole pairs. The right inset
represents lifetime broadening due to the resonant decay of
a G-mode phonon into an electron-hole pair. The solid blue
and red lines are fits based on Eqs. (5) and (6), respectively.
The fitting parameters are CTG = 3.9 µF cm−2, λΓ = 0.027
and δEF = 35 meV.

is given by

∆ΓG = ΓG − Γ0

=
λΓ

4
ω0

G ×
[
f

(
−~ω0

G

2
− EF

)
− f

(
~ω0

G

2
− EF

)]
,

(5)

where ω0
G is the phonon frequency at EF = 0, f(E) =

[1 + exp(E/kBT )]−1 is the Fermi-Dirac distribution at a
temperature T and λΓ is a dimensionless coefficient corre-
sponding to the electron-phonon coupling strength72 (see
also Sec. V C). Γ0 contains all other sources of broadening
that are independent on the carrier density (anharmonic
coupling,73 disorder, instrument response function). For
|EF| > ~ω0

G/2, ∆ΓG vanishes due to Pauli blocking.
The evolution of ωG with EF is the sum of an adiabatic

contribution ωA
G corresponding to the modification of the

equilibrium lattice parameter and a non adiabatic one
ωNA

G corresponding to the renormalization of the G-mode
phonon energy due to interactions with virtual electron-
hole pairs56,57 (see left inset in Fig. 4). At a finite tem-
perature T , the frequency shift is given by8,57

∆ωG = ωG − ω0
G = ∆ωA

G + ∆ωNA
G , (6)
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with

∆ωNA
G =

λΓ

2π~
−
∫ +∞

−∞

[f(E − EF)− f(E)]E2 sgn(E)

E2 − (~ω0
G)2/4

dE,

(7)
where −

∫
denotes the Cauchy principal value. One should

note that ∆ΓG and ∆ωG are proportional to λΓ.
In the simulations described below, we use the results

of the calculation by Lazzeri and Mauri to include adia-
batic contribution ∆ωA

G (see Eq. (3) in Ref. 57). Impor-
tantly, for |EF| < 1 eV, the adiabatic contribution pro-
vides only a minor correction to the non-adiabatic term
and does not affect ΓG.

Moreover, to accurately describe the experimental evo-
lution of the G mode, one also has to take into account
random spatial fluctuations of the Fermi energy.18,65,74,75

It is reasonable to assume that EF follows a Gaussian dis-
tribution65,74,75 around its mean value, with a standard
deviation δEF. Thereafter, the computed ∆ωG(EF) and
∆ΓG(EF) used to fit our data are given by the convolu-
tion of this Gaussian distribution with Eq. (5) and (6).

Figure 3 displays the results of simultaneous fits of
∆ωG(VTG) and ∆ΓG(VTG) for five top-gate sweeps at
different VBG. We used vF = 1.1 × 106 m s−1 and the
values of CTG, VTG,neutral and ω0

G obtained in Sec. IV.
Thus the fitting parameters are λΓ, δEF and Γ0. The
experimental data are remarkably well fitted by the the-
oretical model. Interestingly, although the two phonon
anomalies37,56,57 predicted at EF = ±~ω0

G by Eq. (6) are
largely smeared out at room temperature, one can still
notice a hint of their presence in Fig. 3(a), 4 and 9(a).

From these five fits, we get λΓ = 0.036 and δEF =
40 meV. Since δEF ≈ 50 meV on bare SiO2 without an
electrochemical top-gate,74,76 we conclude that charge in-
homogeneity does not have a major effect on our analysis.
DFT calculations8,57 have predicted λΓ = 0.028, which
is slightly smaller, but consistent with our measurement.

Another way to further compare the experimental data
and theory is to set CTG as adjustable parameter when
fitting ∆ωG(VTG) and ∆ΓG(VTG). This yields CTG =
3.9 µF cm−2, λΓ = 0.034 and δEF = 35 meV. These
values are very consistent with the more constrained fits
discussed above (see Sec. IV). Similar studies were re-
peated on more than five samples, with similar conclu-
sions. This demonstrates that a direct fit of ∆ωG(VTG)
and ∆ΓG(VTG) can be used to get an accurate mea-
surement of CTG, which allows to convert VTG into EF

through Eq. (2). This is a much faster approach to deter-
mine CTG, which does not require a dual-gated device.
As an example, a fit of the data in Fig. 2 is shown in
Fig. 4, and shows a very good agreement between exper-
iment and theory. More generally, our fitting procedure
allows us to estimate CTG and λΓ with relative uncer-
tainties of approximately 20% and 10%, respectively.

To better understand the importance to fit simultane-
ously ∆ωG(VTG) and ∆ΓG(VTG), we have fit these quan-
tities separately for the measurements shown in Fig. 3
(not shown). From the fit of ∆ωG(VTG), we obtain
CTG = 2.3 µF cm−2, λΓ = 0.042 and δEF = 50 meV.

0 5 1 0 1 5 2 0 2 5
- 6 0 0

- 4 0 0

- 2 0 0

0

2 0 0

4 0 0

6 0 0

E F ( m e V )  =  - 1 8 ∆ωG ( c m - 1 ) - 8 3

E F ( m e V )  =  2 1 ∆ωG ( c m - 1 ) + 7 5

h o l e s

 S a m p l e  1
 S a m p l e  2
 S a m p l e  3
 S a m p l e  4
 S a m p l e  5E F (m

eV
)

∆ωG  ( c m - 1 )

e l e c t r o n s

FIG. 5. Fermi energy EF as a function of the relative fre-
quency of the G mode ∆ωG. Measurements on five different
devices are represented with different symbols. The dashed
and solid lines correspond to Eq. (9) and (10), respectively.

