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We study from first principles the transport properties of Al/AlOx/Al tunnel junctions. On this basis, we
analyze the reliability of two analytical models for the conductance, namely the trapezoid potential barrier model
and a tight-binding model. Our findings show that (i) the interface width used in the models is determined by
the electronic density profile, and it is shorter than the width one expects from the atomic arrangements; (ii) the
effective mass, found to be about on third of the free electron mass, can be determined from the oxide band-
structure calculations, and (iii) the barrier height is given by one fourth of the bandgap in the oxide, which
explains the apparently small values found for these junctions experimentally.
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I. INTRODUCTION

Tunneling of electrons through aluminum-aluminum oxide
(Al/AlOx/Al) junctions is one of the prototypical examples of
quantum-mechanical tunneling in solid state physics. Fisher
and Giaever in their pioneering work1 demonstrated the tun-
neling character of the transport of electrons through this in-
terface and by comparing their results with the predictions of
Holm2 for tunneling through vacuum gap, they initiated the
interpretation of tunneling measurements through thin metal-
insulator-metal junctions using potential barrier model. The
minimal form of this model contains two parameters - the bar-
rier width d, which indicates the physical width of the oxide,
and its height W , given by the energy difference between the
Fermi energy and the bottom of the conduction band in the ox-
ide. In practice, several other parameters enter the model3–5:
the electron’s effective mass in the oxide or the dielectric con-
stant of the oxide used within an additional image-charge po-
tential. Further parameters are used for fine-tuning the shape
of the barrier, e.g. it’s asymmetry5. Clearly, having a large set
of parameters, it is no surprise that the simple barrier model
can be fitted to the experimental current-voltage characteris-
tics well6–9, but at the same time, it rises questions about the
relevance of the model itself.10,11 For example, the inclusion
of the image potential can have a significant effect on the ef-
fective barrier width, but its presence depends on the time
scales of the tunneling electrons and the interface plasmons
in the metal12,13.

On the other hand, much more detailed and parameter-
free models of the interface can be constructed using first
principles calculations14–19 even though the size of the mod-
eled interfaces is somewhat restricted due to the numerical
cost of these calculations. Nevertheless, in many experi-
ments8,9,11,15,20–22 the studied interfaces have widths within
the reach of ab initio simulations so that the accuracy of the
potential barrier model to the interpretation of tunneling data
can be tested. Specifically, Jung et al15 presented such a study
comparing the character of the equilibrium projected density
of states of the Al/AlOx/Al interface obtained by a first princi-
ples simulation with the potential barrier model. They found

that the parameters of the potential barrier model fitted to the
experimental data are in qualitative agreement with the param-
eters of the first principles calculations. The potential barrier
model included the image potential and hence also the dielec-
tric constant which effectively narrowed and lowered the po-
tential barrier.

In this work we test the performance of the potential barrier
model by comparing the predicted conductance to ab initio
calculations23–25. We test this for Al/AlOx/Al junctions of
four different widths d and show that it is essential to use an
effective mass in the oxide and an effectively shorter width of
the tunneling region within the potential barrier model. We
also present an analytical tight-binding model for the conduc-
tance that describes the ab initio results more accurately than
the potential barrier model. The parameters of the latter are
extracted from the ground state ab initio calculations of the
junction. In Sec. II and III we introduce the analytical details
of the models. The ab initio results for ground state proper-
ties of the studied junctions are presented in Sec. IV and V,
together with the computational parameters used in the cal-
culations. Finally in Sec. VI we compare the conductances
obtained using the ab initio calculations and the conductances
obained from the analyical models.

II. POTENTIAL BARRIER MODELS OF THE INTERFACE

The starting assumption of the potential barrier model is
that inside the metallic electrodes, on the left and right of the
insulator, the electrons behave like free quasi-particles with
their energy being in a separable form52

E = Ez +E‖ = k2
z/2+ k2

‖/2 (1)

where kz is the component of electron’s momentum perpen-
dicular to the interface and k‖ the component of momen-
tum parallel to the interface. The current density, induced
by an infinitesimal bias voltage, consists of a sum of con-
tributions from the electrons occupying states in the energy
window around the Fermi energy EF , with their momentum
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FIG. 1: (Color online) The trapezoid potential barrier used to model
ultra-thin AlOX interface.

opposite to the drop of the bias voltage (kz > 0). Hence, the
conductance per area is given by the expression53

g = 2
∫ d2k‖

(2π)2

∫
∞

−∞

dEz

2π
δ (EF −Ez−E‖)T (Ez), (2)

=
∫

∞

0

dE‖
2π2 T (EF −E‖), (3)

where T (Ez) is the transmission function, the probability for
an electron to pass through the junction, and EF is the Fermi
energy.

