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For defining the conductance of single molecule junctions with a redox functionality in an electro-
chemical cell, two conceptually different electron transport mechanisms, namely coherent tunnelling
and vibrationally induced hopping compete with each other, where implicit parameters of the setup
such as the length of the molecule and the applied gate voltage decide which mechanism is the dom-
inant one. Although coherent tunnelling is most efficiently described within Landauer theory, while
the common theoretical treatment of electron hopping is based on Marcus theory, both theories
are adequate for the processes they describe without introducing accuracy limiting approximations.
For a direct comparison, however, it has to be ensured that the crucial quantities obtained from
electronic structure calculations, i.e. the transmission function T(E) in Landauer theory, and the
transfer integral V, the reorganisation energy λ and the driving force ∆G0 in Marcus theory, are
derived from similar grounds as pointed out by Nitzan and co-workers in a series of publications. In
this article our framework is a single particle picture, where we perform density functional theory
calculations for the conductance corresponding to both transport mechanisms for junctions with the
central molecule containing one, two or three Ruthenium centers, respectively, where we extrapolate
our results in order to define the critical length for the transition point of the two regimes which
we identify at 5.76 nm for this type of molecular wire. We also discuss trends in dependence on an
electrochemically induced gate potential.

PACS numbers: 73.63.Rt, 73.20.Hb, 73.40.Gk

I. INTRODUCTION

Electron transport through single molecule junctions
in ultra high vacuum (UHV) and temperatures is com-
monly described with a nonequilibrium Green’s function
(NEGF) approach1 in combination with a density func-
tional theory (DFT) based description of the electronic
structure of the leads and the scattering region of the
junction2−5. The modelling of the conductance and cur-
rent/voltage (I/V) characteristics of single molecules at
ambient conditions, at which an electrochemical scanning
tunneling microscope (STM)6–10 is operating and which
are necessary for the practicability of devices, is more
challenging, because here two competing electron trans-
port mechanisms have to be considered, namely elec-
tron hopping and coherent tunneling where it depends
on the adjustment of an electrochemical gate voltage as
well as on structural details of the system which mech-
anism dominates the accumulated transfer rate of elec-
trons. The distinction between the two is important for
the design of molecular wires, where coherent tunneling
prevails at short length regardless of the chemical struc-
ture but decays exponentially and then at some structure
dependent crossover point in molecular length gives way
to the Ohmic behavior of electron hopping, which is cru-
cial for making a wire of any use in real life15. The appli-
cation of a gate potential for e.g. implementing transistor
properties12 or for optimizing the conductance properties
of a wire is also easier to achieve in an electrochemical
setup where no third electrode has to be placed close to

the leads for source and drain and no strong local electric
fields are required.13

There have been a variety of experiments aiming at
a direct detection of the crossover length in molecu-
lar wires, where coherent tunneling is replaced by hop-
ping. In a pioneering series of papers Ratner, Wasielewski
and co-workers11-14 investigated the intramolecular elec-
tron transfer from a donor to an acceptor moiety via
a bridge which consisted of oligo phenylene-vinylene
(OPV) molecules of increasing length, where optical ab-
sorption spectra allowed the derivation of charge sep-
aration and recombination rates and a switch in the
transfer mechanism was detected when the bridge con-
sisted of more than two monomers. More recently,
Choi et al. measured the conductance of monolayers of
oligophenyleneimine (OPI) thiolates adsorbed on a gold
substrate with their length varying between 1.5 and 7
nm by using a STM and found the transition point at ∼
4nm17, while single molecule measurements on the cor-
responding dithiolates in a break junction setup placed
this crossover point in the range of 5.2-7.3 nm18. Lu
et al. studied monolayers of oligo phenylene-ethynylene
(OPE) wires, where a transition from tunneling to hop-
ping was observed at a molecular length of ∼ 2.75 nm19,
while a transition length of about 3 nm was found for
a series of oligo arylene ethynylene (OAE) derivatives
in single molecule measurements by Wandlowski and co-
workers20.