Except the large value of λΓ, the two parameters are rea-
sonable. From the fit of ∆ΓG, we obtain λΓ = 0.033
and δEF ≈ 40 meV and an unrealistically large CTG ∼
100 µF cm−2. The latter value suggests that the behavior
of ∆ΓG can be rationalized using solely the quantum ca-
pacitance of graphene. This is understandable, since the
variations of ∆ΓG occur near EF = 0, where the contri-
bution of the quantum capacitance dominates in Eq. (2).
However, the value of ∆ΓG near EF = 0 is directly pro-
portional to λΓ and is not influenced by CTG, while ∆ωG

varies mostly away from the CNP. Hence, its evolution
with VTG is influenced by both λΓ and CTG. Conse-
quently, a simultaneous fit allows for a reliable estimation
of λΓ (through the doping dependence of ∆ΓG(VTG)),
and, in turn of CTG (through the slope of ∆ωG(VTG)
curve, having λΓ constrained by ∆ΓG(VTG)).

Figure 5 shows the evolution of EF as a function of
∆ωG for five different graphene FETs (denoted sam-
ple 1 to 5) in which CTG and λΓ have been previously
determined by the simultaneous fit of ∆ωG(VTG) and
∆ΓG(VTG). For these five samples, we found an av-
erage of 〈CTG〉 = (4.5 ± 1.5) µF cm−2 and 〈λΓ〉 =
(0.032 ± 0.004) (see also Table I). This translates into
an average relative G-mode FWHM (see Eq. (5)) of
∆ΓG = 12.6 ± 1.6 cm−1 (at T = 0, EF = 0 and δEF = 0)
that is consistent with the value of ΓG ≈ 15 cm−1

recorded on quasi-undoped suspended graphene at low
temperature.77 Remarkably, and in spite of the different
values of CTG, the data for these five devices shown in
Fig. 5 collapse onto a same curve. In practice, this very
reproducible behavior can be used to evaluate EF know-
ing ∆ωG, which is of broad interest in graphene science.
For this purpose, we consider the asymptotic behavior of
∆ωG(EF). When |EF| � ~ω0

G/2, Eq. (7) becomes
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∆ωNA
G ≈ λΓ

2π~
|EF| . (8)

Assuming that the adiabatic contribution ∆ωA
G is neg-

ligible compared to ∆ωNA
G , ∆ωG should be linear with

|EF|. Indeed, in Fig. 5 for the five different samples,
ωG(EF) clearly scales linearly for |EF| & 100 meV. The
slightly different slopes observed for electron and hole
doping arise from the opposite sign of the adiabatic cor-
rections.

For |EF| & 100 meV, we find

EF & +100 meV, EF = +21∆ωG + 75, (9)

EF . −100 meV, EF = −18∆ωG − 83, (10)

where EF is expressed in meV and ∆ωG in cm−1. How-
ever, it should be noted that this linear scaling only holds
for |EF| . 500 − 600 meV. In fact, for higher |EF|,
∆ωG no longer scales linearly with |EF| since ∆ωA

G can
no longer be neglected compared to ∆ωNA

G . Moreover,
Eqs. (9) and (10) can be applied provided the shift in
∆ωG is exclusively due to doping, i.e., other extrinsic
factors, such as mechanical strain do not contribute. If
this is not the case, one has to separate the various con-
tributions, using, e.g. the method described in Ref. 78
with the results of Sec. VII B.

B. Doping-dependence of the 2D-mode feature

Let us briefly comment on the 2D-mode feature. Fig-
ure 6 shows the evolution of the frequency ω2D(EF) and
FWHM Γ2D(EF) of the 2D-mode feature with EF for
sample 2 (2D mode spectra are also shown for sample
1 in Fig. 2). In supported graphene, the 2D-mode fea-
ture typically exhibit a quasi-symmetric lineshape that
can be phenomenologically fit to a modified Lorentzian
profile.59,77 We find that Γ2D(EF) does not vary sig-
nificantly with the gate bias, while ω2D varies little at
moderate doping (|EF| . 200 meV), but tends to stiffen
(soften) significantly for stronger hole (electron) doping.
The observed evolution of ω2D outlined in Fig. 6 (see also
Figs. 2 and 9) can be qualitatively understood as the sum
of a dominant adiabatic contribution and a weaker non-
adiabatic contribution. The latter is reduced as com-
pared to the case of the G-mode feature, likely because
the 2D-mode feature involves phonons that are signifi-
cantly away from the edges of the Brillouin zone.41

C. Electron-electron and electron-phonon
scattering

Another useful quantity is the integrated intensity of a
Raman feature (denoted IX), which represents the total
probability of the Raman scattering process. The inte-
grated intensity of the 2D-mode feature (I2D) depends on

- 4 0 0 - 2 0 0 0 2 0 0 4 0 0

- 9 . 8 - 2 . 4 0 . 0 2 . 4 9 . 8

2 6 7 2

2 6 7 4

2 6 7 6

2 6 7 8

2 6 8 0

2 6 8 2

n  ( x  1 0 1 2  c m - 2 )

 

E F  ( m e V )

ω
2D

 (c
m-1 )

2 2
2 4
2 6
2 8
3 0
3 2
3 4
3 6

 Γ 2D
 (c

m-1 )

FIG. 6. Doping dependence of the frequency ω2D (red squares,
left axis) and FWHM Γ2D (blue circle, right axis) of the 2D
mode-feature. The measurements are performed on sample 2,
before the creation of defects.