The simplest expression for the transmission T (Ez) is based
on a metal-vacuum-metal interface3–5, where the barrier
height W is given by the potential energy in the vacuum with
respect to the Fermi energy of the metal.

In Sec. VI we will demonstrate that there are two essential
features of the potential barrier models that need to be taken
into account for the description of ultra-thin interfaces: (1) the
barrier needs to have transition regions between the metal and
the insulator of width ∆d, where the potential energy changes
continuously, (2) the effective mass of the electrons in the in-
sulator needs to be accounted for. These two requirements
can be fulfilled by using a specific shape of the potential bar-
rier. In this work we use a trapezoid potential barrier (TB) as
defined in Fig. 1.

On the other hand, in Sec. VI we will also demonstrate that
approximate expressions for the transmission as well as for
the energy integration in Eq. (3) are sufficient for an accurate
evaluation of the model conductance. For the trapezoid po-
tential barrier , the WKB approximation for the transmission
gives

T (E−E‖) = exp
{
−F(E−E‖)

}
, (4)

F(E−E‖) = 2
∫ d(E‖)

−d(E‖)

√
2meff[W (z)+E‖]dz, (5)

where meff is the effective mass of the electrons in the insula-
tor, −d(E‖) and d(E‖) give the region where [W (z)+E‖]≥ 0,
and W (z) is the trapezoid potential profile. Accounting only
for the largest contribution from the states close to the Fermi
energy in the integral in Eq. (3), E‖ ∼ EF , we obtain the

following simple anaytical expression:

g≈− e−F(EF )

2π2F ′(EF)
, (6)

where

F(EF) = 2
√

2meffW
(

dW +
2
3

∆dEF

)
, (7)

F ′(EF) = − 2√
2meffW

(dW +2∆dEF ) . (8)

We will refer to Eq. (6) as the TBA,meff model (A stands for
“analytical” as compared to the numerically calculated trans-
mission for the trapezoid potential barrier - TBN). We note
that the introducion of two transition regions of width ∆d adds
to the exponent of the transmission amplitude only a small
fraction of ∆d, namely (2/3)∆dEF . This results in a sub-
stantial increase of the conductance which is needed for the
agreement of the TB model and ab initio results (see Sec. VI).

III. ATOMIC sp MODEL OF THE INSULATOR

It is typically assumed that the barrier height in the poten-
tial barrier model corresponds to energy distance between the
Fermi energy and the closest among the valence or conduc-
tion bands of the insulator, or even to its whole bandgap. How-
ever, fits of the potential barrier model to experimental data
often lead to unphysically small values if one follows this in-
terpretation. Various arguments like interface roughness10 or
image potential4 have been suggested to correct for this un-
derestimation, but perhaps the most important one – the prin-
cipal difference in the energetic spectrum of the real insulator
and the vacuum gap – received less attention3,26.

To account for a more realistic electronic structure of the in-
sulator we consider a minimal tight-binding model of a sp-like
insulator with rock-salt crystal structure. For our purposes,
the cation with s-like orbital plays the role of aluminum and
the anion with p-like orbital the oxygen atom. While this
is different from the true structure of alumina, this model
works surprisingly well even for the disordered aluminum ox-
ide found in our interfaces, as will be shown in Sec. IV.