All theoretical attempts to identify and characterize
the length for the transition between tunneling and hop-
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FIG. 1: Atomic structures (upper panels) and chemical formulae (lower panels) of Ruthenium bis(pyridylacetylide)
complexes with one, two, and three Ru(PPh2)4(C2H4)

2-centers, respectively, which are coupled to gold leads via
pyridil-anchor groups. For all junctions in this figure NEGF-DFT calculations for coherent tunneling (as indicated
by the wiggled line below the formulae) as well as DFT calculations of the 2-step electron hopping process following
the recipe given in the main text (the two arrows above the formulae) have been carried out. In the upper panels,
the respective HOMOs for all structures, which are crucial in both transport regimes, are also shown on top of the

molecular structures.

ping so far21-25 to our best knowledge suffer from two
severe limitations which are also related to each other:
i) Hopping is characterized by model or tight binding
Hamiltonians where crucial parameters such as onsite en-
ergies of monomer sites or the coupling between them are
just set to some reasonable values and not derived from
ab initio or any other type of electronic structure cal-
culations, which would reflect their dependence on any
details of the molecular structure under investigation. ii)
As a consequence only N-step hopping could be investi-
gated where it is assumed that the electron hops from
one monomer to the other until it reaches the final Nth
one. This is a reasonable assumption for simulations on
DNA wires, on which indeed the focus of the theoretical
articles quoted above was, but the assumption is not jus-
tified at all for the highly conjugated OPV, OPI, OPE
and OAE wires which have been in the recent experimen-
tal spotlight due to their higher conductance and neither
for the wires with redox active centers which we describe
further below. For conjugated systems in general one ex-
pects 2-step hopping14 where an electron hops from the
donor (or left lead) to the bridge (or central molecule) in
a first step and then on to the acceptor (or right lead) in
a second one.

While coherent tunneling is nowadays routinely de-
scribed within the single-particle framework of NEGF-
DFT2−5, where we have recently shown that the oxi-
dation state of the redox active center in the scattering
region can also be adjusted in two different ways41, no
ab initio procedure for the description of electron hop-
ping in single molecule junctions has so far been pro-
posed. Our understanding of the hopping process in gen-
eral is relying on Marcus’ theory of electron transfer re-
actions26-28, which are the rate limiting step in many
redox reactions and where the activation can be achieved
thermally, photo-chemically or by applying an external
potential. The key parameters in this theory, namely,

the transfer integral V, the reorganization energy λ and
the driving force ∆G0 are usually derived from quantum
chemical techniques for intra-29 and inter-molecular elec-
tron transfer30 but for their definition and derivation in
the context of a single molecule junction, a variety of
technical as well as more fundamental issues arise, which
to address is one of the main achievements of the work
we present in this article.

We carried out DFT calculations for both electron
transport regimes, namely coherent tunneling and hop-
ping, for the three single molecule junctions depicted in
Figure1. We chose these particular type of molecules due
to their high all-through conjugation and therefore also
high conductivity as well as the presence of redox-active
Ru centers which allow for efficient electro-chemical gat-
ing. They also offer the possibility to alter their local re-
dox state independently, which would require some struc-
tural modifications but this is not the topic of our cur-
rent article. Because of these benign properties of the
displayed Ru complexes, conductance measurements and
optical absorption experiments have been carried out on
them where thiol31 and cyano anchors32 have been used
instead of the pyridil linkers in our article which we pre-
fer due to their stability under ambient conditions, high
junction formation probability and because they do not
require protecting groups during the adsorption process
on the electrodes20.

The paper is organized as follows: In the next section
we give a detailed account of our theoretical framework
for the two different electron transport regimes with an
emphasis on how to obtain crucial parameters and quan-
tities from DFT. In the following sections we use these
methods for deriving the crossover point in the molecular
length dependence of the conductance for the systems in
Figure1 from first principles and also discuss the effect of
an electrochemical gate potential. In the last section we
provide a summary of our results.
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II. THEORETICAL FRAMEWORK AND

COMPUTATIONAL DETAILS

Up to now the theoretical understanding of electron
hopping in single molecule junctions has been driven
by the phenomenological models of Kuznetsov and Ul-
strup33-36 and some earlier work by Schmickler37, while
more recently Nitzan addressed the relation between the
conductance as the quantity calculated by the NEGF-
DFT formalism for coherent tunneling and the transfer
rate in Marcus’ theory of electron hopping from a formal
perspective38-39. Nitzan and Migliore also developed a
single particle framework for 2-step hopping40, which is
distinct from the usual picture based on enthalpies and
total energies and therefore allows for an orbital inter-
pretation. We make use of this framework heavily in our
work as is discussed further below but while in Ref.40 gen-
eral formal relationships are established and some typical
values of V, λ and ∆G0 are used as a means of illustra-
tion without referring to a particular molecular system,
the aim in our work is to derive these quantities for the
junctions in Figure 1 from first principles. In Marcus the-
ory the electron transfer process is described as a chemi-
cal reaction, where in our specific case it is an oxidation
of the ground state of the molecules which in a quan-
tum chemical picture corresponds to the removal of an
electron from the HOMO.

