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We report an experimental study of the longitudinal relaxation time (T1) of the electron spin
associated with single nitrogen-vacancy (NV) defects hosted in nanodiamonds (ND). We first show
that T1 decreases over three orders of magnitude when the ND size is reduced from 100 to 10 nm
owing to the interaction of the NV electron spin with a bath of paramagnetic centers lying on the
ND surface. We next tune the magnetic environment by decorating the ND surface with Gd3+

ions and observe an efficient T1-quenching, which demonstrates magnetic noise sensing with a single
electron spin. We estimate a sensitivity down to ≈ 14 electron spins detected within 10 s, using a
single NV defect hosted in a 10-nm-size ND. These results pave the way towards T1-based nanoscale
imaging of the spin density in biological samples.

PACS numbers:

The ability to detect spins is the cornerstone of mag-
netic resonance imaging (MRI), which is currently one
of the most important tools in life science. However,
the sensitivity of conventional MRI techniques is limited
to large spin ensembles, which in turn restricts the spa-
tial resolution at the micrometer scale [1, 2]. Extend-
ing MRI techniques at the nanoscale can be achieved at
sub-Kelvin temperature with magnetic resonance force
microscopy, through the detection of weak magnetic
forces [3, 4]. Another strategy consists in directly sens-
ing the magnetic field created by spin magnetic moments
with a nanoscale magnetometer. In that context, the
electron spin associated with a nitrogen-vacancy (NV)
defect in diamond has been recently proposed as an ul-
trasensitive and atomic-sized magnetic field sensor [5]. In
the last years, many schemes based on dynamical decou-
pling pulse sequences have been devised for sensing ac
or randomly fluctuating magnetic fields with a single NV
spin [6–9]. These protocols recently enabled nuclear mag-
netic resonance measurements on a few cubic nanometers
sample volume [10, 11] and the detection of a single elec-
tron spin under ambient conditions [12].

An alternative approach for sensing randomly fluctu-
ating magnetic fields – i.e. magnetic noise – is based on
the measurement of the longitudinal spin relaxation time
(T1) of the NV defect electron spin. Using an ensemble
of NV defects and a T1-based sensing scheme, Steinert et
al. recently demonstrated magnetic noise sensing with a
sensitivity down to 1000 statistically polarized electron
spins, as well as imaging of spin-labeled cellular struc-
tures with a diffraction-limited spatial resolution (≈ 500
nm) [13]. Bringing the spatial resolution down to few
nanometers could be achieved by using a single NV defect

integrated in a scanning device, e.g. with a nanodiamond
(ND) attached to the tip of an atomic force microscope
(AFM) [14, 15]. With this application in mind, we study
here the T1 time of single NV defects hosted in NDs, as a
function of ND size and magnetic environment. We first
report a decrease of T1 over three orders of magnitude
when the ND size is reduced from 100 to 10 nm. This
behavior is explained by considering the interaction of
the NV spin with a bath of intrinsic paramagnetic cen-
ters lying on the ND surface. We next tune the magnetic
environment by decorating the ND surface with param-
agnetic molecules. As expected, a strong T1-quenching
is observed when the surface spin density is increased.
From our data, we estimate a sensitivity of T1-based re-
laxometry down to ≈ 14 electron spins detected within
10 s, using a single NV defect hosted in a 10-nm ND.

The NV defect ground state is a spin triplet (S = 1)
with a zero-field splitting D = 2.87 GHz between a sin-
glet state ms = 0 and a doublet ms = ±1 [Fig. 1(a)].
Owing to spin-dependent intersystem-crossing (ISC) to-
wards intermediate singlet states, optical pumping leads
to an efficient spin polarization into the ms = 0 spin
sublevel, while the spin state can be readout through
spin-dependent photoluminescence (PL) [16]. These two
properties enable the measurement of the T1 relaxation
time of the NV defect electron spin by using the simple se-
quence depicted in the inset of Fig. 1(b). After initializa-
tion into the ms = 0 spin sublevel with an optical pulse,
the NV defect is kept in the dark for a time τ , causing the
system to relax towards a mixture of states ms = 0,±1.
The resulting electron spin state is readout by applying a
second optical pulse. For a sufficiently short integration
time (300 ns in this work), the readout PL signal I(τ)
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FIG. 1: (a)-Simplified energy-level structure of the NV defect.
The zoom indicates the energy levels and transition rates used
for studying the NV defect spin dynamics in the dark. (b)-
Integrated PL signal as a function of the dark time measured
for a single NV center hosted in a 20-nm ND. The solid line is
a fit to Eq. (1), which yields T1 = 16±1 µs and Tm = 160±30
ns. The experimental sequence used to measure T1 is shown
in inset. Laser pulses with 3-µs duration are used both for
initialization of the NV defect in ms = 0 and for spin-state
read-out by recording the PL signal in a detection window
corresponding to the first 300 ns of the optical pulses.