The sp model has four parameters: the onsite atomic en-
ergies of the cation (εs) and anion (εp), the hopping matrix
element between the two atoms (t), and the length of the edge
of the conventional unit cell (cube) a. A standard calculation
leads to valence (v) and conduction (c) band energies

Ec/v(k) = E∞
F ±

Eg

2

√
1+

8m−1
eff

Ega2

3

∑
i=1

sin2(kia/2) (9)

where meff = Eg/(2t2a2) is the effective mass of the elec-
trons close to the conduction band minimum, equal in magni-
tude that of the valence band maximum. The two bands are
separated by the bandgap Eg = εp− εs, and the energy in the
middle of the gap is

E∞
F =

εp + εs

2
. (10)
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In the tunneling regime, the current is carried by the elec-
tronic states in the bandgap,27–29 i.e. the evanescent Bloch
states with imaginary wavenumber kz = iκ:

φκ,k‖(r)∼ e−κzeik‖·ruκ,k‖(r). (11)

The WKB-like result for the transmission takes then the form

T sp
k‖
(E)∼ |φκ,k‖(d)|2 ∼ e−2κ(E,k‖)d , (12)

where d is a vector normal to the interface with the length
given by the width of the interface (|d| ∼ d). κ(E,k‖) can be
obtained from Eq. (9) using the substitution kz = iκ therein.
The transmission can be then used in the calculation of the
conductance in Eq. 2. The largest contributions to the con-
ductance come only from κa/2 < 1, k‖a/2 < 1, so that the
sin( ) functions in the dispersion can be expanded in Taylor
series. Keeping only the first two terms we find54

κ(E,k‖) =
√

ν(E)meffEg/2+ k2
x + k2

y , (13)

=
√

2
[
ν(E)meffEg/4+E‖

]
, (14)

where we have introduced a multiplicative factor ν(E) ac-
counting for the relative distance of the energy E from the
middle of the gap,

ν(E) = 1−4
(

E−E∞
F

Eg

)2

, (15)

which is close to 1 for E ∼ EF . We note that by using the
Taylor expansion the model becames independent of the size
of the conventional cell a. The transmission T sp

k‖
(E) is simi-

lar to the WKB result for a potential barrier [Eqs. (4-5) for a
constant barrier height W ]. Hence, making the same approx-
imations as in Sec. II and substituting W → ν(EF)Eg/4 we
find an analytical expression for the transmission through a
sp insulator of width d precisely of the form of Eq. (6), where

Fsp(EF) = 2
√

ν(EF)meffEg/2 d, (16)

F ′sp(EF) = − 2√
ν(EF)meffEg/2

d. (17)

This represents one of the main results of our paper: the po-
tential barrier height W is related to the bandgap through the
relation W = ν(EF)Eg/4. Since the Fermi energy in our junc-
tions is close to the center of the gap (Sec. IV) where we
have ν(EF) ∼ 1, we expect that the bandgap is about four
times larger than the barrier height obtained from the fits to
the experimental data. This explains the typical situation in
Al/AlOx/Al junctions where W can be as small as 2eV or less,
which is to be compared with the bandgap of alumina be-
ing about 7− 9eV. Further comparisons will be made in the
Sec. VI where the sp model is compared to the ab initio cal-
culation of the conductance.

.
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FIG. 2: (Color online) The 4L structure (above) and the correspond-
ing averaged electronic density of the occupied transmitting states.
The dashed lines indicate the positions of the metal-oxide boundary
obtained according to Eq. (18).

IV. FIRST PRINCIPLES CALCULATIONS OF THE
AL/ALOx/AL INTERFACES

The Al/AlOx thin film is well known for its difficulties to
be grown in an ordered form30,31. The process of oxidation
consists of a quick chemisorption of oxygen on a clean Al sur-
face which is followed by a complex diffusion process lead-
ing to various widths of the interface which is typically disor-
dered22,32–34. The model that we consider is on the other hand
relatively simple and ordered. We followed Jennison35,36 at
constructing chemisorbed layer of oxygen on an ideal Al(111)√

3×
√

3 surface (three Al atoms per layer), modelled as a
slab 6 layers thick (left electrode). Next we were adding Al
and O atoms and relaxed the geometry until we found a stable
interface having two layers of oxygen atoms (2L). Finally we
enclosed the interface with four ideal Al(111) layers (right
electrode) and connected it with the left electrode through pe-
riodic boundary conditions. Performing this procedure two
different geometries of the interfaces were identified: (1) an
asymmetric structure, corresponding the the ultra-thin AlOx
layer investigated by Jennison, and (2) an symmetric struc-
ture which did not contain the layer of chemisorbed oxygen
next to the bottom Al electrode. More details on the differ-
ences between the asymmetric and symmetric structures can
be found elsewhere37; in our present work we will consider
only structures derived from the asymmetric geometry.