EF,15,41,44 whereas IG does not, as long as |EF| ≤ ~ωL/2,
where ~ωL is the energy of the incident laser.45,46,79 In
Fig. 7, we consider the ratio I2D/IG, which is maximum
for EF = 0 and decreases almost symmetrically for in-
creasing |EF|. Following Ref. 15 and 59, the integrated
intensity of the 2D-mode feature writes

I2D ∝
(

γK

γe−ph + γD + γee

)2

, (11)

where γe−ph + γD + γee is the total electron scattering
rate, with γe−ph the electron-phonon scattering rate, γD

the electron-defect scattering rate, and γee the electron-
electron scattering rate. The electron-phonon scattering
rate can be approximated as γe−ph = γK + γΓ, where γK

and γΓ are the scattering rates for zone-edge and zone-
center optical phonons, respectively. Note that Eq. (11)
is obtained under the assumption of a fully resonant
process (see Fig. 2(f)), and that trigonal warping ef-
fects leading to momentum-dependent scattering rates
are neglected.15,59,60,80 While γD and γe-ph do not de-
pend on EF, γee has been predicted to scale linearly with
|EF|. For |EF| � ~ωL/2, Basko et al. calculated15

√
IG
I2D

=

√
IG
I2D

∣∣∣
0

γe-ph + γD
(γe-ph + γD + 0.06 |EF|), (12)

where
√

IG
I2D

∣∣∣
0

corresponds to the value at EF = 0.

In this section, we are considering pristine graphene,
in which γD � γe−ph. As illustrated by the dashed line
in Fig. 7, our experimental data agree well with a fit
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FIG. 7. Left axis: doping dependence of the ratio between
the integrated intensity of the 2D-mode feature and that of
the G-mode feature. Right axis: doping dependence of the
square root of the ratio between the integrated intensity of
the G mode and that of the 2D mode. The dashed and solid
lines are fits based on Eq. (12), without and with Fermi en-
ergy fluctuations, respectively. A value of γe-ph = 51 meV is
deduced from the fit. The measurements are performed on
sample 2, before the creation of defects.

based on Eq. (12) for |EF| & 100 meV. However, we
observe a deviation from Eq. (12) near the CNP, likely
due to Fermi energy fluctuations. As in Sec. V A, we
therefore fit the experimental data with the Gaussian
convolution of Eq. (12), resulting in the solid line in
Fig. 7. The agreement between theory and experiment
is very good and more compelling than in the seminal

study in Ref. 15. The fitting parameters are I2D

IG

∣∣∣
0

= 3.6,

γe-ph = 51 meV and δEF = 110 meV. We repeated this
analysis on three pristine samples and found average val-
ues of 〈γe-ph〉 = (47 ± 7) meV, 〈δEF〉 = (120 ± 10) meV

and
〈
I2D

IG

∣∣∣
0

〉
= 4.2 ± 0.6 (see Table I). Note that

the dispersion of the measurements on these three de-
vices is very similar to the dispersion observed when
measuring on several spots on the same sample. The
value of γe-ph is in good agreement with the estimate in
Ref. 15. The Fermi energy fluctuation δEF obtained here
is more realistic than the lower values estimated from
the simultaneous fit of ∆ωG(VTG) and ∆ΓG(VTG) (see
Sec. V A). It corresponds to a charge inhomogeneity of
δn . 1012 cm−2, in line with previous scanning tunneling
microscopy measurements.74,76

Interestingly, in Ref. 15, the authors claim that the

intrinsic value of I2D

IG

∣∣∣
0

for undoped graphene is in

the range 12-17 (using a 514.5 nm excitation wave-
length). However, this estimation is based on Raman

measurements on quasi-undoped suspended graphene19

and does not take into account the effect of optical inter-
ferences, which occur in graphene-based multilayer struc-
tures and may critically affect the intensity of the Ra-
man features.81,82 From the data in Ref. 82, an intrin-

sic value corrected from interference effects of I2D

IG

∣∣∣
intr

=

5 ± 0.3 can be estimated for freely suspended, undoped
graphene, using a 532 nm excitation wavelength, as in
the present study. Considering the distinct Raman en-
hancement factors for the G- and 2D-mode features in
the PEO/graphene/SiO2 (285 nm)/Si multilayer struc-

ture, our average value of
〈
I2D

IG

∣∣∣
0

〉
= 4.2 ± 0.6 translates

into an average intrinsic value of
〈
I2D

IG

∣∣∣
intr

〉
= 4.9 ± 0.7

(see Table I), which is in excellent agreement with our
estimate on suspended graphene.

As outlined in Ref. 15, 59, and 83, the scattering rate
γe-ph is linked to the dimensionless electron-phonon cou-
pling constants λΓ and λK through

γe-ph = γK+γΓ =
λK

4

(
~ωL

2
− ~ωK

)
+
λΓ

4

(
~ωL

2
− ~ωΓ

)
,

(13)
where ~ωK ≈ 1210 cm−1 = 150 meV is the in-plane
transverse optical (TO) phonon energy at the K (K’)
point, ~ωΓ := ~ωG ≈ 1580 cm−1 = 196 meV is the in-
plane optical phonon energy at Γ (i.e., the G-mode fre-
quency) and ~ωL = 2.33 eV is the laser photon energy.