In our modelling of electron hopping we assumed
a 2-step process, where a positive charge jumps from
the left lead to the highest occupied molecular orbital
(HOMO) of the molecule, which we know to be conju-
gated throughout the whole molecule from our previous
work41-42, and then from there on to the right lead in
a second step. Ratner and co-workers have pointed out
that the situation might get more complicated even in
conjugated wires due to torsional degrees of freedom, and
electron transfer rates might be affected by their ther-
mal activation14,16. While the phenyl groups separating
two adjacent Ru centers in the structures shown in Fig-
ure1 are quite efficiently trapped by steric repulsion to
the bulky substituents on the Ruthenium, the pyridil an-
chors have indeed some flexibility which could break the
conjugation ranging otherwise from the left lead to the
right one. We performed DFT based total energy calcu-
lations, which showed that the energy barriers are 274
and 90 meV for rotating the phenyl ring in the middle
and the pyridil groups at the ends of the molecule, re-
spectively. Since room temperature corresponds to only
25 meV, we can still assume that the conjugation is more
or less undisturbed at ambient conditions if present from
the beginning, i.e. if conformeres have been successfully
separated after chemical synthesis.

We calculated Ghop for room temperature and Gcoh for
0 Kelvin. This might seem counterintuitive since Ghop

depends considerably on the temperature because this
type of electron transport is thermally activated or in
other words at 0 K there is no conductance due to hop-
ping. By contrast, Gcoh does not depend on the temper-

ature in a first order approximation, but is only affected
by electron-phonon coupling as a second order effect. So
our assumption was that we model room temperature
behaviour, which we treat explicitly for the hopping but
where we neglect thermal effects for coherent tunneling.

A. Electronic Structure Calculations

All electronic structure calculations in this article were
performed with the GPAW code43,44, where the core elec-
trons are described with the projector augmented wave
(PAW) method and the basis set for the Kohn Sham
wavefunctions has been chosen to be a linear combina-
tion of atomic orbitals (LCAO) on a double zeta level
with polarisation functions (DZP) for all electronic struc-
ture calculations. The sampling of the potential energy
term in the Hamiltonian is done on a real space grid when
using GPAW, where we chose 0.18 Å for its spacing and
a Perdew-Burke-Ernzerhof (PBE)45 parametrisation for
the exchange-correlation (XC) functional throughout this
article.

B. Coherent Tunneling

Within NEGF-DFT2−5 the transmission function
T(E) for coherent tunneling is defined by T (E) =

Tr(GdΓLG
†
dΓR) where Gd = (E − Hd − ΣL − ΣR)

−1

represents the Greens function of the device containing
the self energy matrices ΣL/R due to the left/right lead,

ΓL/R = i(ΣL/R − Σ†

L/R) and Hd the Hamiltonian ma-

trix for the device region, which contains not only the
Ru-complex but also 3-4 layers of the aligned Au surface
on each side. Due to the rather large size of the central
molecules, we had to use gold slabs with a 6x6 unit cell
in the surface plane in order to ensure that neighbouring
molecules do not interact. For the same reason we used
a 2x2x1 k point grid corresponding to only 2 k points in
the irreducible Brillouin zone for all transmission func-
tions discussed in this article.