Motivated by the geometry of the asymmetric 2L interface
model we have constructed thicker Al/AlOx/Al by adding one
(3L), two (4L) or three (5L) full oxygen layers sandwiched
between monoatomic (Al1) or diatomic (Al2) layers of alu-
minum. The resulting geometries were optimized until the
forces on the atoms were smaller than 0.002 Ha/aB, while
the Al atoms beyond the first layer of bulk metal were kept
fixed. An example of the resulting geometric structure of 4L is
shown in Fig. 2. We should mention that these models are not
necessarily the only ones possible for the interface of the con-
cerned width. Due to the above described tendency of AlOx
systems towards disorder, we expect that many different vari-
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System d [Å] Eg [eV] ∆EF [eV] ν(EF )

2L 4.5 7.0 1.5 0.82
3L 5.5 6.5 −0.25 0.99
4L 7.8 6.5 −1.0 0.91
5L 9.8 6.5 −1.0 0.91

TABLE I: Values of the interface widths, band-gaps, Fermi energy
shifts and the shift factor ν(EF ) obtained from ab initio calculations.

ations could be found with larger surface cells. The structures
identified here need to be taken as few samples of the great
variety of possible geometrical arrangements. However, the
comparison of the projected density of states (PDOS) for sym-
metric and asymmetric 2L junctions (see Ref. [37]) suggests
that these differences lead to small changes in their conduc-
tances.

All of the ground state properties and optimizations were
done using the Quantum Espresso distribution38. We have
employed the PBE exchange-correlation functional, atomic
cores were described using ultra-soft pseudopotentials result-
ing in well converged electronic structure close to the Fermi
energy, using a cutoff energy of 12.5 (125) Ha for wavefunc-
tions (charge density). Due to the large size of the supercell, a
6×6×1 Monkhorst-Pack k-point grid was sufficient to con-
verge the total energy and the electronic density.

In Fig. 2, in parallel with the geometric structure of the 4L
interface, we show the profile of the plane-averaged electronic
density of the scattering states ∆n(z) (e.g. localized states on
oxygen atoms are not included). We see that the rapid drop
and increase in the density appears at the boundary between
the metal and the oxide. We use ∆n(z) as the quantity for the
determination of the interface width from our ab initio calcu-
lations, in close analogy with the determination of the position
of surfaces at metal-vacuum interfaces39; for the left bound-
ary we use

zL =
∫ zI

−∞

z
d∆n(z)

dz
dz/

∫ zI

−∞

d∆n(z)
dz

dz, (18)

where zI is a position in the center of the insulator. Similar
expression is used for the determination of the right boundary
zR which together with zL give the estimate of the interface
width d = zR − zL used within our potential barrier and sp
models in Sec. VI. The resulting interface widths are given in
the Table I. In the following we will also refer to the width of
the transition region beween the metal and the oxide, which
can be estimated from the averaged density to be ∆n ≈ 2.0Å.
This value will be used for the determination of the width of
the transition region in the potential barrier model (Fig. 1).

We note that for the calculation of the positions zL/R we
do not necessarily need to use the density ∆n(z) obtained
from the scattering states in the transport calculations (see
Sec VI), but is it equally good to use the partial density of the
states close to the Fermi energy that can be obtained from any
ground state code (e.g. Quantum Espresso). On the other
hand, the total electronic density or the Kohn-Sham potential
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FIG. 3: (Color online) The comparison of the average Kohn-Sham
potential vKS(x), the total density n(z) and the contribution to the
density from the states close to the Fermi energy ∆n(z). Clearly, the
latter can be unambiguously used for the definition of the width of
the interface using the Eq. 18.

(which is frequently but incorrectly believed to be the origin
of the potential barrier in the model from Sec. II) are not suit-
able for this calculation, as it is clearly demonstrated in Fig. 3.