For sample 2 (see Fig. 7 and Table I), a value of
λΓ = 0.034 is deduced from the simultaneous fits of
∆ωG and ∆ΓG (see Sec. V A). Then, using Eq. (13), we
can estimate84 λK = 0.17. Overall, for the three pris-
tine samples studied here, we obtained average values
of 〈λΓ〉 = 0.031 ± 0.004, 〈λK〉 = 0.15 ± 0.03 and〈
λK

λΓ

〉
= 5.1 ± 1.2 (see Table I).

To close this section, we compare the average ra-

tio
〈
λK

λΓ

〉
deduced from our doping-dependent Raman

study to a direct estimate derived from the measured
ratio of the integrated intensities of the intravalley (2D’
mode) and intervalley (2D mode) resonant two-phonon
features.11 This ratio is expected to be independent of

EF and writes15,59 I2D

I2D’
= 2

(
λK

λΓ

)2

. In our experimen-

tal conditions, we obtain I2D

I2D’
= 40 ± 2. Thus, by

considering one more time the different Raman enhance-
ment factors for the 2D- and 2D’-mode features in the
PEO/graphene/SiO2 (285 nm)/Si multilayer system, we
deduce λK

λΓ
≈ 4.2. This value is consistent with the anal-

ysis outlined above.

VI. DEFECTIVE GRAPHENE

A. Creation of defects

As mentioned in Sec. II, when an electrochemically
gated graphene FET is subjected to a sufficiently high
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Sample I2D
IG

∣∣∣
intr

(
ID
IG

)
0

nD(×1012cm−2) γe-ph + γD (meV) λΓ λK

1 (without defects) 5.6 < 0.05 - 50 0.027 0.17

1 (with defects) 4.6 1.7 0.9 57 0.031 . 0.20

2 (without defects) 4.2 < 0.05 - 51 0.034 0.17

2 (with defects) 3.3 1.3 0.7 69 0.031 . 0.24

3 5.0 < 0.05 - 39 0.031 0.12

4 4.4 2.6 1.4 53 0.037 . 0.18

5 4.3 1.4 0.7 72 0.031 . 0.25

TABLE I. Intrinsic integrated intensity ratio (corrected from interference effects81) I2D
IG

∣∣∣
intr

at EF = 0, measured integrated

intensity ratio
(

ID
IG

)
0

at EF = 0, estimated defect concentration nD, sum of the electron-phonon and electron-defect scattering

rates, and dimensionless electron-phonon coupling constants at Γ and near K (K’), for five different electrochemically gated
graphene transistors. The measurements before and after the creation of defects have been done (i) at the same spot in sample
1 and correspond to the data shown in Fig. 10, and (ii) at two different spots in sample 2.

gate bias, electrochemical reactions may occur16,42,45 and
create defects in the graphene channel. In our devices,
a reaction systematically occurs at negative gate biases
(VTG ≈ −1 V to −2 V). The threshold voltage depends
on the sample and on the gate capacitance. Electrochem-
ical reactions result in an increase of the gate leak cur-
rent above 1 nA, and in the emergence of defect-induced
features in the Raman spectrum. Figure 8 shows two Ra-
man spectra recorded at VTG = 0 V on sample 1, before
applying any gate voltage and after an electrochemical
reaction has taken place. We clearly see that (i) the G-
and 2D-mode features do not shift, and (ii) prominent D-
and D’-mode features develop. These two Raman modes
are known to be forbidden by symmetry and can only be
observed in the presence of defects.10,11,62,85,86

B. Doping dependence of the Raman features in
defective graphene

Figure 9(a) shows ωG(EF) and ∆ΓG(EF) in defective
graphene. By comparing this figure with Fig. 4, we con-
clude that the doping dependence of the G-mode feature
is not affected by the presence of defects. Both ∆ωG(EF)
and ∆ΓG(EF) are well fit to the theoretical model of
Sec. V A. The frequencies ω2D and ωD are also shown
as a function of EF in Fig. 9(b). The D- and 2D-mode
features are fit to a modified Lorentzian profile.59,77 We
note that both frequencies follow identical trends. More
precisely ω2D ≈ 2ωD − 6 in cm−1. The factor 2 is ex-
pected, since the 2D mode is the two-phonon overtone of
the D-mode (in the D-mode process, one inelastic scat-
tering by a near zone-edge TO phonon is replaced by an
elastic scattering by a defect59,60,86). This small differ-
ence between 2ωD and ω2D is consistently observed in all
the studied samples. It could be due to slight differences
in the resonance conditions.11,60,87
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FIG. 8. Raman spectra at VTG = 0 recorded at the same
location on sample 1, before any gate bias has been applied
(black line) and after an electrochemical reaction has occurred
(red line). The spectra are vertically offset for clarity. The
dotted lines correspond to the baseline.

