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PMN: a minimal induced-moment soft pseudo-spin glass perspective
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An argument that relaxor ferroelectricity in the isovalent alloy Ba(Zr1−xTix)O3 can be understood
as an induced moment soft pseudo-spin glass on the B-ions of the ABO3 matrix [1] is extended to the
experimentally paradigmic but theoretically more complex heterovalent relaxor Pb(Mg1/3Nb2/3)O3

(PMN). It is argued that interesting behaviour of the onset of non-ergodicity, frequency-dependent
permittivity peaks and precursor nanodomains can be understood from analagous considerations of
the B-ions, with the displacements of the Pb ions a largely independent, but distracting, side-feature.
This contrasts with conventional conceptualizations.

For many years, following the discovery over 50 years
ago [2] of frequency-dependent peaking as a function of
temperature of the permittivity of the ABO3 perovskite
alloy Pb(Mg1/3Nb2/3)O3 (PMN) , there has been much

interest in relaxor ferroelectricity [3]; for recent reviews
see [4–6]. However, a fully accepted microscopic under-
standing remains elusive.
In a recent brief paper [1] it was argued that several

features of the isovalent [7] relaxor alloy Ba(Zr1−xTix)O3

(BZT), found in extensive first principles simulations [32]
and in experiments [9, 10], can be understood quali-
tatively in terms of a simple mapping to an effective
induced-moment soft pseudo-spin glass. In this paper
this picture is extended to consider the more famous but
also more complex non-isovalent PMN system. The in-
tent is to try to pick out key features driving the relaxor
behaviour and the observation of nanodomains, to pro-
vide possible explanations of these and other observations
and to identify similarities and differences compared to
BZT.
The generic pure ABO3 perovskite ferroelectrics are

ionic crystals in which the A ions (e.g. Ba, Sr, Pb) have
nominal charge +2, the B-ions (e.g. Ti) have charge +4
and the O have charge -2. Zr in BaZrO3 also has charge
+4, although it does not exhibit ferroelecticity, so there
is no significant change of charge distribution on alloying
BaTiO3 to Ba(Zr1−xTix)O3. Ti in PbTiO3 (PT) also
has charge +4, but Mg and Nb, which randomly replace
it in PMN, have respectively charges +2 and +5, pertur-
bations relative to PT respectively of -2 and +1. This
paper is concerned with the consequential modifications
to the behavior to be expected from an extension of the
mapping in [1]. It is argued below that the origin of
the relaxor behavior and the observed non-ergodicity in
PMN is qualitatively as for BZT, driven by B-site dis-
tortions, but with also (i) additional inter-B-site quasi-
exchange, (ii) random field-like forces on B-sites [11] and
(iii) changes in the local Pb and O site distributions that
are not qualitatively relevant for the relaxor behaviour.
The methodology to be employed is to model the sys-

tem with a Hamiltonian consisting of two parts, the first
an analogue of that of BZT such as would correspond to

occupation of the B-sites by fictitious ions Mg* and Nb*
similar to Mg and Nb but with charges +4, and the sec-
ond representing the difference due to the real Mg and
Nb with charges +2 and +5.
For orientational purposes it may be helpful to recall

the argument for BZT. In the generic ABO3 nomencla-
ture it was argued that for the qualitative understanding
of relaxor behaviour (i) one can usefully consider model-
ing in terms of ionic displacements only on the B-sites,
absorbing the effects of the A and O ions into an effec-
tive B-B interaction term that is spatially frustrated as a
function of site-separation [12] but dominated by a ferro-
electric compromise for pure BaTiO3, and (ii) the most
important aspect of the alloying lies in a difference in the
strengths of local harmonic restoring forces at B-sites de-
pending upon whether they are occupied by Ti or Zr ions
[13]. Ignoring local anisotropy, for conceptual simplicity,
one is then left with a model characterized by an effective
B-site Hamiltonian