The second important parameter of the potential barrier and
the atomic sp models is the insulator band gap Eg. It can be
extracted from the projected density of states (PDOS), where
the Kohn-Sham eigenstates of the interface are projected on
atomic orbitals. Figure 4 shows the PDOS for the 4L inter-
face, where the PDOS of atoms in each layer are added to-
gether, green lines corresponding to the Al layers and the red
lines to the oxygen layers. The oxide bandgap is estimated
as the energy distance between the onset of the valence bands
on the oxygen atoms below the Fermi energy, and the onset
of the mixed Al and O bands above the Fermi energy. From
the PDOS we can also obtain the energy distance between the
midgap energy and the Fermi energy, ∆EF , needed for the sp
model. The calculated bandgaps and ∆EF for all studied
interfaces are collected in the Table I. Interestingly, in spite
of the well known bandgap problem of the DFT40–42, these
bandgaps appear to be in very good agreement with recent
experimental results for the Al/Al2O3 interfaces43,44 which
found Eg = 6.4eV.

While the bandgap stays roughly the same for all of the
studied interfaces 2L− 5L, the Fermi energy shifts with re-
spect to the middle of the gap from positive (conventionally
called the electron tunneling regime) to negative values (hole
tunneling). However, the factor ν(EF) stays close to one in
all the cases (see Table I), as anticipated already in Sec II. The
energy difference between the bottom of the conduction band
and the Fermi energy determined experimentally43 was found
to be Ec−EF = 2.9± 0.2eV which is 1eV smaller than the
DFT value found here for 4L and 5L, but on the other hand,
in good agreement with 2L and 3L, which perhaps indicates
larger sensitivity of this quantity on the particular system.
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FIG. 4: (Color online) The projected density of states for the AlOx
4L interface. The distance of the valence band to the Fermi energy,
being less than half the distance to the conduction band, is taken as
the effective barrier height.

V. ELECTRONIC STRUCTURE OF AN IDEAL
INSULATOR

The potential barrier model as well as the sp model also
rely on the knowledge of the effective mass meff of the elec-
trons in the insulator or barrier region. To calculate it we have
considered a first principles model of the insulator extracted
from the geometry of the 4L junction. Namely, it consists
of a supercell of length l = 8.11aB in the z direction and with
identical dimensions in the two remaining in-plane directions
[i.e.
√

3×
√

3 Al(111)], The supercell contains two layers of
oxygen and two layers of 2/3 filled Al planes. (the 3rd and
4th oxygen layers in Fig. 2 from the left and their immedi-
ately following Al layers respectively). This way, the chemi-
cal composition actually corresponds to alumina, Al2O3.

The DFT ground state calculation has been done with the
same specifications as for the full interface (Sec. IV) except
for the k-point grid being here 6×6×6 due to smaller extent
in the z direction. The following band-structure calculation
has been done using the PWCOND program23 that is capable
of obtaining the so called complex band-structure, i.e. en-
ergy bands for imaginary as well as real Bloch k-vectors. We
have checked that calculations of the band-structure for real k-
vectors using the Quantum Espresso and the PWCOND gave
identical results so that the parameters involved in the PWCOND
program were correctly chosen.

The band-structure along the direction normal to the in-
terface (z) is shown in Fig. 5. First of all we note that the
bandgap obtained here, E∞

g ∼ 4eV (in agreement with the pre-
vious DFT-PBE results for bulk γ-Al2O3

45,46), is significantly
smaller that the bandgap extracted from the PDOS of the full
junction (∼ 6.5eV). Interestingly, the experimental value of
this phase of alumina is Eexp

g = 7eV, which can be obtained

sp model
TB model

ab initio

k [2π/l]
0.50.40.30.20.10

.

.

κ [2π/l]

E
[e
V

]

0.5 0.4 0.3 0.2 0.1 0

2

1

0

-1

-2

-3

-4

FIG. 5: (Color online) The imaginary (left) and real (right) band
structures from ab inito calculations compared with the band-
structures of the sp and potential barrier models. The sp model
gives an excellent fit for both real and imaginary band-structure for
meff = 0.35 and Eg = 4.0eV.

also computationally if the DFT-PBE result is followed by a
GW calculation46.