C. Electron-defect scattering

In Sec. V C, using Eq. (12), we have shown that it
is possible to deduce the phonon scattering rate γe-ph

in pristine graphene from the study of the integrated
intensities of the G- and 2D-mode features. In defec-
tive graphene, a similar analysis can be performed pro-
vided that a finite electron-defect scattering rate γD, pro-
portional to the defect concentration nD, is taken into
consideration.16,60

In Fig. 10(a), we plot
√

IG
I2D

as a function of EF. The

data is extracted from another series of measurements in
sample 1, at a same spot, before and after the creation of
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FIG. 9. Doping dependence of the Raman features in sample
1, after the creation of defects. (a) Doping dependence of the
frequency ωG (red squares, left axis) and relative FWHM ∆ωG

(blue circles, right axis) of the G-mode feature. The blue and
red solid lines are fits based on Eq. (5) and (6), as in Fig. 4,
respectively. The fitting parameters are CTG = 3.4 µF cm−2,
λΓ = 0.035 and δEF = 30 meV (b) Doping dependence of
the frequencies of the 2D- (red squares) and D-mode (blue
open circles) features (denoted ω2D and ωD, respectively) in
defective graphene.

defects. As expected, we observe that the two datasets
are well fitted by Eq. (12). The fitting parameters are

γe-ph = 50 meV, I2D

IG

∣∣∣no D

0
= 4.8, δEF = 110 meV for

pristine graphene, and γe-ph+γD = 57 meV, I2D

IG

∣∣∣D
0

= 4.0,

δEF = 130 meV, for defective graphene, respectively.

Since γe-ph is not affected by the presence of defects,
we can estimate that γD ≈ 7 meV for sample 1. Thus,

although the D- and 2D-mode features have similar inte-
grated intensities (ID/I2D ≈ 0.5, as shown in Fig. 10(b)),
γD � γe-ph, as predicted in the low-defect concentration
regime60 (see also Sec. VI D). Another way to determine

γD is to compare the quantity
√

IG
I2D

∣∣∣
0
, in the presence

and in the absence of defects. According to Eq. (11) and
(12), one obtains √

IG
I2D

∣∣∣D
0√

IG
I2D

∣∣∣no D

0

= 1 +
γD

γe-ph
. (14)

The results of Fig. 10(a) indeed show that√
IG
I2D

∣∣∣D
0

>
√

IG
I2D

∣∣∣no D

0
, in agreement with

Eq. (14). From the fitting parameters, we estimate
that γD ≈ 5 meV, in good agreement with the other
estimate obtained above.

To conclude this subsection, we focus on the de-
pendence of ID on EF. In practice, ID is routinely
used to estimate a defect concentration.11,85,87–92 How-
ever, although it is not fully resonant, the D mode
may involve one resonant electron-phonon scattering pro-
cess11,60–62,92 (see Fig. 2(g)). In other words, similarly to
I2D, ID is also expected to decrease with increasing |EF|.
In Fig. 10(b), we show I2D

IG
, I2D

ID
and ID

IG
as a function of

EF, while Fig. 10(c) displays
√

IG
I2D

and
√

IG
ID

as a func-

tion of EF. Clearly, ID and I2D show a very similar dop-
ing dependence (see also Ref. 16). More quantitatively,

a phenomenological fit of
√

IG
ID

(EF) using Eq. (12) (ap-

plied to ID instead of I2D) agrees well with our measure-
ments (see Fig. 10(c)) and yields γe-ph + γD = 52 meV,
ID
IG

∣∣∣
0

= 2.2, and δEF = 130 meV. The value of γe-ph +γD

is very close to that obtained by fitting
√

IG
I2D

(EF).

We note that Ref. 16 report a value of γe−ph + γD ∼
70 meV similar to ours (see Table I), for defective
graphene samples with slightly larger, yet similar val-

ues of ID
IG

∣∣∣
0
. However, a larger value of γD ∼ 40 meV

is estimated, using the value of γe−ph ∼ 30 meV ex-
tracted from the measurements in Ref. 15. Our work
provides an estimate of γD from a series of measure-
ments performed on a same sample and suggests that

γD � γe−ph, even for ID
IG

∣∣∣
0

& 1. Consequently, in

defective graphene, we consider that the slope of the√
IG
I2D

(EF) curve provides a fair estimate of γe−ph, from

which we extract λK, knowing λΓ. Albeit the existence
of a finite γD presumably leads to a slight overestimation
of λK, we do not observe a large difference between the
values measured on defective and on pristine graphene
(see Table I). More quantitatively, by averaging on four
defective graphene samples with similar defect concen-
trations, we obtain 〈γe−ph + γD〉 = (63 ± 9) meV,
a value that is indeed slightly larger than the average
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FIG. 10. (a) Integrated intensity ratio
√

IG
I2D

as a function of EF in sample 1 before (red open squares) and after (red circles) the

creation of defects. (b) Integrated intensity ratios I2D
IG

(red circles), I2D
ID

(green triangles) and ID
IG

(blue squares), as a function of

EF in sample 1, after the creation of defects. (c)
√

IG
I2D

(red circles, left axis) and
√

IG
ID

(blue squares, right axis) as a function

of EF, in sample 1, after the creation of defects. As described in Sec. VI D, a defect concentration nD ≈ 9 × 1011 cm−2 is
estimated from these measurements.

〈γe−ph〉 = (47 ± 7) meV obtained on three pristine sam-
ples (see Table I and Sec. V C).