C. Electron Hopping

In order to describe electron hopping in single molecule
junctions, the famous Marcus Hush formula27,46,47 for the
transfer rate in intra-or inter-molecular electron transfer
reactions needs to be modified because the initial and
final states have to be replaced by the manifold of all oc-
cupied and unoccupied surface states in the lead with the
right symmetry. This was first recognized by Chidsey48,
who modified the Marcus Hush formula by introducing
an integral over all metal states. In the present case we
are dealing with a 2-step reaction, where in the first step
we oxidize the molecule by charging it with a hole which
is supposed to come from the left lead, and in the second
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step decharge the molecule again, i.e. reduce it, where
the corresponding hole moves on to the right electrode.
The overall conduction process is then described by the
transfer rates of the corresponding two separate electron
transfer reactions:

kox =
2π

~
V 2 1

√
4πλkbT

∫

e
−

(λ+∆G
0+ǫ)2

4λkbT (1 − f(ǫ))dǫ (1)

kred =
2π

~
V 2 1

√
4πλkbT

∫

e
−

(λ−∆G
0+ǫ)2

4λkbT f(ǫ)dǫ (2)

where f(ǫ) = 1/(eǫ/(kbT ) + 1) is the Fermi function,
which is part of both equations because in the oxidation
reaction only the unoccupied states of the left lead can
provide a positive charge (hole) and only the occupied
states of the right lead can absorb it in the reduction of
the molecule, where the thermal broadening of the Fermi
levels of the leads at finite temperatures is also built into
f(ǫ).
For calculating the overall conductance of the junction

in the hopping regime, Migliore and Nitzan derived an
expression containing both kox and kred for including the
effect of both steps of the process40, which in our sym-
metric case with the same electrode material and surface
orientation as well as the same anchor group on both
sides of the junction becomes:

Ghop =
e2

2kbT

koxkred
kox + kred

(3)

where the quantities V , λ and ∆G0 need to be defined
on a single particle level in order to be able to make
a direct comparison with the conductance for coherent
tunneling Gcoh which can be simply obtained by taking
the value of the transmission function T (E) as computed
with NEGF-DFT at the Fermi energy. We note that
Equation 3 applies only in the limit of zero bias, i.e. for
an infinitesimally low potential difference between the
source and drain electrodes. It is, however, fully appli-
cable for finite electrochemical gate voltages, where the
respective potential is just added to the value of ∆G0 in
equations 1 and 2.

1. Transfer Integral

In a recent article we have shown that the transfer inte-
gral VAu−Au between the metal electrodes bridged by the
molecule can be also used to determine the conductance
for coherent tunneling42. In the context of electron hop-
ping, however, the conductance is defined by two consec-
utive reactions, where for both another transfer integral
VAu−Mol is needed which describes the electronic cou-
pling between the molecule and one of the leads. In con-
trast to VAu−Au which we calculated only at the Fermi

Energy EF in order to define Gcoh, for electron hop-
ping we need VAu−Mol to be integrated over all energies.
This information can be neatly retrieved from the peak
in T (E) corresponding to the HOMO as calculated with
NEGF-DFT for coherent tunneling, because the width of
this peak and VAu−Mol are directly related on a single
particle level. In praxis, we cut the couplings to all other
molecular orbitals and generate a transmission function
containing the contribution of the HOMO only and then
use THOMO(E) = 4V 2/((E − ǫHOMO)

2 + 4V 2)49, where
we obtain THOMO(E) and ǫHOMO as direct results from
NEGF-DFT and derive the transfer integral V from a
numerical fit.

2. Driving Force

In principle the driving force ∆G0 in the electron trans-
fer reaction we describe (where the respective Ru com-
plex is neutral in the initial state and has a positive
charge in the final state while the corresponding counter
charge on the leads is assumed to be taken from the Fermi
level of a metal surface with macroscopic dimensions)
could be formulated by relating the ionisation potential
(IP) of the complex as calculated from total energy dif-
ferences of the charged and uncharged free molecule to
the work function (WF) of the gold surfaces40. Such a
definition, however, would neglect the effect of the ad-
sorption of the molecule on the metal, i.e. Fermi level
alignment and charge equilibrization50-52, since both the
metallic WF and the molecular IP would be computed for
the leads and molecule, separately. Therefore we use the
HOMO’s position relative to the Fermi level of the surface
in the composite system41 as a definition of ∆G0 instead,
where the level alignment is accounted for correctly. As
an additional benefit we can make a direct comparison
between I/V curves for electron hopping calculated in
this way and the transmission function for coherent tun-
neling, where both are derived on a single particle level
and a gate potential can be applied in a rigid band ap-
proximation.