The DFT band structure in Fig. 5 is fitted with two model
dispersions. The TB model uses a free-electron like disper-
sion Ec(k) = εc + k2/(2meff) which after fitting gives the ef-
fective mass meff = 0.35. The atomic sp model [Eq. (9)] in
the approximation ka/2 < 1, which is used in the analytic ex-
pression for the conductance, gives (for kx = ky = 0) the dis-
persion:

Ec/v(k) = E∞
F ±

Eg

2

√
1+

2k2
z

meffEg
. (19)

The parameters of the fit given in Fig. 5 are meff = 0.35,
Eg = 4.0eV and E∞

F = 1eV. Our value of the effective mass is
to be compared with the electron’s mass obtained from DFT
calculations for ideal α-Al2O3 crystal, meff ≈ 0.447, and fits
to experimental I−V characteristics, meff ≈ 0.236,48.

We see that the sp model works very well for real as well
as imaginary band-structure close to k = 0. While both mod-
els give the same effective mass, the values of κ for the free-
electron like dispersion are larger by ∼ 50% (as indicated by
arrows) which contributes to prediction of smaller conduc-
tances within the potential barrier model given the interface
width is the same, as will be shown in the following section.

VI. THE CONDUCTANCE

Transport properties of the junctions were obtained us-
ing the transfer matrix method49 implemented in the PWCOND
code23 , using plane-wave basis and ultra-soft pseudopoten-
tials. For the given self-consistent Kohn-Sham potential (ob-
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code 2L 3L 4L 5L
PWCOND 0.109 0.0166 0.00245 0.000279
WanT 0.0668 0.00730 0.00224 N/A

TABLE II: Values of the conductances in multiplies of e2/h×Az,
where Az = 74.23a2

B is the area of the supercell perpendicular to the z
direction, calculated by the PWCOND and WanT codes. The differences
are similar to the differences between the PWCOND results and the sp
model.

sp, Eg = 6.5eV
TBA,meff , W = 2eV

TBA, W = 2eV
TBN , W = n× 0.5eV

SB, W = 2eV
ab initio

.

d [Å]

g
[µ

S
µ
m

−
2
]

17.51512.5107.552.5
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FIG. 6: (Color online) The ab initio and model conductances. The
square barrier (green dashed line), the trapezoid barrier with transi-
tion regions ∆D 6= 0 (pink dotted line) and the inclusion of the effec-
tive mass (orange dash-dotted line) form a sequence of improvements
of the potential barrier to model towards the true atomic system. Fi-
nally, the analytic sp model (black full line) with parameters taken
from ground state ab initio simulations gives very good agreement
with the full first principles calculation of the conductance.

tained from the ground state calculations, see Sec. IV), the
conductance was converged with respect to the k‖ grid; go-
ing from the 6× 6 mesh (used for the presented results) to
a 10× 10 mesh the change in the conductance has been
found to be < 5%. Furthermore, for testing purposes, the
conductances for the 2L,3L and 4L interfaces were also cal-
culated using the WanT code24,25, where a completely differ-
ent method based on maximally localized Wannier functions
is implemented. Results are reported in Table II and compare
well with the previous set, though slightly underestimating the
absolute values.

In Figure 6 we show the dependence of the conductances
per unit area on the interface width d, determined in Sec. IV,
in comparison with the two models considered in Sections II
and III. The horizontal error bars accompanying the ab initio
conductances, ∆d ≈ 2Å, indicate the width of the transition
region between the metal and the insulator, which is taken
from the averaged density profile, Fig. 2.

First we consider the potential barrier model with effective
mass equal to one, where the calculation of the transmission
as well as its energy integration (Eq. 3) are done numerically
exactly (TBN). The potential barrier is of the form given in
Fig. 1, where dw = d − ∆d. The conductances are shown

as the blue crosses, where the height of the energy barrier
W = 0.5neV, n = 1,2,3,4,5 is increasing from top to bottom.
The pink-dotted line is the conductance of the same potential
barrier of width W = 2eV, but evaluated using the approximate
formula [Eq. (6)]. As anticipated in Section II, we see that in
view of the overall differences, the approximate but analytic
formula is very satisfactory and the numerical calculation of
the transmission of its energy integration is not really needed.

We see that in principle, we can achieve agreement between
this model and the ab initio results if we choose W ≈ 0.5eV,
but this is in stark contrast with the estimates of the potential
barrier height from the PDOS, typically taken as the distance
between the Fermi energy and the nearest band in the oxide
(e.g. the valence band in the oxide in 4L structure according
to Fig. 4), here expected to be W ∼ 2eV.