D. Defect concentration

In principle, the concentration nD of defects in a
graphene sample can be deduced from the analysis of
the defect-induced Raman modes, such as the (interval-
ley) D mode or the (intravalley) D’ mode. The study
of the defect-induced Raman modes has far reaching
consequences for sample characterization and can also
be a very useful tool to monitor chemical reactions on
graphene. Following the seminal work by Tuinstra and
Koenig,88 several groups have proposed analytical ex-
pressions to connect ID and nD in various graphitic ma-
terials, from weakly defective graphene layers to amor-
phous carbon.85,87–90

The defective graphene samples studied here exhibit
an integrated intensity ratio ID

IG
≤ 2.6 near the CNP

(see Fig. 8 and 11, and Table I). Their Raman features
show only a slight spectral broadening (by a few cm−1)
compared to the pristine case (see Fig. 8). More pre-
cisely, we find, for five series of gate-dependent measure-
ments on various defective regions, that Γ0 ∼ 10 cm−1

(as compared to Γ0 ≈ 5 cm−1 for pristine graphene),
Γ2D ∼ 30 cm−1 and ΓD ∼ 20 cm−1. Following the three
stage classification of Ref. 85 and related works,87,89–91

such samples can be described as stage 1, i.e., still in
the weakly defective regime. Let us assume point de-
fects, separated by an average distance LD & 10 nm. In
this regime, Eq. (9) of Ref. 87 and the results of Ref. 90
provide the relation93

nD =
1014

L2
D

≈ 1.8× 1010(~ωL)4

(
ID
IG

)
0

, (15)

where nD is the concentration of defects in cm−2, LD is

in nm, ~ωL is the laser photon energy in eV and
(
ID
IG

)
0

is taken at EF ≈ 0, still with Fermi energy fluctuations.
According to Ref. 91, the scaling introduced in Eq. (15)
is independent of the type of defect.

In Fig. 11, we plot ID
IG

(EF), normalized by its value at

EF ≈ 0 for five different sets of measurements (including
some at different locations on the same sample), with
different defect concentrations. We observe that all the
data collapse onto the same curve. For |EF| . 100 meV,
ID
IG
≈
(
ID
IG

)
0

and this ratio decreases by less than 20 %

for |EF| . 200 meV. Thus, since unintentional doping in
graphene samples typically leads to |EF| . 200 meV, the
experimentally measured ID

IG
can be used together with

Eq. (15) for an estimation of nD in weakly doped samples.
Using Eq. (15), the electrochemically-induced defect

concentrations deduced for our measurements (see Ta-
ble I and Fig. 11) range from 2.7 × 1011 cm−2 to
1.4 × 1012 cm−2. This translates into LD ranging from
19.5 nm down to 8.5 nm. The latter value is at the limit of
the weakly defective regime, which assumes LD & 10 nm.

Overall, the results shown in Figs. 9-11 demonstrate
that for defect concentrations below approximately 2 ×
1012 cm2, the electron-defect scattering rate remains
much smaller than the electron-phonon scattering rate,
and that the doping dependence of the G- and 2D-mode
features is essentially the same as in pristine graphene.



13

0 . 0 1 0 . 1

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

 ( I D / I G ) 0  =  0 . 5
 ( I D / I G ) 0  =  1 . 3
 ( I D / I G ) 0  =  1 . 6
 ( I D / I G ) 0  =  1 . 7
 ( I D / I G ) 0  =  2 . 6

No
rm

aliz
ed

 I D/I G

| E F |  ( e V )

0 . 0 1 0 . 1 1 1 0
n  ( x  1 0 1 2  c m - 2 )

FIG. 11. Doping dependence of the integrated intensity ratio
ID
IG

, for five sets of measurements on defective graphene sam-

ples. Each dataset is normalized by the value
(

ID
IG

)
0

mea-

sured near the charge neutrality point. The measured
(

ID
IG

)
0

are indicated in the legend.

These results contrast with the fact that even for rela-
tively low nD in the range 1011 − 1012 cm−2, the inte-
grated intensity of the D-mode feature is smaller, yet
on the same order of magnitude as that of the 2D-
mode feature, in keeping with recent experimental16,87

and theoretical results.60 This calls for further investi-
gations of the integrated intensity of the one-phonon,
defect-induced Raman features relative to that of their
symmetry-allowed overtones.

VII. CORRELATIONS

In the previous sections, we have successfully com-
pared our measurements to theoretical calculations and,
in particular estimated the electron-phonon coupling con-
stants. In this section, we present correlations between
the frequencies and linewidths of the main Raman fea-
tures in doped graphene, with the aim to extract uni-
versal behaviors that could be useful for sample char-
acterization. Based on the conclusions of Sec. VI, the
correlations discussed in the following will also hold in
weakly defective graphene.

A. G-mode frequency and linewidth

Figure 12 shows ∆ΓG as a function of ∆ωG for the
five different samples already shown in Fig. 5. We ob-
serve a universal behavior and the experimental data are

0 5 1 0 1 5 2 0 2 5

0

5

1 0

1 5
 e l e c t r o n s
 h o l e s
 S a m p l e  1
 S a m p l e  2
 S a m p l e  3
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 S a m p l e  5

∆Γ
G (

cm
-1 )

∆ωG  ( c m - 1 )

FIG. 12. Correlation between the relative FWHM ∆ΓG

and relative frequency ∆ωG of the G-mode feature in doped
graphene, for the five samples introduced in Fig. 5. The solid
and dashed lines correspond to theoretical calculations (based
on Eqs. (5) and (6)), for electron and hole doping, respec-
tively.

in good agreement with the theoretical calculations, al-
though the very slight difference expected for electron
and hole doping (due to ∆ωA

G, see Eq. (6)) is not re-
solved experimentally, likely due to Fermi energy fluc-
tuations. We also note that in the high-doping regime,
∆ΓG tends to increase somewhat. This increase, also ob-
served by others,16 is presumably due to the increasing
inhomogeneity of the charge distribution at high top-gate
biases. The correlation displayed in Fig. 12 may also be
used to estimate EF, especially in the low doping regime(
|EF| . ~ω0

G

)
.