HB
BZT =

∑

i(B) {κi|ui|2 + λi|ui]
4}

+
∑

ij

Havg
int (ui,uj ,Rij) (1)

where the {ui} are the local displacements, the sites {i}
are occupied randomly by Ti or Zr (according to the ad-
mixture concentration) with corresponding κ and λ, the
first two terms represent the local restoring energies and
the Hint term includes all other relevant (B-B) interac-
tion terms. Ordered states, different from paraelectric,
arise when bootstrapping of finite {ui} leads to sufficient
negative interaction energy to overcome the (positive en-
ergy) penalty arising from the local distortion term; the
actual ordered state is that with the lowest free energy.
As noted above, the interaction part of the Hamiltonian
is frustrated (competitive in ordering preferences) as a
function of site-separation, with both ferroelectric and
antiferroelectric contributions [1, 12].
For pure BaTiO3 the local Ti restoring force term

is weak enough for such cooperative ordering to occur,
whereas in BaZrO3 the corresponding Zr restoring term
is too strong, permitting only paraelectricity. As demon-
strated by experiment, with every B-site occupied by Ti
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the best compromise/lowest energy ordered state is fer-
roelectric, despite the presence also of antiferroelectric
interaction terms in Hint. On the other hand, for ran-
dom B-site occupation by two different types of ion the
cooperative ordered state need not be ferroelectric and
indeed for x < xc ∼ 0.7 [15] in BaZr1−xTixO3 relaxor
behaviour ensues, argued [1] as due to the ordering pref-
erence being pseudo-spin glass, driven by bootstrapping
of (only) Ti ion displacements, in an induced-moment
soft-pseudospin extended analogy with conventional spin
glass alloys such as Au1−xFex [16] [17].
A similar reasoning can be applied to the model (fic-

titious) random alloy Pb(Mg∗xNb
∗

1−x)O3 (PM*N*) in
which Mg* and Nb* are fictitious ions having the same
charges as Ti (+4) but the local distortion coefficients of
Mg and Nb, randomly distributed on the B-sites accord-
ing to the weighting indicated. The same argument as
for BZT [1] leads to the effective B-site Hamiltonian

HB
PM∗N∗ =

∑

i {κi|ui|2 + λi|ui]
4}

+
∑

ij

HPM∗N∗

int (ui,uj ,Rij). (2)

Both from comparison of ionic radii [18] and from first-
principles calculations [19] it is expected that κNb will
be small enough for Nb* to be relevant for cooperative
ordering while κMg will be too large for bootstrapping
displacements of Mg* ions, which will consequently be
effectively frozen, respectively analagously to the situa-
tions of Ti and Zr in BZT. Thus the relevant part of this
Hamiltonian can be re-written as

HB
PM∗N∗ =

∑

i,Nb {κNb∗ |ui|2 + λNb
∗ |ui]

4}

+
∑

ij,Nb

HPM∗N∗

int (ui,uj ,Rij) (3)

with the summations restricted to Nb sites. Conse-
quently, we would expect PM*N* to have properties very
similar to those of BZT. While PM*N* can, in principle,
be considered for a range of x, it is interesting to note that
x = 2/3, as in PMN, is close to the top end of the range
of x-values giving relaxor behavior in BZT, at which the
proximity of the ferroelectic phase results in significant
enhancement of the permittivity peak. By comparison,
PMN also has a high permittivity peak.
Since the interaction term is expected to have a simi-

larly competitive character to that in BaTiO3 (or BZT),
one might reasonably expect this fictitious alloy to show
an ordering transition from ferroelectric to relaxor at a
critical concentration of x [20].
For PMN itself an effective Hamiltonian can be ex-

pressed as

HB
PMN = HB

PM∗

1/3
N∗

2/3
+Hextra, (4)

taking x = 1/3. Again a minimalist perspective is taken
here for characterising Hextra and investigating its prin-

cipal consequences. We consider the effect of the differ-
ent charges on Mg, Nb compared with the +4 charge on
Mg* or Nb* and the corresponding modification of the
interactions between the actual B-site ions. Coupling to
the uniform strain is ignored here since we are concerned
with the relaxor state which has no overall equilibrium
polarization (unlike in ferroelectric PT). For simplicity,
we shall assume that the B-sites are occupied indepen-
dently randomly by Mg and Nb ions (in the ratio 1:2)
[21].