can be written as I(τ) ≈ A0n0(τ)+A1[n+1(τ)+n−1(τ)],
where A0 and A1 < A0 are the PL rates associated
with spin states ms = 0 and ms = ±1, respectively,
and n0,±1(τ) are the spin populations before applying
the readout optical pulse. These populations are eval-
uated within the simplified four-level model shown in
Fig. 1(a), which includes the ground state spin sublevels
ms = 0,±1 and the lowest-lying singlet state, thereafter
referred to as the metastable state. We define T1 as the
decay time of the population n0, hence 1/T1 = 3k01,
where k01 is the two-way transition rate between ms = 0
and ms = ±1. At short time scale, the spin populations
are also affected by relaxation from the metastable state
which decays towards the ground state spin sublevels as
nm(τ) = nm(0)e−τ/Tm , where Tm = (km0 + 2km1)−1 is
the metastable state decay time. The value of this param-
eter is ≈ 200 ns [16, 17]. Using classical rate equations
within this four-level model, the PL signal I(τ) can be
written [18]

I(τ) = I(∞)
[
1− Cme−τ/Tm + C1e

−τ/T1

]
. (1)

The expressions of I(∞), Cm and C1 are given in the
Supplemental Material [18]. A typical measurement of
I(τ) is shown in Fig. 1(b) for a single NV defect hosted
in a 20-nm-size ND, together with a fit to Eq. (1) yield-
ing T1 = 16 ± 1 µs. This value is almost two orders of

magnitude smaller than the one measured for single NV
defects hosted in bulk diamond samples [19].

To understand this behavior, the T1 time was stud-
ied as a function of the ND size. We started from
commercially available NDs (SYP 0.05 and 0.25, Van
Moppes SA) produced by milling type-Ib high-pressure
high-temperature (HPHT) diamond crystals with a high
nitrogen content ([N]≈ 200 ppm). The formation of NV
defects was carried out using high energy (13.6 MeV)
electron irradiation followed by annealing at 800◦C under
vacuum. The irradiated NDs were then oxidized in air
at 550◦C during two hours in order to remove graphitic-
related defects on the surface and produce stable NV
defects [20]. The NDs were finally spin cast on a glass
cover slip and studied using a scanning confocal micro-
scope combined with an AFM (Attocube Systems), all
operating under ambient conditions [18]. For each pho-
toluminescent ND, the PL intensity autocorrelation func-
tion was first recorded in order to verify that a single NV
defect was hosted by the crystal. For a set of single NV
defects in isolated NDs, the T1 time was measured by fit-
ting the relaxation curve I(τ) to Eq. (1) and AFM mea-
surements were used to infer the ND diameter d0, defined
as the maximum height in the AFM scan [Fig. 2(a)]. The
relaxation rate 1/T1 is plotted as a function of the ND
size in Figure 2(b) for a set of 51 single NV defects in
isolated NDs with d0 ranging from 7 nm to 88 nm. An
increase of the relaxation rate over three orders of magni-
tude is observed when the ND size decreases. Indeed, T1

ranges from a few µs for the smallest (< 10 nm) NDs to
up to 1 ms for the biggest ones (> 60 nm) [Fig. 2(a)&(b)].

For NV defects hosted in bulk diamond samples,
phonon-assisted processes are the main causes of longi-
tudinal spin relaxation at room temperature, with T1 ly-
ing in the 1-10 ms range [19]. Relaxation induced by
paramagnetic impurities like nitrogen atoms (P1 cen-
ters), which are the most abundant paramagnetic defects
in type-Ib diamond, dominates only at low temperature,
and results in T1 times that can be as long as 100 s at 4 K
[19]. In NDs, a bath of paramagnetic centers covering the
surface provides an additional channel for T1 relaxation.
These impurities have been identified by numerous stud-
ies [21–26] and are mainly ascribed to dangling bonds
with unpaired electron spins. For NDs with an oxygen-
terminated surface, as those used in this work, Tisler
et al. determined a density of surface spins σ ≈ 1 − 10
spin/nm2 using spin coherence measurements and ensem-
ble EPR measurements [25]. We attribute the shortening
of T1 of single NV spins in NDs to these surface paramag-
netic centers (SPCs), which adds a contribution kspc

01 to
the transition rate kbulk

01 of the bulk material, such that
the overall rate is k01 = kbulk

01 + kspc
01 .

This hypothesis is tested by modeling the ND as a
sphere and the SPCs as an ensemble of randomly fluctu-
ating spins with a surface density σ [Fig. 2(c)]. The SPCs
produce a fluctuating magnetic field B(t) with zero-mean
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FIG. 2: (a)-Relaxation curves measured for a single NV defect hosted in a small ND (d0 = 13± 3 nm, blue curve) and a larger
one (d0 = 73 ± 10 nm, red curve). Data fitting with Eq. (1) (solid lines) gives T1 values of 3.6 ± 0.3 µs and 802 ± 136 µs,
respectively. The corresponding AFM images are shown on top of the graph. (b)-Longitudinal spin relaxation rate 1/T1 of the
NV defect electron spin as a function of the ND diameter. We note that no obvious correlations with the size was observed
for the other fitting parameters in Eq. (1), which were found to be Cm = 0.084± 0.037, C1 = 0.21± 0.12 and Tm = 198± 72
ns (mean ± s.d.). (c)-The ND is modeled as a sphere with diameter d0 with a bath of randomly fluctuating surface spins with
density σ. In (b), the markers are experimental data while the lines are the results of the calculation using this model for a NV
spin located at the center of the sphere (solid line) and 3 nm below the surface (dotted line). The parameters of the calculation
are T bulk

1 = 2 ms and σ = 1 nm−2 [18].