3. Reorganization Energy

The total reorganization energy used in the equations 1
and 2 is defined as the sum of inner and outer contribu-
tion

λtot = λin + λout = λin + λBorn + λimage, (4)

where the latter can be further divided into a Born
term accounting for the interaction of the charged
molecule with the solvent and an image contribution,
which describes the screening of the charge due to the
vicinity of the metallic leads53. The inner reorganization
energy λin, i.e. the energy gain due to the relaxation of
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Gcoh Ghop kox/kred V ∆G0 λin λout (λBorn/λimg) λtot

Ru1 2.0·10−5 1.2·10−25 3.1·10−12/2.4·109 1.35·10−3 1.250 0.177 0.421(0.661/-0.240) 0.597

Ru2 8.0·10−7 1.4·10−17 3.5·10−4/2.4·108 4.50·10−4 0.707 0.083 0.322(0.495/-0.172) 0.407

Ru3 1.6·10−8 5.4·10−16 1.3·10−2/6.5·107 8.03·10−5 0.576 0.059 0.315(0.446/-0.131) 0.374

TABLE I: All quantities directly calculated from DFT for the three systems in Figure 1, where Gcoh and Ghop are
given in units of G0, and kox/kred in units of s−1 while V, ∆G0 and all contributions to λ are presented in eV.

the nuclear positions of the molecule as a consequence
of charging, can be calculated as the respective total en-
ergy difference of either the charged complex in its own
equilibrium configuration minus a charged complex in the
equilibrium configuration of the neutral molecule, or al-
ternatively as total energy difference from two calcula-
tions where no charge is put on the two different equilib-
rium geometries. In praxis, we take the average of these
two possibilities.
For λBorn, we employ a solvent continuum model as

already suggested by Marcus26-28, who used the Born ap-
proximation for calculating the solvation energy of spher-
ical ions54. For the Ru complexes in our article, we need
to extend this to the generalized Born approximation
(GBA)55

λBorn = (
1

ǫ∞
−

1

ǫs
)

N
∑

i,j

∆qi ·∆qj
fGB

, (5)

where ǫ∞ and ǫs, are the optical and static permittiv-
ity of the solvent, respectively, while ∆qi,j are the partial
charge differences between the neutral and the oxidized
state of the free molecule in vacuum, which were calcu-
lated as Mulliken charges from DFT and where the van
der Waals radii entering fGB according to Ref.55 have
been taken from Ref.56.

4. Screening by the Leads

Within an image charge model, the contribution of the
screening of the charge on the molecule between two pla-
nar metal surfaces to the reorganization energy can be
described by an infinite sum of Coulomb interactions be-
tween the partial charges on the molecule and their infi-
nite number of image charges in the electrodes53,57,58

λimage = −
1

2
(
1

ǫ∞
−

1

ǫs
)

N
∑

i,j

∆qi ·∆qj ·

∞
∑

n=1

[

1
√

(zi + zj − 2nL)2 +R2
ij

−
2

√

(zi − zj + 2nL)2 +R2
ij

+

1
√

(zi + zj + 2(n+ 1)L)2 +R2
ij

]

, (6)

where R2
ij = (xi − xj)

2 + (yi − yj)
2 and xi,j , yi,j , zi,j

are the positions of the atoms of the molecule, with the
z-direction being the transport direction.

III. RESULTS AND DISCUSSION

A. Direct Comparison of the Conductance from

Coherent Tunneling and Electron Hopping

In Table I we show all results we derived for the struc-
tures in Figure 1 directly from DFT calculations, i.e. the
conductances Gcoh and Ghop for coherent tunneling and
electron hopping for zero bias and zero gate voltage, re-
spectively, as well as the values for kox/kred, V, ∆G0 and
λ which define Ghop through Equations 1- 3. While Gcoh

decays exponentially with the length of the molecule as
expected, Ghop shows an increase with molecular length
at least for the three molecules under investigation. The
transfer integral V decreases as the amplitude of the
HOMO at the anchor group diminishes with a rise in
molecular size. The reorganization energy also decreases
with the size of the molecule because both the relax-
ations of internal degrees of nuclear freedom and the po-
larization of the solvent become energetically easier for a
larger molecular volume. Finally, also the driving force
∆G0 decreases with the molecular length, because the
HOMO-LUMO gap becomes smaller with the length of
a semiconducting wire and therefore the HOMO moves
closer to EF .
The transfer rates kox and kred in Table I are com-