The green-dashed line is a conductance corresponding to
a simple square potential barrier with W = 2eV and effec-
tive mass equal to one, and we see that plain square barrier
model goes in the wrong direction. The use transition regions
of width ∆d does shift the potential barrier model in the right
direction, particularly for very short interfaces, where the ef-
fective mass within the insulator does not seem to play an im-
portant role. Hence, use of the transition region between the
metal and the insulator of width ∆d, given by the spatial extent
of the drop if the electronic density between the metal and the
oxide, is essential for the TB model.

The red dash-dotted line gives the conductance accord-
ing to Eq. (6) with the ab initio determined effective mass
meff = 0.35 and W = 2eV. The effective mass significantly im-
proves the agreement of the potential barrier model with the
ab initio conductance, while keeping the barrier at the “rea-
sonable” value, motivated by offset between the Fermi energy
and the valence band maximum.

Finally, the full black line corresponds to the atomic sp
model with the effective mass meff = 0.35, band gap Eg =
6.5eV and the barrier width dW = d − ∆d. The use of this
reduced width dW is motivated by two observations: (1)
in Sec. II we have seen that the linearly increasing poten-
tial at distance ∆d contributes to the exponent of the con-
ductance [Eqs. (6-7)] through a much smaller contribution
∆dEF = W/(W +EF)∆d ∼ 0.15∆d. (2) in the TB model we
have seen that the use of a shorter barrier, effectively given
by dW +2/3∆d [Eq. (7)], is important to compare well with
the ab initio conductances. Hence we expect that also in the
sp model, the oxide width (i.e. the equivalent of the potential
barrier) needs to be reduced almost to d−∆d, which is the
value we use. As a result, the sp model is essentially on top of
the ab initio conductances. While the improvement with re-
spect to the potential barrier model with transition region and
the effective mass is not that large, it is important to stress that
the parameters of the sp model (Eg, meff, d−∆d) correspond
to the characteristics of the true ab initio model.

It is interesting to attempt a quantitative comparison be-
tween experimentally determined barrier widths and heights,
and our ab initio and sp model results (Fig. 7). As mentioned
already in the introduction, there are experimental junctions
that are now accessible to first principles simulations. Based
on the rather unsatisfactory state of affairs in Fig. 7 we sus-
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FIG. 7: (Color online) The ab initio conductances compared to se-
lected experimental results. (a) Jung15, (b) Gloos8, (c) Holmqvist50,
(d) Brinkman5, and recent experiments by Schaefer9. The model
gives fairly rigid prediction of the conductances, even using the
bandgap of the α-Al2O3, Eg ∼ 9eV. The likely source of these dis-
crepancies is the experimental determination of the interface width.

pect that not all of the published widths may have been de-
termined correctly. On the other hand, a positive example is
the data point taken from the work of Jung15, where the inter-
face width has been determined directly, and not through fits
to the Simmons model and as a result the conductance is rela-
tively closer our ab initio conductances. Similar underestima-
tion of the junction widths obtained from Simmon’s (potential
barrier model) has been obtained in the experimental work of
Buchanan et al.7, even though here it has been interpreted as
due to interface roughness.

VII. CONCLUSIONS

In the conclusions, we have analyzed the performance of
simple analytical models in describing the conductance of

ultra-thin Al/AlOx/Al junctions. We have compared atomistic
first-principles calculations using the DFT-PBE framework
combined with the Landauer formula, with the conductances
obtained from a potential barrier and a tight-binding sp an-
alytical models. We have shown that the expression for the
conductance of the atomic sp model has the same form as that
from the potential barrier model if the barrier height W is ex-
changed for ν(EF)Eg/4 with ν(EF) ∼ 1, which explains the
small values of W obtained frequently in the past by fitting the
potential barrier model to the experimental I−V curves. The
accuracy of the analytical models has been tested by using
parameters derived from ground-state DFT calculations. We
have found that the oxide is characterized by effective mass
meff = 0.35 and bandgap Eg = 6.5eV. When these parameters
are used in combination with the sp model, excellent agree-
ment with the numerically calculated conductances is found.
The interface width used in the models has been shown to
correspond to the width of the well-developed oxide which is
shorter by about ∆d ≈ 2Å compared to the geometric width of
the interface d.
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