〈B(t)〉 = 0, that is characterized by the spectral densities

SBk
(ω) =

∫ +∞
−∞ Bk(t)Bk(t + τ)e−iωτdτ , where the three

components k = x, y, z are assumed to be uncorrelated.
For a central NV spin S = 1 with an intrinsic quantiza-
tion axis along z, one has [27]

kspc
01 =

γ2
e

2

[
SBx(ω0) + SBy (ω0)

]
(2)

where γe is the electron gyromagnetic ratio and ω0 =
2πD is the electron spin resonance (ESR) frequency of
the NV defect. As highlighted by Eq. (2), longitudinal
spin relaxation is caused by the transverse components
of the magnetic noise at the ESR frequency of the cen-
tral spin. Assuming correlation functions of the form
〈Bk(0)Bk(τ)〉 = 〈B2

k〉e−|τ |/τc where τc is the correlation
time of the magnetic field and 〈B2

k〉 its variance, the re-
laxation rate reads

1

T1
=

1

T bulk
1

+ 3γ2
eB

2
⊥

τc
1 + ω2

0τ
2
c

. (3)

Here B2
⊥ = 〈B2

x〉+ 〈B2
y〉 is the variance of the transverse

magnetic field, and 1/T bulk
1 = 3kbulk

01 . Assuming S = 1/2
surface spins, the variance B2

⊥ is calculated by summing
the dipolar field at the NV’s location from each randomly
oriented SPC and the correlation time τc is evaluated by
considering intra-bath dipolar coupling [18]. Since B2

⊥
depends on the exact location and orientation of the NV
defect inside the ND, the calculation is performed for two
extreme configurations [Fig. 2(c)]. In the best-case sce-
nario, the NV defect is located at the center of the sphere,
while in the worst-case scenario, it is lying 3 nm below
the surface – near the known photostability limit of the

NV defect [28] – with its axis being parallel to the sur-
face [18]. As shown in Fig. 2(b), the results of the model
capture fairly well the experimental data with σ = 1
nm−2 [29]. More precisely the relaxation rate scales as
1/d4

0 which stems from the 1/d6
0 dependence of the spin-

spin interaction integrated over a surface. This effect is
responsible for the variation of T1 over several orders of
magnitude when the size of the ND decreases [18].

In view of testing the ability of T1 relaxometry to
detect changes in the local magnetic environment, the
ND surface was decorated with additional paramagnetic
species. This was achieved by spin casting an aqueous
solution of gadolinium perchlorate molecules Gd(ClO4)3,
containing paramagnetic Gd3+ ions (S = 7/2), which is
a well-known relaxation contrast agent in MRI. The T1

time was measured for a set of 33 single NV defects in iso-
lated NDs (i) before any treatment, (ii) after a first treat-
ment with 1 mM of Gd3+ solution, and (iii) after a second
treatment with 10 mM. The substrate was patterned with
a metallic grid for precise and repeatable identification of
each individual ND over repeated treatment steps. The
histograms of the measured 1/T1 rates are shown in Fig.
3(a). The distribution is clearly shifted towards higher
relaxation rate after each treatment step, which indicates
that single NV defects feel the magnetic noise induced by
the external Gd3+ ions. In Fig. 3(b), the relaxation rate
after the first and second treatment step is plotted as a
function of the rate in the bare nanocrystal, i.e. before
any treatment. Almost all the investigated NV defects
undergo a significant decrease in their T1. The quenching
ratio η = T1,bare/T1,treated is found to be η ≈ 7 on aver-
age after the first treatment with 1 mM of Gd3+ solution
[Fig. 3(b)]. From this value, we estimate a surface den-
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FIG. 3: (a)-Histograms of the 1/T1 relaxation rate obtained
from a set of 33 single NV defects hosted in isolated NDs.
The measurement is performed before any treatment (top
panel), after adding 1 mM of the Gd3+ solution (middle
panel) and after further adding 10 mM of solution (bottom
panel). (b)-Relaxation rate measured after the first (circles)
and second (triangles) treatment step as a function of the
rate of the bare ND. The solid lines are data fitting with
linear functions whose slope indicates the average quenching
ratio η = T1,bare/T1,treated. We obtain η ≈ 7 (green line) and
η ≈ 31 (orange line). A dashed line of slope η = 1 is plotted
for reference.

sity of Gd3+ spins σGd ≈ 4 nm−2, corresponding to the
detection of ≈ 1000 spins for a 10-nm ND [18]. After the
second treatment step with 10 mM of Gd3+ solution, we
obtain on average η ≈ 31 corresponding σGd ≈ 70 nm−2.
The dispersion in the measured values for η is attributed
to a non uniform surface spin density σGd. In particular,
NV defects located close to the diamond-substrate inter-
face should be less affected by the Gd3+ treatment. It
is worth mentioning that a similar environment-induced
quenching effect could be observed on the spin coherence
time T2 as well, with however much smaller quenching ra-
tios since T bulk

2 � T bulk
1 [13, 30]. Furthermore, T1-based

sensing schemes do not require coherent manipulation of
the NV electron spin with microwave pulses.