pletely defined by the three parameters V, λ and ∆G0

through Eqn. 1 and 2, and in their dependence on the
gate voltage behave like error functions where kred in-
creases when kox decreases with a crossing point at ∆G0.
Therefore a product of the transfer rates as in Eq. 3 re-
sults in a peak around ∆G0 since one of the two factors is
always minimal at larger energetic distances from ∆G0.
A reduction of ∆G0 with the length of the molecule leads
to a shift of this peak towards the Fermi Level resulting
in an increase of Ghop at zero gate voltage. An increase
of the reorganization energy λ on the other side results
in a widening and lowering of this peak because it leads
to a shift of kox and kred in opposite directions in their
dependence on the gate voltage.
In Figure 2 we directly compare the transmission func-

tion T(E) for coherent tunneling as obtained from NEGF-
DFT with the hopping conductance as a function of a
gate voltage or overpotential. While for the former it
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FIG. 2: The transmission functions T(E) for coherent
tunneling for the three structures in Figure 1 (black

lines) are directly compared with the voltage dependent
behaviour of Ghop (blue lines) in dependence on an
electrochemical gate, where the respective voltage is
simply added to ∆G0 in Equations 1 and 2 as an
overpotential. The dotted red line shows T(E) for

electrons mediated only by the HOMO as described in
detail in the main text.

is assumed that Vgate is equal to the kinetic energy of
incoming electrons E, for the latter, a zero gate voltage
means that ∆G0=-ǫHOMO as obtained by a subdiagonal-
ization procedure from the transport Hamiltonian of the
composite junction, where for a finite voltage the applied
potential is just added to ∆G0 in Equations 1 and 2 as
a scalar. Both assumptions are just implementations of
a rigid band approximation within a single particle pic-
ture. While for T(E) the transmission peak correspond-
ing to the HOMO (red dotted line) and slightly offset
due to hybridization effects is moving ever closer to EF

with an increasing length of the molecule, it also becomes
narrower since V is decreasing at the same time where
the accumulated effect is the exponential decay of Gcoh.
The blue peak illustrating the gate voltage dependence
of Ghop is also moving towards the Fermi level with an
increase in molecular size where its maximum is always
at the energetic position of ǫHOMO=∆G0, representing
zero overpotential. Its width and height on the other
hand are defined by λ and V, and a continuous rise in
the zero bias and zero gate Ghop is found when moving
from Ru1 to Ru3.

B. Dependence of the Conductance on Molecular

Length and Crossover Point between the two

Transport Regimes

In Table I it can also be seen, that although the values
of Gcoh and Ghop approach each other when going from
Ru1 to Ru3, no crossover point between the two regimes
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FIG. 3: Extrapolation of the molecular length
dependence of Gcoh (red line) with an exponential fit,
and the length dependence of V, λ and ∆G0, where the
first two quantities were fitted with power laws and the

third one with an exponential function, for the
definition of Ghop (green line). The blue line represents

the sum Gcoh+Ghop, which corresponds to the
conductance accessible to experiments for this type of
molecular wire. The colored dots on each line refer to
the values directly calculated from DFT for Ru1, Ru2
and Ru3, respectively, while at all higher lengths the
extrapolations have been taken and marked with black
dots. The inset shows the respective length dependent
evolutions of the contributions to Ghop coming from V

2

(red line) and the remaining factor (green line), which is
exclusively defined by ∆G0 and λ and is obtained by

dividing Ghop through V
2.

can be reached within the scope of these three molecules.
Since the junction with the Ru3-complex in Figure 1 de-
fines about the limit of what can still be calculated with
DFT in terms of the computational costs, we used ex-
ponential fits for Gcoh and ∆G0 as well as power law
fits for V and λ, for an extrapolation of Gcoh, Ghop and
Gcoh+Ghop, where the results for the wire length ranging
up to 10 nm are shown in Figure 3.

The exponential decay for Gcoh is a well-known prop-
erty of coherent tunneling where we evaluated a decay
constant β of 2.7 nm−1 which matches well with what
is usually found in experiments for conjugated molecular
wires20. For the length dependence of Ghop we find an
increase up to 6 Ru centers but the roughly linear decay
expected for Ohmic transport sets in for molecular wires
longer than that.