B. G- and 2D-mode frequencies

Figure 13 represents the evolution of ω2D as a function
of ωG for the same five samples. A clear correlation is
observed between these two quantities. For hole doping,
the correlation is quasi-linear in the range of EF stud-
ied here (−500 meV . EF < 0). In contrast, for elec-
tron doping, a quasi-linear scaling, again with a (much
smaller) positive slope is also observed at low doping
(0 < EF . 250 meV), until ω2D levels off and ultimately
decreases, leading to a non-linear scaling. This behavior
was observed on every sample either for electrolyte-gated
or conventional back-gated FETs and has been also ob-
served in chemically doped graphene.78

From the slopes ∂ω2D

∂ωG
extracted on approximately

thirty samples (see Fig. 13(b)-(c)), we find an average
of (0.55 ± 0.2) for hole doping and of (0.2 ± 0.13) for
electron doping, respectively. The former value agrees
well with the slope of (0.70 ± 0.05) extracted numer-
ically by Lee et al.78 from the data in Ref. 41 and 44.
From our statistical study, we note that the correlation
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FIG. 13. (a) Correlation between the frequencies of the 2D-
and G-mode features (relative to their values near the charge
neutrality point) in doped graphene, for the five samples in-
troduced in Fig. 5. The continuous and short-dashed lines are
global fits performed on the linear portions of the hole dop-
ing and electron doping branches, respectively. The dashed
line corresponds to the evolution of ω2D versus ωG under
pure strain.78,82 Statistical distribution of the measured slopes
∂ω2D
∂ωG

under hole and electron doping are shown in (b) and (c),

respectively.

between ω2D and ωG is more dispersed than the correla-
tion between ∆ΓG and ∆ωG. This is chiefly due to the
dependence of ω2D on EF, which is not as universal as
that of ωG. In addition, it is rather challenging to extract
a well-defined correlation for electron doping due to the
small variations of ω2D at moderate doping.

Noteworthy, estimations of EF based on the frequency
and/or linewidth of the Raman features may only be re-
liable if graphene is not subjected to significant strains.
Indeed, ΓG is marginally affected by isotropic strains be-
low 1%.82 However, the G-mode feature may broaden
and ultimately split into two sub-features in the pres-
ence of larger anisotropic strains.94,95 In addition, the
Raman features soften (stiffen) under tensile (compres-
sive) strain. A linear correlation between ω2D and ωG

has been measured in strained graphene.78,82,96–98 Since
the measured slopes (∂ω2D

∂ωG
≈ 2.2, for undoped, strained

graphene82) are appreciably larger than the slopes mea-
sured in doped graphene (presumably under a small but
constant built-in strain), Lee et al. have proposed to use
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FIG. 14. Charge carrier density n as a function of the shift[
(ωG − ω0

G)2 + (ω2D − ω0
2D)2

]1/2
from the reference point cor-

responding to undoped graphene. Data are shown for the five
samples introduced in Fig. 5. The continuous and dashed
lines are linear global fits performed on the electron and hole
branches, respectively.

the correlation between ω2D and ωG as a robust tool to
optically separate strain from charge doping.78

Following Ref. 78, we may then define three vectors
corresponding to the slopes ∂ω2D

∂ωG
, under strain, hole and

electron doping, respectively (see Fig. 13). To further
deduce absolute levels of strain and/or doping, one also
has to know the 2D- and G-mode frequencies that corre-
sponds to an undoped and unstrained graphene sample.
For clarity, in Fig. 13, the 2D- and G-mode frequencies
are shown relative to the measurements at EF ≈ 0. These
origin points, denoted (ω0

G, ω0
2D) might differ from the

reference point corresponding to undoped and unstrained
graphene, since an undetermined amount of native strain
may be present and induce a shift along the strain vector.

The data in Fig. 13 allows an estimation of the coef-

ficient which connects
[
(ωG − ω0

G)2 + (ω2D − ω0
2D)2

]1/2
,

the measured distance from the zero doping point, to a
given doping level (see Fig. 14). We chose to consider n
instead of EF because it is a more relevant quantity as
far as graphene characterization is concerned. Although
the curves displayed in Fig. 14 are not expected to ex-
hibit a linear scaling (as opposed to the data shown in
Fig. 5), we observe a quasi-linear scaling for sufficiently
small doping (|n| . 7× 1012cm−2). We therefore fit the
linear part for both electron- and hole-doping with a line
intercepting the zero doping point. We find slopes of
4.4 × 1011 cm−1 for electrons and −3.6 × 1011 cm−1 for
holes, respectively.

Finally, considering the Grüneisen parame-
ters of 1.8 and 2.4 for the Raman G- and 2D-
modes under isotropic strain,82 we can estimate
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a slope of 7.1 × 10−3 % strain/cm−1 to connect[
(ωG − ω0

G)2 + (ω2D − ω0
2D)2

]1/2
to an applied isotropic

strain. In practice, the strain field may be anisotropic,
depending on the sample and on the experimental condi-
tions, leading to a different slope. These coefficients may
be used for a reliable estimation of doping and strain in
graphene samples and devices.