By applying a few more treatment steps with the
Gd3+ solution, we then analysed the regime of strongly
fluctuating magnetic environment, bringing T1 in the
sub-microsecond range. As shown in Fig. 4, T1-quenching
is accompanied by a significant reduction of the T1 de-
cay contrast, defined as Ceff

1 = max[I(τ)]/I(∞) − 1.
In the inset of Fig. 4, we plot Ceff

1 as a function of T1

together with the calculation based on a rate equation
model that takes into account the full dynamics of the
NV defect [18, 31]. The contrast reduction is mainly due
to the overlap between Tm and T1 decays [see Eq. (1)].
In addition, when T1 ∼ Tm, optical initialization in the
ms = 0 state and spin state readout become less efficient,
thus reducing further the contrast.

Based on our experimental results, we finally estimate
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FIG. 4: I(τ) relaxation curves measured after repeated treat-
ments with the Gd3+ solution. Solid lines are fit to Eq. (1).
Inset: effective T1 contrast Ceff

1 as a function of T1. The solid
line is the result of the calculation (with no fit parameter) us-
ing a rate equation model with the parameters of NV centers
in bulk diamond [18].

the sensitivity of T1 relaxometry to small changes in the
magnetic environment. For that purpose, we consider
an optimized single-τ measurement by fixing τ ∼ T1/2,
which converts a modification of spin relaxation into a
change of the PL signal I(τ) with optimal signal-to-noise
ratio [13, 18]. Assuming a photon shot noise limited sig-
nal, the smallest number of additional surface electronic
spins δNmin that can be detected by a single NV defect
located at the center of a ND with size d0 is given by

δNmin =
1

P
√

∆t
d4

0f(σ) , (4)

where P includes both the finite contrast of the T1 re-
laxation signal and the rate of detected photons, ∆t is
the integration time and f(σ) is a slowly increasing func-
tion of the intrinsic density of surface spins σ [18]. As
expected, it is crucial to use NDs as small as possible in
view of sensing magnetic noise from external spins. For
a single NV defect hosted in a 10-nm ND with σ = 1
nm−2 – i.e. corresponding to T1 = 6.3 µs according to
the above model [Fig. 2(b)] –, a typical photon counting
rate R = 105 s−1 under cw optical illumination and a T1

contrast C1 = 0.2, we find δNmin = 14 spins within 10 s
of integration. This result highlights that T1 relaxome-
try with a single NV spin hosted in a ND is a promising
resource to probe nanoscale magnetic field fluctuations
with a sensitivity down to a few electron spins, within a
time scale that is compatible with scanning probe tech-
niques. Such probes might find important applications in
life sciences, e.g. to image the spin density in biological
samples with an unprecedented spatial resolution.
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ANR projects Diamag, Advice and Qinvc.



5

∗ Electronic address: vjacques@ens-cachan.fr
[1] S.-C.Lee, K. Kima, J. Kim, S. Lee, J. H. Yi, S. W. Kim, K.-

S. Ha, and C. Cheong, J. Magn. Reson. 150, 207 (2001).
[2] L. Ciobanu, D. A. Seeber, and C.H. Pennington, J. Magn.

Reson. 158, 178 (2002).
[3] H. J. Mamin, M. Poggio, C. L. Degen, and D. Rugar, Nat.

Nano. 2, 301 (2007).
[4] C. L. Degen, M. Poggio, H. J. Mamin, C. T. Rettner, and

D. Rugar, Proc. Natl. Acad. Sci. 106, 1313 (2009).
[5] J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D.

Budker, P. R. Hemmer, A. Yacobi, R. Walsworth, and M.
D. Lukin, Nat. Phys. 4, 810 (2008).

[6] J. R. Maze et al., Nature 455, 644 (2008).
[7] L. T. Hall, J. H. Cole, C. D. Hill, and L. C. L. Hollenberg,

Phys. Rev. Lett. 103, 220802 (2009).
[8] A. Laraoui, J.S. Hodges, and C.A. Meriles, Appl. Phys.

Lett. 97, 143104 (2010).
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SUPPLEMENTARY INFORMATION

Experimental setup

All measurements were performed using a combined AFM/confocal microscopy setup operating under ambient
conditions. A detailed description of the experimental setup can be found in Ref. [1]. Single NV defects hosted
in diamond nanocrystals were optically excited with a laser operating at the wavelength λ = 532 nm and their
photoluminescence (PL) in the 650 − 800 nm range was detected using an avalanche photodiode. Laser pulses were
produced with an acousto-optical modulator (MT200-A0.5-VIS) with a characteristic rising time of 10 ns. For all
experiments, the optical pumping power was set at 1 mW, corresponding to the saturation power of the NV defect
radiative transition.