Before considering further the B-site perturbations we
examine the expected effects of the alloying on the Pb
and O ions. The leading perturbation on Pb ions due
to the charge differences on the B-sites, compared with
PM*N* (or PT), is an attraction towards Mg neighbors
(due to their extra charge of of -2) and a repulsion from
Nb neighbors (due to their extra charge +1), the former
being twice as strong as the latter. In the näıve (lowest
approximation) paraelectric phase the B-neighbors are
located at the equilibrium perovskite positions, collinear
pairwise along < 111 > directions. The effects of pairs of
collinear neighbours on an intermediate Pb cancel if both
neighbors are of the same type, either both Mg or both
Nb, leaving as the relevant perturbations those arising
from a pair of dissimilar collinear neighbors (one Mg and
one Nb) and of force-strength 3 towards the Mg mem-
ber (in units of fPb = e2/ǫR0

Pb−B where e is the electron
charge, ǫ is the electronic dielectric constant and RPb−B

is the unperturbed Pb-B separation). Thus the force
distribution on Pb sites due to B-neighbors along any
< 111 > axis is 2/9 for each of ±3 units and 5/9 for
no force at all. A simple vector sum over the contribu-
tions from the four < 111 > axes at any Pb-site α gives
the overall force fα, yielding an equilibrium Pb displace-
ment of |fα|/2λPb [22]. Taking account only of nearest-
neighbor Mg and Nb charges the T = 0 distribution of
Pb location displacements includes weight along all the
< 111 >, < 100 >, < 110 > and < 311 > directions with
magnitudes between

√
3 and 4 (in units of 3fPb/2λ

Pb)
as well as a small probability (∼ 0.1) of no displacement.
Further charges will spread the distribution further. This
could explain the observed quasi-spherical shell-like dis-
tribution of Pb displacements around the equilibrium
perovskite positions at low temperatures [23], while at
higher temperatures the standard Boltzmann weighting
of energy shifts ∆E, as proportional to exp (∆E/kBT ),
leads to merging into a more Gaussian-like single peak.

Note that this appearance of a distribution shell of
Pb displacement has nothing to do with the relaxor be-
haviour and, as presented above, is essentially simply a
local effect of the statistical occupation of B-sites by Mg
and Nb ions. In the lower temperature relaxor region
the Nb and, to a lesser degree, Mg ions will be further
displaced from their equilbrium perovskite locations and
hence further modify the Pb distribution, but the modi-
fication is likely to be small by comparison with the main
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effect discussed above.

An analagous star/shell-like displacement distribution
is, in principle, expected for the O ions, which have 6
neighbours each along < 100 > directions. In this case
the effect of Mg neighbours is repulsion and of Nb neigh-
bours is attraction, relative to the O positions in the un-
perturbed perovskite, with effective displacement forces
of 3, -3 and 0 O-units [24] of 2/9, 2/9 and 5/9 along the
< 100 > directions, again already without any coopera-
tive ordering. Again this is dominantly a locally driven
consequence of the random distribution of Mg and Nb,
rather than related to relaxor behaviour.

Turning to the Mg and Nb sites, there will be extra di-
rect Coulombic B site-to-site perturbations arising from
the extra charges compared with the ‘bare’ +4 of Mg*,
Nb* or Ti;

HB,B′

pert =
∑

(ij)

eiej/ǫ|(R0
ij + u

ij
| (5)

where R
0
ij = (R0

j −R
0
i ), uij = (uj − ui), R

0
i is the po-

sition of ion i in the unperturbed system, ei = −2,+1
respectively for sites i occupied by Mg, Nb, and ǫ is the
electronic dielectric constant. Independently of whether
the individual occupants of a pair of sites are Mg or Nb,
the Coulomb energy favors an anti-ferroelectric interac-
tion; both ions wishing to move closer together when they
are of the same type, both wishing to move apart when
they have opposite signs of extra charge.

Considering only nearest neighbors explicitly for sim-
plicity and expanding to first order in the {u}, the lowest-
order extra displacement-influencing terms have the form

H
B,B′(1)
pert =

∑

(ij)

(eiej/ǫ|R0
ij|3)(uij .R

0
ij). (6)

These are random field terms, albeit correlated with the
specific B-site occupations by Mg and Nb. Since they
are linear in the {u} they will necessarily lead to some
displacement of the B-ions from their locations in pure
perovskite. However, given that the harmonic restoring
strength κ of Mg is expected to be larger than that for
Nb, the displacements will be more significant for the Nb
than for the Mg.

Higher order terms in eqn.(5) give further effective ‘ex-
change’ interactions [25], again quasi-random but corre-
lated with the actual site-occupations, along with per-
turbations of effective κ [26].

Thus the total effective B-B Hamiltonian will contain
extra ‘random-bond’ interaction terms in addition to the
spatially frustrated ones of eqn.(2), albeit that still it is
expected that only the displacements of Nb sites will be
relevant in the bootstrapping. Since the detailed charac-
ter of the disorder and frustration is not important for
the concept of spin glasses [17], if one ignores the ran-
dom field terms, the combination of exchange terms is

expected to remain sufficient for the conceptual identi-
fication of relaxor behaviour as the analog of induced-
moment soft pseudospin glass to continue, including the
expectation of frequency-dependent permittivity peaks
[27].