The particular functions we used for the fitting of V,
λ and ∆G0 we chose because they gave the best repre-
sentation of our data but their overall behaviour has an
intuitive physical explanation. At very small molecular
lengths (the first two points in Fig. 3) both ∆G0 and λ
are rather large and since they enter the exponents in
Eq. 1 and 2 with a negative sign, this results in small
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FIG. 4: Color contours for the two-dimensional dependence of a) Gcoh, b) Ghop and c) Gcoh+Ghop on the molecular
length and on an electrochemical gate potential, where the color code is given on the side of the panels with the

numbers referring to x in 10x. In panel c) a black dashed line is drawn where Gcoh=Ghop.

values of kox, kred and Ghop. The larger the molecular
length the smaller λ and ∆G0 become and therefore the
larger Ghop. The reason for the drastic increase in Ghop

and its subsequent stabilization is that we define ∆G0 as
the distance of the HOMO to the Fermi level which be-
comes smaller with the molecular length (as can be seen
from the peak shift in Fig. 2) and then converges to zero
asymptotically. The behaviour of λ points in the same
direction where the screening by the solvent decreases if
a charge of one electron is spread out over larger molecu-
lar volumes and this effect also has an asymptotic limit.
At some point the continuous decrease of V2 in Eqns. 1
and 2 determines the further length dependence of Ghop.

In the inset of Figure 3 we show the two factors sepa-
rately, which determine Ghop in Equations 1 and 2 where
V

2 decays with 1/length (red line) and the exponential
containing ∆G0 and λ (green line) rises strongly for small
lengths but then approaches 1 at 8-10 nm.

From Figure 3 we can identify the crossover or tran-
sition point from coherent transport to electron hop-
ping where Gcoh=Ghop and find it at a molecular length
of 5.76 nm. This is in the same range as the 5.6-6.8
nm for polythiophenes59 and 5.2-7.3 nm for oligoflu-
orene based molecular wires18 found in recent experi-
ments but somewhat higher than the ∼3 nm for pyridil-
terminated OAEs20, the ∼2.75 nm for a series of amine-

terminated OPEs19 and the ∼4 nm for thiol-anchored
oligophenyleneimines17 which were also recently mea-
sured.

C. Application of an Electrochemical Gate

Potential

Finally, we discuss the dependence of Gcoh, Ghop and
Gcoh+Ghop on an electrochemically applied gate poten-
tial as depicted in Figure 4a, b and c, respectively, where
we chose a relatively small range of potentials because
we use a rigid band approximation for both transport
regimes which assumes that the electronic structure is
undisturbed by the applied voltage. In Ref.60 it was
found experimentally that increasing the gate voltage in
one direction leads to a rapid increase in the conducance
while a voltage with the opposite sign had no effect. This
was interpreted as a reduction of the complex with a neg-
ative potential but in terms of our Figure 2 it can also be
seen as a climbing up of the peak related to the HOMO
in both transport regimes. As pointed out earlier there
is a marked difference between the two regimes, where
the peak is rather narrow for coherent transport and the
range of voltages we chose is not sufficient for generat-
ing any clear trends in Figure 4a but a negative voltage
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distincly increases Ghop in Figure 4b, which reflects the
broader peak for hopping found in Figure 2. In Figure 4c
we also drew a black line where Gcoh=Ghop and find that
the transition point between coherent tunneling and hop-
ping is moving to smaller wire lengths for negative poten-
tials in this two-dimensional picture. This finding pro-
vides additional means for experiments to shift the length
range of Ohmic behaviour towards smaller molecules. In
many cases this could make the transition point accessi-
ble for experimental studies when longer wires are hard
to synthesize or difficult to handle in measurements.

IV. SUMMARY

We performed DFT calculations for the conductance
of a series of single molecule junctions with redox-active
molecular wires containing one, two and three Ru atoms,
where we treated both coherent tunneling and electron
hopping within the same single particle framework, which
allowed for a direct quantitative comparison of the two
electron transport regimes. An extrapolation of our ab
initio results made it possible to identify a molecular
length for a transition point between them at 5.76 nm,
which is rather close to the values reported from mea-

surements on similar wires. We also investigated the
dependence of this transition length on an electrochem-
ically applied gate voltage, where we found that it can
be shifted by an external potential which provides ex-
perimentalists with another tool to study the crossover
between transport regimes. This is also of technologi-
cal relevance because only hopping has the Ohmic length
dependence required for wire applications and according
to our finding a gate voltage can move its onset towards
shorter wires.
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