Derivation of the relaxation curve I(τ)

We first consider the NV defect ground state as a closed three-level system composed of the three spin sublevels
ms = 0,±1 with populations n0,±1. The spin sublevels ms = 0 and ms = ±1 are coupled by two-way transition rates
of strength k01 [see Fig. 1-(a) of the main article]. After initialization into the ms = 0 spin sublevel with an optical

mailto:vjacques@ens-cachan.fr
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pulse, the population dynamics are given by

n0(τ) =
1

3
+

[
n0(0)− 1

3

]
e−τ/T1 (5)

n±1(τ) =
1

3
±
[
n+1(0)− n−1(0)

2

]
e−τ/(3T1) − 1

2

[
n0(0)− 1

3

]
e−τ/T1 , (6)

where T1 = [3k01]−1 and ni(0) is the initial population of spin sublevel ms = i.
As indicated in the main text, the readout PL signal I(τ) can be written as

I(τ) = A0n0(τ) +A1[n+1(τ) + n−1(τ)] , (7)

where A0 and A1 are the PL rates associated with spin states ms = 0 and ms = ±1. Owing to spin-dependent PL of
the NV defect, we consider A1 < A0. Using Eq. (5), the signal I(τ) can then be written as

I(τ) = I(∞)
[
1 + C1e

−τ/T1

]
(8)

with

I(∞) =
A0 + 2A1

3
,

C1 =
A0 −A1

A0 + 2A1
[3n0(0)− 1] .

As expected, the readout contrast C1 is proportional to the difference of spin-dependent PL rate (A0−A1), and to
the amount of initial spin polarization into the ms = 0 spin sublevel.

We now take into account the lowest-lying singlet state of the NV defect, thereafter referred to as the metastable
state with population nm [see Fig. 1-(a) of the main article]. This population decays towards ms = 0 with a rate
km0 = αkm and towards ms = ±1 with a rate km1 = (1− α)km/2. The metastable decay time is therefore given by
Tm = k−1

m = (km0 + 2km1)−1. Typically α ∼ 0.5 and k−1
m = Tm ≈ 200 ns [2, 3]. Within this four-level model, the

populations after a time τ read

nm(τ) = nm(0)e−τ/Tm ,

n0(τ) =
1

3
+

[
n0(0)− 1

3

]
e−τ/T1 + nm(0)

[
αT1 −

Tm
3

]
e−τ/T1 − e−τ/Tm

T1 − Tm
,

n±1(τ) =
1

3
±
[
n+1(0)− n−1(0)

2

]
e−τ/(3T1) − 1

2

[
n0(0)− 1

3

]
e−τ/T1

−nm(0)

2

[
αT1 − Tm

3

T1 − Tm
e−τ/T1 +

(1− α)T1 − 2Tm

3

T1 − Tm
e−τ/Tm

]
.

Using Eq. (7), the readout PL signal can then be written as

I(τ) = I(∞)
[
1− Cme−τ/Tm + C1e

−τ/T1

]
, (9)

corresponding to Eq. (1) of the main paper with

I(∞) =
A0 + 2A1

3
, (10)

C1 ≈
A0 −A1

A0 + 2A1
[3n0(0)− 1 + nm(0)] , (11)

Cm ≈ nm(0) . (12)

Note that we have assumed α ≈ 1/3 in order to obtain a simple formula for C1.
Although C1 does not depend explicitly on T1, the initial populations n0(0) and nm(0) as well as the PL rates A0

and A1 do, as soon as 1/T1 is not negligible compared to all other transition rates involved in the initialization process.
Since Tm is the longest decay time of the NV center’s dynamics besides T1, this means that C1 is constant as long as
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FIG. 5: (a)-Rate equation model used to simulate the I(τ) relaxation curves. (b)-Simulated I(τ) curves for various T1 times,
as described in the text. (c)-Effective T1 contrast measured for various single NV defects as a function of T1, which was tuned
by adding Gd3+ ions on the nanodiamond surface. The solid line is obtained from the simulated I(τ) curves, according to the
full model depicted in (a). (d)-Measured I(τ) curves corresponding to NV A3.

T1 � Tm. However, when T1 gets closer to Tm, the longitudinal spin relaxation prevents efficient spin initialization
in ms = 0 through optical pumping, i.e. n0(0)→ 1/3, as well as efficient spin state readout, i.e. (A0 −A1) vanishes.
This explains why the contrast of T1 decay strongly decreases when T1 ∼ Tm [see Fig. 4 of the main paper].

In order to gain further insight on this contrast reduction of T1 relaxation curves, the NV defect dynamics was
modeled using the seven-level model shown in Fig. 5(a). A detailed description of this model can be found in Ref. [3].
We used classical rate equations to calculate the time evolution of the populations. The optical pumping parameter
β was varied in time in order to simulate the exact sequence employed in the experiment [see inset in Fig. 1(c) of
the main article]. We used β = 1 when the laser is on and β = 0 when the laser is off. The PL was numerically
integrated over the first 300 ns of the readout optical pulse, as in the experiment. Apart from k01 = 1/3T1 that was
taken as a variable, the values of the other transition rates were taken from Ref. [2], namely kr = 65 µs−1, k0m = 11
µs−1, k1m = 80 µs−1, km0 = 3 µs−1 and km1 = 1.3 µs−1. The dark time evolution τ was varied in order to simulate
the relaxation curves I(τ) for different values of T1, as depicted in Fig. 5(b). From these simulations, the effective
contrast Ceff

1 = max [I(τ)] /I(∞)− 1 was inferred as a function of T1, leading to the solid line shown in the inset of
Fig. 4 of the main article.