The consequence of the random field terms for a true
thermodynamic pseudo-spin glass transition is less clear.
It is not possible to generate local random magnetic fields
in experimental magnetic systems, so there are no direct
experimental comparitors. Theoretically, it is known that
a sharp transition does still persist for the soluble infinite-
ranged spin glass model of Sherrington and Kirkpatrick
[28, 30, 31]. Finite-ranged spin glass models are not
exactly soluble. However, many workers believe that a
field destroys a sharp transition for a shorter-range Ising
model such as that of Edwards and Anderson [43] [40].
Furthermore, the situation for relaxors is probably inter-
mediate between these two extremes because of the of
long-range Coulomb potentials and dipolar interactions.
Studies of one-dimensional spin glasses with power-law
decaying interaction strength, believed to emulate tun-
ably both long- and short-range systems in different di-
mensions, have demonstrated that for Ising spin-glass
systems in a field [29] and also vector spin-glass systems
with quenched random fields [34] there exists a range of
slow power-law decays over which an Almeida-Thouless
[31] transition persists beyond just the infinite-ranged SK
limit, while for more rapidly decaying interactions this is
no longer the case. Thus it is possible that the random
fields in relaxors do not destroy the phase transition even
in the complete thermodynamic sense, but a definitive
conclusion is not currently available. We note also that
in computer simulations on a model for BZT analogous
to eqn (1) but allowing also for tunable random fields
and coupling to strain [32] it was found that relaxor be-
havior was relatively unaffected by the random fields and
strain. However, it is anyway known from experiments on
spin glasses that, in practice, permittivity peaks are still
observed in small uniform applied fields over finite ex-
perimental periods or finite frequency, so there could be
finite-time relevance even without a tue thermodynamic
equilibrium phase transition.

For further potential experimental clues as to the rel-
ative importance of the random field and random bond
terms in leading to the relaxor behavior one can usefully
consider alloys (PMN)1−y(PT )y in which there are 3
types of B-ion, Mg, Nb and Ti, and which we shall as-
sume to be randomly distributed. By the same argu-
ments as above the Mg are considered too immobile for
the interactions to bootstrap spontaneous displacements
but both Nb and Ti need to be included as having vari-
able {ui}, albeit with different κ and λ. Thus the frac-
tion of effectively locally bootstrap-polarizable B-ions in-
creases with y. Ignoring the differences between the κ-
values of Ti and Nb, variations in the strength of the
effective interaction term Heff

int with y and also the ran-
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dom field terms, leads to an expectation that the low y
behavior of (PMN)1−y(PT )y will be relaxor with the on-
set temperature increasing with y [36]. This is precisely
what is observed experimentally [35] in studies of the
frequency-dependent permittivity. As y is increased the
expectation is that the relaxor state will be supplanted
by ferroelectricity at a critical yc [37], with Tf continuing
to increase with y. Again this is as observed [35].

Let us now turn to the random fields. Since the den-
sity of excess charges decreases with y on alloying to
(PMN)1−y(PT )y the strength of random fields decreases
with y. If the origin of relaxor behavior is believed to
lie in random fields, one might thus expect that on di-
lution of PMN with PT the relaxor onset temperature
would decrease with y. However, this is in contrast to
experimental observations [35]. We are therefore led to
suspect that relaxor behavior is dominantly of effective
random-bond origin [38], with random fields playing only
a secondary role.

In [1] an extension of the modeling of eqn.(1) was
used to explain the origin and character of nanodomains
through a mapping to a related Anderson localization
model. The general concepts of that analogy apply here
too. More specifically, HB

PMN is re-interpreted as a (mi-
croscopic and heterogeneous) Ginzburg-Landau-like free
energy with temperature-renormalized weighting of the
coefficients and the interaction, denoted below by tildes.
Mean-field solutions are given by minimization with re-
spect to the {u};

κ̃iui+2λ̃iui|ui|2+
∑

j

∂H̃B(ui,uj, f(Rij)/∂ui = 0. (7)

The most important temperature-dependent term for the
present discussion is that of the {κ̃} which increase with
temperature, and control the phase transition, just as
does the coefficient of the term quadratic in the order
parameter in a conventional Ginzburg-Landau free en-
ergy.