VIII. CONCLUSION

We have presented a robust method, based on Raman
scattering spectroscopy, to accurately determine the ge-
ometrical capacitance, and hence, the Fermi energy in
electrochemically-gated graphene field-effect transistors
with a spatial resolution down to approximately 1 µm.
Such a calibration allows for quantitative analysis of the
doping dependence of the frequency, linewidth and in-
tegrated intensity of the main Raman features. The
anomalous doping dependence of the G-mode phonons is
well captured by theoretical models over a broad range
of Fermi energies above or below the Dirac point, and
provides an experimental measurement of the electron-
phonon coupling constant at the Γ point of the Brillouin
zone. We have then exploited the peculiar doping de-
pendence of the integrated intensity of the multiphonon
resonant Raman features, in particular the resonant 2D-
mode feature, to estimate the electron-phonon coupling
constant at the edges (K, K’) of the Brillouin zone. Fi-
nally, from the doping dependence of the integrated in-
tensity of the defect-induced D-mode feature, we can es-
timate the electron-defect scattering rate in stage 1 de-
fective graphene samples.

Our study provides useful guidelines for the character-
ization of graphene samples. We have, in particular, con-
sidered the correlation between the frequency and width
of the G-mode feature, as well as between the frequencies
of the 2D- and G-mode features. These correlations re-
veal universal behaviors that can therefore be applied to

evaluate doping in a variety of experimental situations.
We have also demonstrated that defects can be efficiently
created in-situ in electrochemically gated graphene field
effect transistors. The integrated intensity of the D-mode
feature decreases monotonically with increasing doping,
and follows the same scaling as that of its two-phonon
overtone. However, due to Fermi energy fluctuations,
the D-mode intensity is nearly constant for Fermi energy
shifts below 200 meV relative to the Dirac point, which
is of practical interest for the determination of the defect
concentration.

In the present work, we conservatively estimate that
Fermi energies as high as ≈ 700 meV above the Dirac
point can be achieved in ambient conditions, without
damaging graphene. This naturally opens exciting per-
spectives for optoelectronics. Nevertheless, a well con-
trolled Raman scattering study of the crossover be-
tween the intermediate doping regime achieved here
(n ≈ 1013 cm−2) and the very high doping regime
(n > 1014 cm−2) remains elusive. Finally, electrochemi-
cal gating is a promising strategy to investigate electron-
phonon coupling in other two-dimensional materials, in-
cluding transition metal dichalcogenides.99
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Strasbourg.

∗ stephane.berciaud@ipcms.unistra.fr
1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang,

Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A.
Firsov, “Electric field effect in atomically thin carbon
films,” Science 306, 666–669 (2004).

2 Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, “Exper-
imental observation of the quantum Hall effect and Berry’s
phase in graphene,” Nature 438, 201–204 (2005).

3 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang,
M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and
A. A. Firsov, “Two-dimensional gas of massless Dirac
fermions in graphene,” Nature 438, 197 – 200 (2005).

4 F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crom-
mie, and Y.R. Shen, “Gate-variable optical transitions in
graphene,” Science 320, 206–209 (2008).

5 Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin,

P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge
dynamics in graphene by infrared spectroscopy,” Nature
Physics 4, 532–535 (2008).

6 Kin Fai Mak, Felipe H. da Jornada, Keliang He, Jack
Deslippe, Nicholas Petrone, James Hone, Jie Shan,
Steven G. Louie, and Tony F. Heinz, “Tuning many-body
interactions in graphene: The effects of doping on exci-
tons and carrier lifetimes,” Physical Review Letters 112,
207401 (2014).

7 Jun Yan, Yuanbo Zhang, Philip Kim, and Aron Pinczuk,
“Electric field effect tuning of electron-phonon coupling in
graphene,” Physical Review Letters 98, 166802 (2007).

8 Simone Pisana, Michele Lazzeri, Cinzia Casiraghi,
Kostya S. Novoselov, A. K. Geim, Andrea C. Ferrari,
and Francesco Mauri, “Breakdown of the adiabatic born-
oppenheimer approximation in graphene,” Nature Materi-

mailto:stephane.berciaud@ipcms.unistra.fr
http://dx.doi.org/ 10.1126/science.1102896
http://dx.doi.org/10.1038/nature04235
http://dx.doi.org/10.1038/nature04233
http://www.sciencemag.org/content/320/5873/206
http://dx.doi.org/10.1038/nphys989
http://dx.doi.org/10.1038/nphys989
http://dx.doi.org/ 10.1103/PhysRevLett.112.207401
http://dx.doi.org/ 10.1103/PhysRevLett.112.207401
http://dx.doi.org/ 10.1103/PhysRevLett.98.166802
http://dx.doi.org/ 10.1038/nmat1846


16

als 6, 198–201 (2007).
9 K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert,

M. G. Schwab, and K. Kim, “A roadmap for graphene,”
Nature 490, 192–200 (2012).

10 L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S.
Dresselhaus, “Raman spectroscopy in graphene,” Physics
Reports 473, 51 – 87 (2009).

11 Andrea C. Ferrari and Denis M. Basko, “Raman spec-
troscopy as a versatile tool for studying the properties of
graphene,” Nature Nanotechnology 8, 235–246 (2013).
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19 Stéphane Berciaud, Sunmin Ryu, Louis E. Brus, and
Tony F. Heinz, “Probing the intrinsic properties of ex-
foliated graphene: Raman spectroscopy of free-standing
monolayers,” Nano Letters 9, 346–352 (2009).

20 Zhen Hua Ni, Ting Yu, Zhi Qiang Luo, Ying Ying Wang,
Lei Liu, Choun Pei Wong, Jianmin Miao, Wei Huang, and
Ze Xiang Shen, “Probing charged impurities in suspended
graphene using Raman spectroscopy,” ACS Nano 3, 569–
574 (2009).
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