In Fig. 5(c), this line is plotted again, together with the experimental data from a set of 6 single NV centers in
distinct diamond nanocrystals, including the data shown in Fig. 4 of the main article (NV B6). The model captures
correctly, on average, the observed behavior of contrast versus T1. However, we note that the investigated NV defects
all exhibit a different maximum contrast. This feature can be explained by variations of the transition rates for
different NV defects in nanocrystals, which depend on the local strain, the presence of nearby defects, etc. In Fig.
5(d) we plotted the I(τ) relaxation curves measured for NV A3, where we observe the extreme case of a nearly flat
response, from which the T1 time could not be determined with a meaningful uncertainty.

Derivation of T1 for a single NV defect interacting with a bath of surface spins

Equation (3) of the main article gives the 1/T1 relaxation rate of the central NV spin placed in a fluctuating
magnetic field B(t) with zero mean, characterized by a variance B2

⊥ (orthogonal to the NV defect quantization axis)
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NV spin

Bath spin
Bath spin

Bath spin

(a) (b)

FIG. 6: (a) Notations for the derivation of the variance B2
⊥ of the transverse magnetic field at the NV’s location. The symmetry

axis of the NV center is denoted z, while the XY Z reference frame serves to define the spherical angles (θ, φ) that describe the
position of the bath spins on the sphere (vector ui for spin i). The two frames xyz and XY Z can be chosen to be different for
mathematical convenience (if the NV spin is not at the center of the sphere) when performing the integration. (b) Notations
for the derivation of the fluctuation rate Rdip of the spin bath caused by spin-spin interactions.

and a correlation time τc, i.e.

1

T1
=

1

T bulk
1

+ 3γ2
eB

2
⊥

τc
1 + ω2

0τ
2
c

, (13)

where ω0 = 2πD is the electron spin resonance (ESR) frequency of the NV defect.
In this section, we calculate the two quantities B2

⊥ and τc for a bath of electronic spins distributed on the surface
of the nanodiamond, modeled as a sphere of diameter d0. The density of surface spins is denoted σ.

Variance of the transverse magnetic field

The variance of the transverse magnetic field B2
⊥ felt by the central spin can be obtained by summing over the

contributions of all bath spins Si according to B2
⊥ =

∑
iB

2
⊥,i. The dipolar field radiated by a spin Si located at

position ri on the surface is given by

Bi =
µ0γe~
4πr3

i

[Si − 3(Si · ui)ui)] , (14)

where ui = ri/ri [see notations in Fig. 6(a)]. Tracing over a purely mixed state, described by a density matrix
ρ = 1

2S+112S+1 where 12S+1 is the identity matrix of size 2S + 1, we obtain

B2
⊥,i = 〈B2

x,i〉+ 〈B2
y,i〉 = Tr{ρ(B2

x,i +B2
y,i)} =

(
µ0γe~

4π

)2

CS
2 + 3 sin2 αi

r6
i

, (15)

where CS = 1
2S+1

∑S
m=−Sm

2 = S(S+1)
3 and αi is the angle between ri and the z-axis, which is the quantization

axis of the central NV spin. For a bath of surface density σ, whose surface is described in spherical coordinates by
r = r(θ, φ) [Fig. 6(a)], the summation over all the bath spins gives

B2
⊥ =

∑
i

B2
⊥,i =

(
µ0γe~

4π

)2

CSσ

∫ 2π

0

dφ

∫ π

0

dθ sin θ
2 + 3 sin2(α(θ, φ))

r(θ, φ)4
. (16)

For a spherical surface of diameter d0 and a central spin located exactly at the center of the sphere, we have r = d0/2
and α(θ, φ) = θ, which yields

B2
⊥ =

(
4µ0γe~
π

)2

πCS
σ

d4
0

. (17)

Considering S = 1/2 surface spins, we find B⊥ = 26 mT nm3 × σ1/2

d20
. For instance, B⊥ = 260 µT-rms for a 10-nm

nanocrystal with σ = 1 nm−2.



9

If the central spin is offset by δr along the z-direction, then r(θ, φ) =
√

(d0/2)2 − δr2 sin2 θ+δr cos θ and α(θ, φ) = θ

in Eq. (16). An offset along the transverse direction, e.g. along the x-axis, can be taken into account using the same
formula for r(θ, φ) but a modified angle α(θ, φ) such that sin2(α(θ, φ)) = ‖ur × ux‖2 = cos2 θ + sin2 θ sin2 φ, instead
of sin2(α(θ, φ)) = ‖ur ×uz‖2 = sin2 θ. The latter case is the one considered to obtain the red dashed line in Fig. 2(b)
of the main paper, where the NV defect is located 3 nm below the nanocrystal surface with its quantization axis (z)
parallel to the surface.