The terms in H̃B that are linear but random in {u}
give rise to a backgound ‘random ripple’. But of more in-
terest are the interaction terms that enable internally or-
dered clusters identifiable as ‘nanodomains’. As pointed
out in [1] these can be conceptually ‘identified’ with
eigenfunctions of an analogous Anderson equation, with
the nanodomains corresponding to negative energy local-
ized states of the eigenequation and the phase transition
itself the analog of the energy of the mobility edge cross-
ing a critical value and yielding a macroscopic extended
state.

The conceptual procedure has been described in [1]
but is re-iterated for possible convenience. Consider for
illustrative purposes a simple scalar analog of eqn.(7)

κ̃iui + 2λ̃iu
3
i −

∑

j

J̃ijuj −
∑

i

h̃i = 0. (8)

and compare it with an Anderson-type eigen-equation

κ̃iφi −
∑

j

J̃ijφj = Eφi. (9)

If the random-field {h̃i} are ignored then there is a par-
allel between these equations that identifies approximate
solutions of eqn. (8) in terms of the eigenfunctions and
eigenvalues of eqn (9), given by

mi = 0, (10)

δi

√

−E/2λ̃i ; E ≤ 0

where

δi =1; φi 6= 0 (11)

0; φi = 0.

Nanodomains are then given by negative energy solutions
of the Anderson equation. Cooperative order also re-
quires that there be extended state solutions but for dis-
ordered {κ̃} the Anderson equation has localised states
at its extremities (and possibly everywhere). Thus those
nanodomains are truly frozen cooperatively only if the
Anderson equation has extended solutions and that its
lower mobility edge is negative. Since the density of
states moves linearly with shifts of the κ̃ distribution
and that distribution moves continuously to higher val-
ues as the temperature increases, it follows that, within
the realm of ignoring the random field terms, the on-
set of metastable nanodomains as the temperature is re-
duced can be associated with the passage of the density
of states across zero and the phase transition to a co-
operative phase with the passage of the lower mobility
edge across zero. Whether the phase transition is to a
ferroelectric or relaxor phase depends on the disorder, as
discussed in [1] and briefly above [42].
Of course these details have to be modified when ac-

count is taken of the random field terms in eqn. (8);
for example, the fields will always induce some displace-
ment and the mapping is no longer precise. However, the
qualitative concept of localized metastable nanodomains
growing and coalescing remains.
The pseudo-spin glass model employed above invoked

the site randomness of relevant ions together with a
longish-ranged interaction frustrated as a function of sep-
aration and made comparison with what is known about
more conventional experimental spin glasses. However,
once one accepts the premise that it is the combination
of frustration and quenched disorder that underlies the
existence of a non-periodic phase with interesting non-
ergodicity, then one can pass to potentially more compu-
tationally convenient theoretical encapsulation in models
with random-bond disorder, as epitomised in magnetic
spin glasses by the Edwards-Anderson model [43], ex-
tended to soft spins as above and with a ferromagnetic
bias of the bond distribution [44][45].



5

In conclusion, we have argued that PMN, like BZT,
has as its underlying core for relaxor behavior an effec-
tive induced-moment soft pseudo-spin glass on B-sites of
the ABO3 perovskite structure, in particular of the Nb
ions, albeit with distracting effects due to the charge dif-
ferences of the Mg and Nb ions, such as displacements
on the Pb sites. This analogy suggests that PMN (and
some other relaxors) should exhibit several further spin-
glass-like properties. However, it should be noted that
to demonstrate this assertion we have employed several
modeling simplifications and also that it is known that
relaxor materials, including PMN, exhibit a number of
other transitions and features. Thus there is no claim
here for a complete explanation, but rather an argument
for an underlying conceptual and pictorial basis that is
significantly different from the conventional starting per-
spectives for these materials. Complete reality, however,
may involve elements of both the B-dominated driving
discussed above and more conventional aspect of driving
via the Pb ions. The hope is that this unconventional
perspective will stimulate other fruitful investigations,
extensions and applications, both theoretical and exper-
imental [51]. Clearly, we might expect similar behaviors
for other displacive ionic alloys, but they are not explored
further here.

We might recall that we have assumed random loca-
tions of substituted B-ions. If there is chemical periodic
ordering then there is less randomness and more oppor-
tunity for a periodic optimal compromise of cooperative
ordering. This was observed long ago [49] and also con-
firmed in a more recent computational study [50].
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