Correlation time of the bath

The total fluctuation rate R = 1/τc of the bath spins can be decomposed into two main contributions R = Rdip+Rvib

where Rdip is due to intra-bath dipolar coupling while Rvib is caused by intrinsic vibrational spin relaxation.
An estimate for Rdip can be obtained by summing the dipolar interactions of a given spin Si with all other spins

Sj of the bath, according to ~Rdip =
√∑

j 6=i〈H2
ij〉 where Hij is the magnetic dipolar interaction

Hij =
µ0γ

2
e~2

4πr3
ij

[Si · Sj − 3(Si · uij)(Sj · uij)] . (18)

Here rij is the radius-vector between the two spins and uij = rij/rij , as depicted in Figure 6(b). For purely mixed spin
states, the density matrix describing the two-spin system is ρ = 1

(2S+1)212S+1⊗12S+1. The quantity 〈H2
ij〉 = Tr{ρH2

ij}
is then given by

〈H2
ij〉 =

(
µ0γ

2
e~2

4π

)2
6C2

S

r6
ij

. (19)

For a bath of surface spins with a surface density σ, we consider

∑
j 6=i

1

r6
ij

≈ σ
∫ +∞

rmin

2πr

r6
dr , (20)

where rmin is the minimum allowed distance between two surface spins – e.g. the lattice constant for a crystal. The
final expression for Rdip reads

~Rdip =

√∑
j 6=i

〈H2
ij〉 =

µ0γ
2
e~2
√

6CS
4π

√
π

2

σ1/2

r2
min

. (21)

For a bath of electronic spins with S = 1/2 and using rmin = 0.15 nm – i.e. the nearest neighbour distance in diamond
– we find Rdip = 11 ns−1 nm ×σ1/2. Hence Rdip = 11 ns−1 = 2π × 1.8 GHz by using σ = 1 nm−2.

Several EPR studies on various types of nanodiamonds have shown that the vibrational spin relaxation Rvib of the
SPCs is around 1 ns−1 [4, 5] or less [6, 7]. These values are much smaller than Rdip, as calculated above for a typical
surface spin density σ = 1 nm−2. Therefore, we can neglect the vibrational contribution to the overall fluctuation
rate, so that R ≈ Rdip.

T1 relaxation as a function of the nanodiamond size

Replacing Eq. (17) in Eq. (13), i.e. for a NV spin located at the center of a ND of diameter d0, the longitudinal
spin relaxation rate writes

1

T1
=

1

T bulk
1

+

(
48µ2

0γ
4
e~2Cs

πd4
0

)(
σR(σ)

ω2
0 +R(σ)2

)
, (22)

where R(σ) = 1/τc ≈ Rdip(σ) is given by Eq. (21). It can be seen that the second term in Eq. (22), which dominates
in NDs, scales as d−4

0 . This dependence, which simply stems from the d−6
0 of the spin-spin interaction integrated over

a surface, is responsible for the variation of T1 over several orders of magnitude when the size of the ND decreases.
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FIG. 7: (a,b) Longitudinal spin relaxation rate 1/T1 of the NV defect electron spin as a function of the ND diameter. The
markers are experimental data while the lines are the results of the calculation for a NV spin located at the center of the sphere
(solid line) and 3 nm below the surface (dotted line), for several values of the surface spin density σ. We assumed T bulk

1 = 2
ms. We considered a vibrational contribution to the spin bath fluctuation rate Rvib = 0 in (a), as in the main article, and
Rvib = 50 ns−1 in (b).

In Fig. 7(a), we plot again the 1/T1 vs. d0 data points, together with the calculation using the above formulas.
The calculation is performed for the two extreme cases where the NV spin is located either at the center of the sphere
[best case, given by Eq. (22)] or 3 nm away from the surface with the NV axis parallel to the surface (worst case). The
result of the calculation is shown for three different surface densities σ. The value σ ≈ 1 nm−2 is the one that best ‘fits’
the experimental results, if the criterion is that most data points must lie in between the two extreme case theoretical
curves. Figure 7(b) is identical to Fig. 7(a) but here we assumed a non-zero value for the vibrational contribution to
the correlation time, namely Rvib = 50 ns−1, which is a typical value for electron spins in paramagnetic complexes [8],
but is probably an extreme case for our nanodiamond SPCs. Now the experimental results are best ‘fitted’ with a
surface density σ ≈ 2 nm−2. This shows that the outcome of the model is not very sensitive to the choice of Rvib for
reasonable values.

Estimation of the number of gadolinium spins

In this section we estimate the number of gadolinium spins that were added to the ND surface from the experi-
mentally measured quenching ratio η = T1,bare/T1,treated [see Fig. 3 of the main text]. Here T1,treated (resp. T1,bare)
denotes the relaxation time of the NV defect after (resp. before) adding Gd3+ ions. Since these experiments were
performed in the limit η � 1, one can consider that T1,treated is only due to a bath of S′ = 7/2 Gd3+ spins with a den-
sity σGd, producing at the NV location a fluctuating magnetic field characterized by a variance B′2⊥ and a correlation
time τ ′c. The spin relaxation rate after adding Gd3+ ions can therefore be written

1

T1,treated
≈ 3γ2

eB
′2
⊥

τ ′c
1 + ω2

0τ
′2
c

. (23)

Neglecting 1/T bulk
1 and considering only the intra-bath dipolar contribution to τ ′c, one obtains from Eqs. (17) and

(21) that

η ≈ CS′σGd

CSσ
× CSσ

1/2

CS′σ
1/2
Gd

× 1 + ω2
0τ

2
c

1 + ω2
0τ
′2
c

(24)

≈ 3.64
(σGd

σ

)1/2

. (25)
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In the latter expression, we assumed σ = 1 nm−2, i.e. 1/τc = 11 ns−1 and 1/τ ′c � ω0 as justified below. Within
this framework, η depends neither on the ND size nor on its exact shape, in agreement with the experimental data.
By adding 1 mM of Gd3+ solution, an averaged quenching ratio η = 7 is obtained [see Fig. 3 of the main text].
From this value, we estimate a surface density of gadolinium spins σGd ≈ 4σ ≈ 4 nm−2. For a 10-nm size ND, this
corresponds to the detection of ≈ 1000 gadolinium spins. After adding 10 mM of solution, we find η = 31 on average,
corresponding to σGd ≈ 70σ ≈ 70 nm−2.

We note that σGd = 4 nm−2 yields R′dip ≈ 500 ns−1, which is indeed much larger than the vibrational contribution

(typically R′vib ∼ 50 ns−1 [8]) and than ω0 = 18 ns−1. This validates the assumptions made to obtain Eq. (25), i.e.
that only the intra-bath dipolar term contributes to τ ′c and 1/τ ′c � ω0.

Sensitivity estimation

In this section we derive the sensitivity of T1 relaxometry to a change in the number Ne of external electronic spins
on the surface, hence to a change in the relaxation rate Γ1 = 1/T1 of the NV spin. We consider a single-τ detection
scheme [9] that consists in measuring the PL signal I(τ) after a fixed dark time τ � Tm, as shown in Figure 8. The
number of photons detected while repeating this sequence during a total acquisition time ∆t reads

N(Γ1) ≈ RTint

τ
∆t
[
1 + C1e

−Γ1τ
]
, (26)

where R is the photon counting rate under cw optical illumination, Tint is the width of the integration window (300
ns in our experiments), and C1 � 1 is the contrast. An infinitesimal change δΓ1 of the relaxation rate is converted
into a modification δNsignal of the number of detected photons given by

δNsignal ≈ δΓ1RTint∆tC1e
−Γ1τ . (27)

Assuming a photon shot noise limited signal δNnoise =
√
N(Γ1) and C1 � 1, the signal to noise ratio (SNR) reads

SNR =
δNsignal

δNnoise
= δΓ1

√
RTintτ∆tC1e

−Γ1τ . (28)

The maximal signal-to-noise ratio SNRm is obtained for τ = T1/2 and is given by

SNRm =
δΓ1√

Γ1

C1

√
RTint∆t

2e
. (29)

For a net change δΓ1, the SNR is therefore improved when Γ1 decreases. However δΓ1 and Γ1 are not independent
quantities, as we shall see below.

In the following, we consider a single NV spin located at the center of a spherical diamond nanocrystal of diameter
d0. Using Eqs. (21)-(22) and neglecting 1/T bulk

1 , the relaxation rate due to a bath of electronic spins S = 1/2 with
surface density σ can be expressed as

Γ1 =
A

d4
0

σ3/2

σ +B
, (30)

with A = 5.75 × 109 s−1nm5 and B = 2.64 nm−2. We seek to calculate the effect of an infinitesimal increase δσ of
the surface spin density. The resulting modification of the relaxation rate δΓ1 is given by

δΓ1

Γ1
=
δσ

σ

(
1

2
+

B

B + σ

)
. (31)

Inserting Eqs. (30) and (31) into Eq. (29), we finally obtain

SNRm = δσ × C1

2d2
0

√
ARTint∆t

2e

σ + 3B

σ1/4(σ +B)3/2
. (32)

In terms of increase in the number of surface spins δNe = δσπd2
0, the SNR writes

SNRm = δNe ×
C1

2πd4
0

√
ARTint∆t

2e

σ + 3B

σ1/4(σ +B)3/2
. (33)
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∆t

FIG. 8: (a)-Sequence used in the single-τ detection scheme. In the derivation of the sensitivity, the repetition period is taken
to be equal to the dark time τ , i.e. we neglect the duration Tpulse of the laser pulse, which can be as short as 1 µs in practice.
(b)-Typical I(τ) curve calculated with a spin relaxation rate Γ1 = 105 s−1 (blue curve). The red curve illustrates the effect of
an increase of the relaxation rate by δΓ1 = 0.2Γ1. The single-τ detection scheme enables to probe the PL difference for a given
dark time τ , which is denoted δNsignal in the text and is related to the change δΓ1.

Owing to the d−4
0 dependence, it is crucial to use a nanodiamond as small as possible in order to detect a net change

δNe. The smallest number of spins that can be detected is obtained for a signal to noise ratio of one, and reads

δNe,min =
1

P
√

∆t
d4

0f(σ) , (34)

where P = C1

2π

√
ARTint

2e and f(σ) = σ1/4(σ+B)3/2

σ+3B is a slowly fluctuating function of σ. For a single NV spin located

at the center of a 10-nm diameter nanocrystal with an intrinsic spin density σ = 1 nm−2, a typical photon counting
rate R = 105 s−1 and a contrast C1 = 0.2, we find δNe,min ≈ 14 spins within 10 s of integration. We emphasize that
although the above calculation assumes the δNe additional spins to be distributed all over the nanocrystal’s surface,
we expect our conclusions, especially the distance dependence, to be true even if the δNe spins are localized in a
point-like spot, e.g. in a molecule that would be approached close to the nanocrystal’s surface.
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